

Acumos Documentation

Acumos AI is a platform and open source framework that makes it easy to build,
share, and deploy AI apps. Acumos standardizes the infrastructure stack and
components required to run an out-of-the-box general AI environment. This frees
data scientists and model trainers to focus on their core competencies and
accelerates innovation.

Acumos Releases

Platform

	Demeter Release, 10 June 2020
	Demeter Release Notes
	Release Highlights

	Installation

	Supported Browsers, Devices, and Resolutions

	How to Get Help

	How to Report a Bug

	Demeter Manifest
	Operating System

	Platform Components
	Core Components

	Model Execution Components

	Third Party Software

	Supporting Libraries Used by Platform Components

	Modeler Client Libraries

	Clio Release, 13 November 2019

	Boreas Release, 5 Jun 2019

	Athena Maintenance Release, 12 December 2018

	Athena Release, 7 Nov 2018

Component and Weekly

	Release Notes
	Component Releases

	Weekly Builds

Portal and Marketplace User Guides

	Portal and Marketplace User Guide

	Portal and Marketplace Publisher Guide

	Portal and Marketplace Admin Guide

	Portal and Marketplace License Admin Guide

	Design Studio User Guide

Model On-Boarding Guides

	Java (Generic, H2o.ai, Spark): Java Model On-Boarding Guide

	Python: Python Model On-Boarding Guide [https://pypi.org/project/acumos/] (recommended version for Clio release is 0.8.0)

	R: R Model On-Boarding Guide

	ONNX: ONNX Model On-Boarding Guide [https://pypi.org/project/onnx4acumos/]

	Pre-dockerized models and model URI: Pre-dockerized Models and models URI On-boarding Guide

	C++: C++ Model On-Boarding guide

Operational User Guides

	START HERE

	Platform Operations, Administration, and Management (OA&M) User Guide

	System Integration User Guide

Contributors to the Acumos Platform Code

Platform Architecture

	Architecture Guide
	1. Introduction

	2. Scope

	3. Requirements

	4. Architecture

	5. Platform Flow

Component Guides

The Component Guides section contains a variety of information that is useful to developers who are working on the platform code. Most projects are written in Java, with the Javadoc available here [https://javadocs.acumos.org/] .

	Component Guides
	Catalog, Data Model, and Data Management

	Common Services

	Design Studio

	Deployment

	Model On-Boarding

	Portal and Marketplace

	Operations, Administration, and Management (OA&M)

	System Integration

Documentation Guide

Documentation Contributor Guide

Please also visit the Developer wiki [https://wiki.acumos.org/display/AC/Developer+Wiki], which includes sections on how to contribute to Acumos.

Indices and Tables

	Search Page

Demeter Release, 10 June 2020

	Demeter Release Notes
	Release Highlights

	Installation

	Supported Browsers, Devices, and Resolutions

	How to Get Help

	How to Report a Bug

	Demeter Manifest
	Operating System

	Platform Components

	Supporting Libraries Used by Platform Components

	Modeler Client Libraries

Demeter Release Notes

Demeter is the fourth release of the Acumos platform.

	Release Name: Demeter

	Release Version: 4.0

	Release Date: 10 June 2020

	Wiki: Demeter Release Notes [https://wiki.acumos.org/display/REL/Acumos_Demeter_Release]

Release Highlights

	
	Cloud Enablement:

	
	Containerized platform deployment incorporating cloud native functions, horizontal scaling, and implementation flexibility

	
	On Boarding:

	
	CLI message response with the Acumos Docker model

	Support for Pre-dockerized and Dockerized model URI with protobuf file to render models usable in Design studio.

	
	Licensing:

	
	Activity tracking and reporting – License usage manager (LUM) maintains logs of model usage

	Integration of License module with Portal UI.

	
	Training:

	
	Bidirectional communication over the federation link between subscriber and supplier instances to support ML life cycle management and continuous learning

	ML Work Bench:

	
	Predictor Manager:

	
	The Predictor Manager manages the model deployment, visualization of deployment metadata and association to a project.

	
	Data source:

	
	The Data Source feature allows user to create and associate project data with a model to create, update, and delete data set used for training, validation and testing.

	
	Portal:

	
	Integration of License module with Portal

Installation

Acumos provides a Zero to Acumos (Z2A) installation process for deploying to Ubuntu 20.04
development environments. The Z2A installation covers the case of starting with a VM or the case of starting from an existing Kubernetes installation. The Z2A was built as a modular design leveraging installation already existing for components that Acumos depends on (Nexus/MariaDB/etc.) The mindset is for any Acumos dependency you may use your own or use the defalt that is part of the Z2A installation.

To get begin Start_Here [https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/start-here.html]

Supported Browsers, Devices, and Resolutions

Detailed information can be found on the Supported Browsers, Devices, and Resolutions page.

How to Get Help

There are two options for getting help installing and using the Acumos platform:

	the Acumos Community mailing list [https://lists.acumos.org/g/acumosaicommunity]

	You must create an account to use the mailing list

	Please use [acumosaicommunity]Help: plus your question in the subject line

	StackOverflow [https://stackoverflow.com/search?q=acumos]

Whether you post to the mailing list or to Stack Overflow, please be as
descriptive as possible in the body so it’s easier for a community member to
help.

How to Report a Bug

You can report a bug by creating a Jira issue in the Acumos Jira [https://jira.acumos.org]. You must log in with your Linux Foundation ID [https://identity.linuxfoundation.org].
Guidelines for the content of a bug report are here [https://wiki.acumos.org/display/AC/Reporting+Bugs].

Demeter Manifest

Operating System

The multi-node installation of Acumos was tested on Ubuntu 16.04 LTS.

The One Click installation has been run on Centos 7 and Ubuntu 16, 17, and 18.

Platform Components

The components that comprise the Acumos Platform are released as Docker images on Nexus [https://nexus3.acumos.org/#browse/browse:docker.release].

Individual component release notes may be accessed from the Component Releases page.

Core Components

	Project

	Component

	Artifact

	Version

	Catalog, Data Model, and Data Management

	Common Data Service (CDS) – server

	acumos/common-dataservice

	3.1.1

	Catalog, Data Model, and Data Management

	Federation

	acumos/federation-gateway

	3.2.2

	Common Services

	Microservice Generation

	acumos/microservice-generation

	4.7.0

	Deployment

	Azure Client

	acumos/acumos-azure-client

	3.0.5

	Deployment

	Kubernetes Client

	acumos/kubernetes-client

	3.0.3

	Deployment

	OpenStack Client

	acumos/openstack-client

	3.0.3

	Design Studio

	Composition Engine

	acumos/ds-compositionengine

	3.0.6

	License-Manager

	License-Manager

	acumos/license-rtu-editor

	0.1.6

	License-Manager

	License-Manager

	acumos/license-profile-editor

	0.0.13

	License-Usage-Manager

	License-Usage-Manager

	acumos/lum-server

	1.3.4

	License-Usage-Manager

	License-Usage-Manager

	acumos/lum-db

	1.3.4

	Model Onboarding

	Onboarding

	acumos/onboarding-app

	4.6.3

	OA&M

	Elasticsearch

	acumos/acumos-elasticsearch

	4.0.3

	OA&M

	Elk-client

	acumos/elk-client

	4.0.3

	OA&M

	Filebeat

	acumos/acumos-filebeat

	4.0.3

	OA&M

	Kibana

	acumos/acumos-kibana

	4.0.3

	OA&M

	Logstash

	acumos/acumos-logstash

	4.0.3

	OA&M

	Metricbeat

	acumos/acumos-metricbeat

	4.0.3

	Portal

	Portal Backend

	acumos/acumos-portal-be

	4.0.12

	Portal

	Portal Frontend

	acumos/acumos-portal-fe

	4.0.12

	Security-Verification

	Security-Verification

	acumos/security-verification

	1.2.2

	Workbench

	Dashboard-Webcomponent

	acumos/dashboard-webcomponent

	3.0.0

	Workbench

	Home-Webcomponent

	acumos/home-webcomponent

	3.0.0

	Workbench

	Notebook-Catalog-Webcomponent

	acumos/notebook-catalog-webcomponent

	2.0.9

	Workbench

	Notebook-Webcomponent

	acumos/notebook-webcomponent

	2.0.9

	Workbench

	Project-Webcomponent

	acumos/project-webcomponent

	3.0.0

	Workbench

	Project-Catalog-Webcomponent

	acumos/project-catalog-webcomponent

	2.0.9

	Workbench

	Pipeline-Catalog-Webcomponent

	acumos/pipeline-catalog-webcomponent

	2.0.9

	Workbench

	Pipeline-Webcomponent

	acumos/pipeline-webcomponent

	2.0.9

	Workbench

	Project-Service

	acumos/project-service

	2.0.5

	Workbench

	Notebook-Service

	acumos/notebook-service

	2.0.5

	Workbench

	Pipeline-Service

	acumos/pipeline-service

	2.0.5

	Workbench

	Model-Service

	acumos/model-service

	2.0.4

	Workbench

	Predictor-Service

	acumos/predictor-service

	1.0.5

	Workbench

	Datasource-service

	acumos/datasource-service

	1.0.0

	Workbench

	Datasource-webcomponent

	acumos/datasource-webcomponent

	3.0.0

	Workbench

	Datasource-catalog-webcomponent

	acumos/datasource-catalog-webcomponent

	3.0.0

	Deployment

	Deployment-client

	acumos/deployment-client

	1.0.8

Model Execution Components

	Project

	Component

	Artifact

	Version

	Design Studio

	SQL Data Broker

	sqldatabroker

	1.2.0

	Design Studio

	CSV Data Broker

	csvdatabroker

	1.4.0

	Model Onboarding

	Onboarding Base – R

	onboarding-base-r

	1.2.0

	Design Studio

	Runtime Orchestrator (Model Connector)

	blueprint-orchestrator

	2.0.13

	Design Studio

	Model Runner

	h2o-genericjava-modelrunner

	2.2.3

	DataBroker

	Data Broker

	databroker-zipbroker

	1.0.0

	Design Studio

	Proto Viewer (Probe)

	acumos-proto-viewer

	1.5.7

Third Party Software

	Software

	Version

	MariaDB [https://mariadb.org/]

	10.2

	Kong [https://konghq.com/kong-community-edition/]

	0.11.0

	Nexus Repository OSS [https://www.sonatype.com/nexus-repository-oss]

	3.x

	Docker-CE [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-using-the-repository]

	18.06.1-ce for Ubuntu 16.04

Supporting Libraries Used by Platform Components

These supporting libraries are released as Java JAR files and referenced as libraries by various platform components.

	Project

	Component

	JAR

	Version

	Acumos-Java-Client

	Acumos-Java-Client

	java_client

	4.2.0

	Catalog, Data Model, and Data Management

	Common Data Service Client

	cmn-data-svc-client

	3.1.1

	Design Studio

	Generic Data Mapper Service

	gdmservice

	TDB

	Design Studio

	TOSCAGeneratorClient

	TOSCAModelGeneratorClient

	2.0.8

	License-Manager

	License-Manager

	License-Manager-Client-Library

	1.5.1

	Acumos R Client

	Acumos-r-client

	acumos-r-client

	0.3.0

	Acumos C Client

	Acumos-c-client

	acumos-c-client

	1.2

	Acumos Python Client

	Acumos-python-client

	acumos-python-client

	0.9.5

	Python Model Runner

	Python-model-runner

	python-model-runner

	0.2.4

Modeler Client Libraries

These libraries are used by modelers on their local workstations to prepare models for onboarding.

	Project

	Component

	Version

	Location

	Model Onboarding

	acumos-java-client

	4.2.0

	Nexus [https://nexus.acumos.org/#nexus-search;quick~acumos-java-client]

Clio Release, 13 November 2019

	Clio Release Notes
	Release Highlights

	Installation

	Supported Browsers, Devices, and Resolutions

	How to Get Help

	How to Report a Bug

	Clio Manifest
	Operating System

	Platform Components

	Supporting Libraries Used by Platform Components

	Modeler Client Libraries

Clio Release Notes

Clio is the third release of the Acumos platform.

	Release Name: Clio

	Release Version: 3.0.0

	Release Date: 13 November 2019

	Wiki: Clio Release Notes [https://wiki.acumos.org/display/REL/Acumos_Clio_Release]

Release Highlights

	
	Model On Boarding [https://docs.acumos.org/en/clio/submodules/on-boarding/docs/index.html] / Common Services [https://docs.acumos.org/en/clio/AcumosContributor/component-guides.html#common-services]

	
	Onboarding & Microservice Generation of Spark/Java and C/C++ client

	
	Design Studio [https://docs.acumos.org/en/clio/submodules/design-studio/docs/index.html] /Machine Learning Workbench [https://docs.acumos.org/en/clio/submodules/workbench/docs/index.html]

	
	Enterprise Design Tools Integration to support plug-gable framework

	Framework extended to support no-SQL database (Couch DB)

	
	Web component support for plug-gable framework

	
	Project Predictor Mapping, Model Asset Mapping & Collaboration

	
	Federation [https://docs.acumos.org/en/clio/submodules/portal-marketplace/docs/user-guides/portal-admin/federation.html]

	
	ONAP model Integration with Acumos AI Marketplace

	O-RAN Integration

	
	License Management [https://docs.acumos.org/en/clio/submodules/license-manager/docs/index.html]

	
	License Usage Manager (LUM) – manage license compliance for Acumos models

	License Entitlement/RTU – support license agreements using standard Open Digital Rights Language

	License Profile – ability to identify models as commercial

	IP Asset Protection Rights - Model Activity Tracking & Reporting

	
	Deployment [https://docs.acumos.org/en/clio/submodules/model-deployments/deployment-client/docs/index.html]

	
	Jenkins as a workflow engine as a stand alone or on-demand Kubernetes service

Installation

For Acumos Multi Node Installation [https://wiki.acumos.org/display/AC/Acumos+Installation] .

Acumos provides a one-click installation script for deploying to Ubuntu 16.04
development environments. Both docker-compose and Kubernetes options are
supported. Please see the One Click Deploy User Guide for details.

Supported Browsers, Devices, and Resolutions

Detailed information can be found on the Supported Browsers, Devices, and Resolutions page.

How to Get Help

There are two options for getting help installing and using the Acumos platform:

	the Acumos Community mailing list [https://lists.acumos.org/g/acumosaicommunity]

	You must create an account to use the mailing list

	Please use [acumosaicommunity]Help: plus your question in the subject line

	StackOverflow [https://stackoverflow.com/search?q=acumos]

Whether you post to the mailing list or to Stack Overflow, please be as
descriptive as possible in the body so it’s easier for a community member to
help.

How to Report a Bug

You can report a bug by creating a Jira issue in the Acumos Jira [https://jira.acumos.org]. You must log in with your Linux Foundation ID [https://identity.linuxfoundation.org].
Guidelines for the content of a bug report are here [https://wiki.acumos.org/display/AC/Reporting+Bugs].

Clio Manifest

Operating System

The multi-node installation of Acumos was tested on Ubuntu 16.04 LTS.

The One Click installation has been run on Centos 7 and Ubuntu 16, 17, and 18.

Platform Components

The components that comprise the Acumos Platform are released as Docker images on Nexus [https://nexus3.acumos.org/#browse/browse:docker.release].

Individual component release notes may be accessed from the Component Releases page.

Core Components

	Project

	Component

	Artifact

	Version

	Catalog, Data Model, and Data Management

	Common Data Service (CDS) – server

	acumos/common-dataservice

	3.0.0

	Catalog, Data Model, and Data Management

	Federation

	acumos/federation-gateway

	3.0.2

	Common Services

	Microservice Generation

	acumos/microservice-generation

	3.6.0

	Deployment

	Azure Client

	acumos-azure-client

	3.0.2

	Deployment

	Kubernetes Client

	kubernetes-client

	3.0.0

	Deployment

	OpenStack Client

	openstack-client

	3.0.0

	Design Studio

	Composition Engine

	ds-compositionengine

	3.0.0

	License-Manager

	License-Manager

	acumos/license-rtu-editor

	0.1.3

	License-Manager

	License-Manager

	acumos/license-profile-editor

	0.0.9

	License-Usage-Manager

	License-Usage-Manager

	acumos/lum-server

	0.28.1

	License-Usage-Manager

	License-Usage-Manager

	acumos/lum-db

	0.28.1

	Model Onboarding

	Onboarding

	acumos/onboarding-app

	3.6.0

	OA&M

	Elasticsearch

	acumos-elasticsearch

	3.0.4

	OA&M

	elk-client

	elk-client

	3.0.4

	OA&M

	Filebeat

	acumos-filebeat

	2.2.2

	OA&M

	Kibana

	acumos-kibana

	3.0.4

	OA&M

	Logstash

	acumos-logstash

	3.0.4

	OA&M

	Metricbeat

	acumos-metricbeat

	3.0.4

	Portal

	Portal Backend

	acumos-portal-be

	3.0.20

	Portal

	Portal Frontend

	acumos-portal-fe

	3.0.20

	Security-Verification

	Security-Verification

	acumos/security-verification

	1.2.0

	Workbench

	Dashboard-Webcomponent

	acumos/dashboard-webcomponent

	2.0.6

	Workbench

	Home-Webcomponent

	acumos/home-webcomponent

	2.0.5

	Workbench

	Notebook-Catalog-Webcomponent

	acumos/notebook-catalog-webcomponent

	2.0.7

	Workbench

	Notebook-Webcomponent

	acumos/notebook-webcomponent

	2.0.6

	Workbench

	Project-Webcomponent

	acumos/project-webcomponent

	2.0.6

	Workbench

	Project-Catalog-Webcomponent

	acumos/project-catalog-webcomponent

	2.0.7

	Workbench

	Pipeline-Catalog-Webcomponent

	acumos/pipeline-catalog-webcomponent

	2.0.7

	Workbench

	Pipeline-Webcomponent

	acumos/pipeline-webcomponent

	2.0.6

	Workbench

	Project-Service

	project-service

	2.0.2

	Workbench

	Notebook-Service

	notebook-service

	2.0.1

	Workbench

	Pipeline-Service

	pipeline-service

	2.0.2

	Workbench

	Model-Service

	model-service

	2.0.0

	Workbench

	Predictor-Service

	predictor-service

	1.0.0

Model Execution Components

	Project

	Component

	Artifact

	Version

	Design Studio

	SQL Data Broker

	sqldatabroker

	1.2.0

	Design Studio

	CSV Data Broker

	csvdatabroker

	1.4.0

	Model Onboarding

	Onboarding Base – R

	onboarding-base-r

	1.0.0

	Design Studio

	Runtime Orchestrator (Model Connector)

	blueprint-orchestrator

	2.0.13

	Design Studio

	Model Runner

	h2o-genericjava-modelrunner

	2.2.3

	DataBroker

	Data Broker

	databroker-zipbroker

	1.0.0

	Design Studio

	Proto Viewer (Probe)

	acumos-proto-viewer

	1.5.7

Third Party Software

	Software

	Version

	MariaDB [https://mariadb.org/]

	10.2

	Kong [https://konghq.com/kong-community-edition/]

	0.11.0

	Nexus Repository OSS [https://www.sonatype.com/nexus-repository-oss]

	3.x

	Docker-CE [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-using-the-repository]

	18.06.1-ce for Ubuntu 16.04

Supporting Libraries Used by Platform Components

These supporting libraries are released as Java JAR files and referenced as libraries by various platform components.

	Project

	Component

	JAR

	Version

	Acumos-Java-Client

	Acumos-Java-Client

	java_client

	3.1.0

	Catalog, Data Model, and Data Management

	Common Data Service Client

	cmn-data-svc-client

	3.0.0

	Design Studio

	Generic Data Mapper Service

	gdmservice

	TDB

	Design Studio

	TOSCAGeneratorClient

	TOSCAModelGeneratorClient

	2.0.0

	License-Manager

	License-Manager

	License-Manager-Client-Library

	1.4.0

Modeler Client Libraries

These libraries are used by modelers on their local workstations to prepare models for onboarding.

	Project

	Component

	Version

	Location

	Model Onboarding

	acumos-java-client

	3.1.0

	Nexus [https://nexus.acumos.org/#nexus-search;quick~acumos-java-client]

Boreas Release, 5 Jun 2019

	Boreas Release Notes
	Release Highlights

	Installation

	Supported Browsers, Devices, and Resolutions

	How to Get Help

	How to Report a Bug

	Boreas Manifest
	Operating System

	Platform Components

	Supporting Libraries Used by Platform Components

	Modeler Client Libraries

	Model Runners

Boreas Release Notes

Boreas is the second release of the Acumos platform.

	Release Name: Boreas

	Release Version: 2.0.0

	Release Date: 5 June 2019

	Wiki: Boreas Release Notes [https://wiki.acumos.org/display/REL/Acumos_Boreas_Release]

Release Highlights

Support for onboarding of ONNX, PFA and Dockerized models.

Enhanced Acumos platform peering through a controlled process of partner catalog publication and subscription.

	Global catalog search capability

	Federation of Catalogs

Support for AI/ML model suppliers to provide a commercial software license with their models in the Acumos marketplace.

	Security scans of license metadata for models *

	Support verification of licenses and Right-To-Use for commercial models †

	Logging to enable model activity tracking and reporting

Support for ML Workbench to allow the creation and training of AI/ML models in Acumos platform.

	Support for Notebooks development environment (Jupyter).

	Support for Pipeline (NiFi ‡) tools are integrated with Acumos.

Enhanced support for deploying Acumos platform under Kubernetes

Enhanced user experience in portal.

	Publishing, unpublishing, deploying , onboarding, model building, and chaining, etc.

Enhanced logging standards

	Log formats aligned with ONAP.

	Support for Log management tools.

	*

	Disabled with Security Verification turned off.

	†

	Disabled with Security Verification turned off.

	‡

	NiFi Pipeline tools are available as a Beta Feature only under K8S.

Installation

For Acumos Multi Node Installation [https://wiki.acumos.org/display/AC/Acumos+Installation] .

Acumos provides a one-click installation script for deploying to Ubuntu 16.04
development environments. Both docker-compose and Kubernetes options are
supported. Please see the One Click Deploy User Guide for details.

Supported Browsers, Devices, and Resolutions

Detailed information can be found on the Supported Browsers, Devices, and Resolutions page.

How to Get Help

There are two options for getting help installing and using the Acumos platform:

	the Acumos Community mailing list [https://lists.acumos.org/g/acumosaicommunity]

	You must create an account to use the mailing list

	Please use [acumosaicommunity]Help: plus your question in the subject line

	StackOverflow [https://stackoverflow.com/search?q=acumos]

Whether you post to the mailing list or to Stack Overflow, please be as
descriptive as possible in the body so it’s easier for a community member to
help.

How to Report a Bug

You can report a bug by creating a Jira issue in the Acumos Jira [https://jira.acumos.org]. You must log in with your Linux Foundation ID [https://identity.linuxfoundation.org].
Guidelines for the content of a bug report are here [https://wiki.acumos.org/display/AC/Reporting+Bugs].

Boreas Manifest

Operating System

The multi-node installation of Acumos was tested on Ubuntu 16.04 LTS.

The One Click installation has been run on Centos 7 and Ubuntu 16, 17, and 18.

Platform Components

The components that comprise the Acumos Platform are released as Docker images on Nexus [https://nexus3.acumos.org/#browse/browse:docker.release].

Individual component release notes may be accessed from the Component Releases page.

Core Components

	Project

	Component

	Artifact

	Version

	Catalog, Data Model, and Data Management

	Common Data Service (CDS) – server

	common-dataservice

	2.2.4

	Catalog, Data Model, and Data Management

	Federation

	federation-gateway

	2.2.0

	Common Services

	Microservice Generation

	microservice-generation

	2.12.0

	Deployment

	Azure Client

	acumos-azure-client

	2.0.15

	Deployment

	Kubernetes Client

	kubernetes-client

	2.0.10

	Deployment

	OpenStack Client

	openstack-client

	2.0.12

	Design Studio

	Composition Engine

	ds-compositionengine

	2.1.0

	Model Onboarding

	Onboarding

	onboarding-app

	2.14.0

	OA&M

	Elasticsearch

	acumos-elasticsearch

	2.2.2

	OA&M

	elk-client

	acumos-elk-client

	0.0.2

	OA&M

	Filebeat

	acumos-filebeat

	2.2.2

	OA&M

	Kibana

	acumos-kibana

	2.2.2

	OA&M

	Logstash

	acumos-logstash

	2.2.2

	OA&M

	Metricbeat

	acumos-metricbeat

	2.2.2

	Portal

	Portal Backend

	acumos-portal-be

	2.2.16

	Portal

	Portal Frontend

	acumos-portal-fe

	2.2.16

Model Execution Components

	Project

	Component

	Artifact

	Version

	DataBroker

	Data Broker

	databroker-zipbroker

	1.0.0

	Design Studio

	CSV Data Broker

	csvdatabroker

	1.4.0

	Design Studio

	Model Runner

	h2o-genericjava-modelrunner

	2.2.3

	Design Studio

	Proto Viewer (Probe)

	acumos-proto-viewer

	1.5.7

	Design Studio

	Runtime Orchestrator (Model Connector)

	blueprint-orchestrator

	2.0.12

	Design Studio

	SQL Data Broker

	sqldatabroker

	1.2.0

	Model Onboarding

	Onboarding Base – R

	onboarding-base-r

	1.0.0

Third Party Software

	Software

	Version

	MariaDB [https://mariadb.org/]

	10.2

	Kong [https://konghq.com/kong-community-edition/]

	0.11.0

	Nexus Repository OSS [https://www.sonatype.com/nexus-repository-oss]

	3.x

	Docker-CE [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-using-the-repository]

	18.06.1-ce for Ubuntu 16.04

	Kubernetes [https://kubernetes.io/]

	1.10

Supporting Libraries Used by Platform Components

These supporting libraries are released as Java JAR files and referenced as libraries by various platform components.

	Project

	Component

	JAR

	Version

	Design Studio

	Generic Data Mapper Service

	gdmservice

	TDB

	Design Studio

	TOSCAGeneratorClient

	TOSCAModelGeneratorClient

	2.0.0

	Catalog, Data Model, and Data Management

	Common Data Service Client

	cmn-data-svc-client

	2.2.2|2.2.2|2.2.2

	Common Services

	Nexus Client

	acumos-nexus-client

	2.2.1

	Security-Verification

	License-Manager

	License-Manager-Client-Library

	0.0.9

	Acumos-Java-Client

	Acumos-Java-Client

	java_client

	2.1.0

Modeler Client Libraries

These libraries are used by modelers on their local workstations to prepare models for onboarding.

	Project

	Component

	Version

	Location

	Model Onboarding

	acumos-java-client

	2.2.0

	Nexus [https://nexus.acumos.org/#nexus-search;quick~acumos-java-client]

	Model Onboarding

	acumos-python-client

	0.8.0

	PyPI [https://pypi.org/project/acumos/]

	Model Onboarding

	acumos-r-client

	0.2-8

	RForge [http://rforge.net/acumos/]

Model Runners

	Project

	Component

	Version

	Location

	Common Services

	Python DCAE Model Runner

	0.1.2

	PyPI [https://pypi.org/project/acumos-dcae-model-runner/]

	Common Services

	Python Model Runner

	0.2.2

	PyPI [https://pypi.org/project/acumos-model-runner/]

Athena Maintenance Release, 12 December 2018

Note

There is a required database upgrade to populate Authorship data. Please see User and Author Data Upgrade for CDS 1.18.x [https://docs.acumos.org/en/athena/submodules/common-dataservice/docs/upgrade.html] for instructions.

	Athena Maintenance Release Notes
	Supported Browsers, Devices, and Resolutions

	Issues Addressed

	Known Issues and Limitations

	Security Notes

	Installation

	Documentation

	Licenses

	How to Get Help

	How to Report a Bug

	Athena Maintenance Manifest
	Operating System

	Platform Components

	Supporting Libraries Used by Platform Components

	Modeler Client Libraries

	Model Runners

Athena Maintenance Release Notes

Athena is the first release of the Acumos platform.

	Release Name: Athena Maintenance

	Release Version: 1.1.0

	Release Date: 12 December 2018

Supported Browsers, Devices, and Resolutions

Detailed information can be found on the Supported Browsers, Devices, and Resolutions page.

Issues Addressed

Jira AthenaMaintenance-Fixed [https://jira.acumos.org/issues/?filter=10650]

	Issue Type

	Issue key

	Component/s

	Summary

	Bug

	ACUMOS-2109

	common-dataservice

	Need update sql script to populate first-author metadata for Athena in DB

	Bug

	ACUMOS-2102

	portal-marketplace

	IST2: Different name is displaying on the model tile on marketplace and manage my model screen for multiple user

	Bug

	ACUMOS-2074

	portal-marketplace

	Portal marketplace tile has unnecessary constant text

	Story

	ACUMOS-2073

	portal-marketplace

	Portal require author and default to user when publishing to any catalog

	Bug

	ACUMOS-2056

	portal-marketplace

	Portal displays incorrect person detail on tile, shows Admin instead of author

	Bug

	ACUMOS-2008

	portal-marketplace

	On-Boarding Model contains links to docs.acumos.org/en/latest instead of docs.acumos.org/en/athena

	Bug

	ACUMOS-1988

	portal-marketplace

	ADC-Staging - Logged in user not matching name on black bar

	Story

	ACUMOS-1953

	portal-marketplace

	Portal don’t show first-time user Tag/Theme selection dialog

	Bug

	ACUMOS-1933

	portal-marketplace

	IST: Newly Added tag is not displaying on the model tiles (marketplace , manage my model) when user published the model

	Bug

	ACUMOS-1916

	on-boarding

	<IST2> <Onboarding> API token authentication not working for Java model when onboarded through CLI

	Story

	ACUMOS-1818

	portal-marketplace

	Portal improve power of Marketplace left-side seach-by-keyword field

	Bug

	ACUMOS-1653

	portal-marketplace

	IST2: Deploy to Local : Download packages and help is not working on the popup

	
	
	
	

Known Issues and Limitations

Jira AthenaMaintenance-KnownIssues [https://jira.acumos.org/issues/?filter=10651]

	Issue Type

	Issue key

	Component/s

	Summary

	Bug

	ACUMOS-1932

	portal-marketplace

	IST: Solution name is not displaying in the notification when user published the model to company marketplace

	Bug

	ACUMOS-1928

	on-boarding

	<IST> <Onboarding> API token Authentication is not working for R model which is onboarded through CLI

	Bug

	ACUMOS-1924

	portal-marketplace

	Edit Peer dialog always sets self status to false

	Bug

	ACUMOS-1912

	portal-marketplace

	IST2: Comment Count is getting zero from tiles when user change the view on marketplace screen

	Story

	ACUMOS-1904

	portal-marketplace

	IST2: Publish request entry is displaying for a deleted model.

	Bug

	ACUMOS-1903

	portal-marketplace

	IST2: When onboarding of a model fail user is not getting both logs by the link provided on the notification bell icon

	Bug

	ACUMOS-1889

	portal-marketplace

	IST2: Web Onboarding: Quit(X) is not working during and after uploading of files

	Bug

	ACUMOS-1885

	portal-marketplace

	IST2 - Status is not moving for states when model is published

	Bug

	ACUMOS-1883

	common-dataservice

	CDS add method to get user unread notification count

	Bug

	ACUMOS-1882

	portal-marketplace

	Portal manage-my-models page shows status Not Started altho deploy to cloud process is completed

	Bug

	ACUMOS-1803

	portal-marketplace

	IST2: View Comment box(tool tip) getting cut down for blank text on publish request screen

	Bug

	ACUMOS-1775

	portal-marketplace

	Portal publish-approve screen does not allow viewing comments after approve/decline

	Bug

	ACUMOS-1626

	portal-marketplace

	IST: Author Name is not displaying when user added the success story

	Bug

	ACUMOS-1531

	portal-marketplace

	IST2: Manage My Model: Document: Same Document is not getting selected if user cancel first time

	Bug

	ACUMOS-516

	platform-oam

	<IST> <OA&M > Logs are not displayed on IST Logcollector when accessed through application

Security Notes

Integrated security and license scanning of models is not available.

Installation

Acumos provides a one-click installation script for deploying to Ubuntu 16.04
development environments. Both docker-compose and Kubernetes options are
supported. Please see the One Click Deploy User Guide for details.

Documentation

The Acumos Athena release provides multiple points of documentation:

	A high level Platform Architecture Guide of how components
relate to each other

	A collection of documentation provided
by each component

	The Acumos wiki [https://wiki.acumos.org] remains a good source of
information on meeting plans and notes from committees, project teams and
community events

Licenses

Acumos source code is licensed under the Apache Version 2 License [http://www.apache.org/licenses/LICENSE-2.0].
Acumos documentation is licensed under the Creative Commons Attribution 4.0
International License [http://creativecommons.org/licenses/by/4.0].

How to Get Help

There are two options for getting help installing and using the Acumos platform:

	the Acumos Community mailing list [https://lists.acumos.org/g/acumosaicommunity]

	You must create an account to use the mailing list

	Please use [acumosaicommunity]Help: plus your question in the subject line

	StackOverflow [https://stackoverflow.com/search?q=acumos]

Whether you post to the mailing list or to Stack Overflow, please be as
descriptive as possible in the body so it’s easier for a community member to
help.

How to Report a Bug

You can report a bug by creating a Jira issue in the Acumos Jira [https://jira.acumos.org]. You must log in with your Linux Foundation ID [https://identity.linuxfoundation.org].
Guidelines for the content of a bug report are here [https://wiki.acumos.org/display/AC/Reporting+Bugs].

Athena Maintenance Manifest

Operating System

The multi-node installation of Acumos was tested on Ubuntu 16.04 LTS.

The One Click installation has been run on Centos 7 and Ubuntu 16, 17, and 18.

Platform Components

The components that comprise the Acumos Platform are released as Docker images on Nexus [https://nexus3.acumos.org/#browse/browse:docker.release].

Individual component release notes may be accessed from the Component Releases page.

Core Components

	Project

	Component

	Artifact

	Version

	Catalog, Data Model, and Data Management

	Common Data Service (CDS) – server

	common-dataservice

	1.18.4

	Catalog, Data Model, and Data Management

	Federation

	federation-gateway

	1.18.7

	Common Services

	Microservice Generation

	microservice-generation

	1.8.2

	Deployment

	Azure Client

	acumos-azure-client

	1.2.22

	Deployment

	Kubernetes Client

	kubernetes-client

	1.1.0

	Deployment

	OpenStack Client

	openstack-client

	1.1.22

	Design Studio

	Composition Engine

	ds-compositionengine

	1.40.2

	Model Onboarding

	Onboarding

	onboarding-app

	1.39.0

	OA&M

	Elasticsearch

	acumos-elasticsearch

	1.18.2

	OA&M

	Filebeat

	acumos-filebeat

	1.18.2

	OA&M

	Kibana

	acumos-kibana

	1.18.2

	OA&M

	Logstash

	acumos-logstash

	1.18.2

	OA&M

	Metricbeat

	acumos-metricbeat

	1.18.2

	Portal

	Hippo CMS

	acumos-cms-docker

	1.3.5

	Portal

	Portal Backend

	acumos-portal-be

	1.16.6

	Portal

	Portal Frontend

	acumos-portal-fe

	1.16.6

Model Execution Components

	Project

	Component

	Artifact

	Version

	DataBroker

	Data Broker

	databroker-zipbroker

	1.0.0

	Design Studio

	CSV Data Broker

	csvdatabroker

	1.4.0

	Design Studio

	Model Runner

	h2o-genericjava-modelrunner

	2.2.3

	Design Studio

	Proto Viewer (Probe)

	acumos-proto-viewer

	1.5.7

	Design Studio

	Runtime Orchestrator (Model Connector)

	blueprint-orchestrator

	2.0.11

	Design Studio

	SQL Data Broker

	sqldatabroker

	1.2.0

	Model Onboarding

	Onboarding Base – R

	onboarding-base-r

	1.0.0

Third Party Software

	Software

	Version

	MariaDB [https://mariadb.org/]

	10.2

	Kong [https://konghq.com/kong-community-edition/]

	0.11.0

	Nexus Repository OSS [https://www.sonatype.com/nexus-repository-oss]

	3.x

	Docker-CE [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-using-the-repository]

	18.06.1-ce for Ubuntu 16.04

	Kubernetes [https://kubernetes.io/]

	1.10

Supporting Libraries Used by Platform Components

These supporting libraries are released as Java JAR files and referenced as libraries by various platform components.

Modeler Client Libraries

These libraries are used by modelers on their local workstations to prepare models for onboarding.

	Project

	Component

	Version

	Location

	Model Onboarding

	acumos-java-client

	1.11.1

	Nexus [https://nexus.acumos.org/#nexus-search;quick~acumos-java-client]

	Model Onboarding

	acumos-python-client

	0.7.0

	PyPI [https://pypi.org/project/acumos/]

	Model Onboarding

	acumos-r-client

	0.2-7

	RForge [http://rforge.net/acumos/]

Model Runners

	Project

	Component

	Version

	Location

	Common Services

	Python DCAE Model Runner

	0.1.2

	PyPI [https://pypi.org/project/acumos-dcae-model-runner/]

	Common Services

	Python Model Runner

	0.2.1

	PyPI [https://pypi.org/project/acumos-model-runner/]

Athena Release, 7 Nov 2018

	Athena Release Notes
	Release Highlights

	Supported Browsers, Devices, and Resolutions

	Known Issues and Limitations

	Security Notes

	Installation

	Documentation

	Licenses

	How to Get Help

	How to Report a Bug

	Athena Manifest
	Operating System

	Platform Components

	Supporting Libraries Used by Platform Components

	Modeler Client Libraries

	Model Runners

Athena Release Notes

Athena is the first release of the Acumos platform.

	Release Name: Athena

	Release Version: 1.0.0

	Release Date: 7 November 2018

Release Highlights

Portal and Marketplace

	Marketplace personalization - ability to choose model tags (IoT, Mobile, Wireless, etc) so those models will appear first in the Marketplace

	Model authorship

	New user email verification

	Publisher role added so models can be approved before being published to the Public Marketplace

	Ability to download Kubernetes artifacts

Design Studio

	Enhanced CSV Data Broker

	SQL Data Broker

	Split and Join capability - parameter-based and array-based split/collation schemes

	Ability to create Directed Acyclic Graph (DAG) composite solutions

	Enhanced Model connector - support for orchestrating DAG solutions

	Enhanced Probe endpoints

	Validate composite solution and generate deployment blueprint

Federation

	Site configuration

Deployment of Models

	Models may be deployed to a local environment as well as to a Cloud environment

	Support added to deploy models to a Kubernetes environment

	Deploy models on their own servers/VMs under a private Kubernetes environment

	Deploy models on hardware - workstations or lab servers

	Avoid complex prerequisites and costs associated with deploying on VMs/Docker

Platform Operation, Administration, and Management

	Deployment of the platform to a Kubernetes environment

	One-click, single node deployment to Kubernetes as well as Docker

	Kibana dashboard

Supported Browsers, Devices, and Resolutions

Detailed information can be found on the Supported Browsers, Devices, and Resolutions page.

Known Issues and Limitations

Onboarding

	Java Client: command-line on-boarding does not support API token but does support JWT

	R Client: command-line on-boarding does not support API token but does support JWT

Design Studio

	Design Studio Data Broker, Splitter, and Collator functionality requires that specific toolkit models be on-boarded; see the ../../AcumosUser/portal-admin/addendum/onboard-ds-toolkits section in the Portal and Marketplace Admin Guide for details.

Portal Marketplace UI

	Manage Themes - selecting themes - the instruction in the modal dialog states “Choose your tags…” but if you select more than one tag, the error message “You cannot select more than one tag” is displayed; only single tag selection is supported at this time

	ON-BOARDING MODEL page contains incorrect URLs: To know more about on-boarding, please have a look at : https://docs.acumos.org/en/latest/AcumosUser/portal-user/portal/index.html should be https://docs.acumos.org/en/athena/AcumosUser/portal-user/portal/index.html

	Web On-boarding: Quit(X) is not working during and after uploading of files for web on-boarding

	Deploy to Local: Help link displayed in the pop-up window does not work

	Notification: Solution name is not displayed in the notification after a user published the model to the Company Marketplace

	Publishing a Model to Company or Public Marketplace

	A newly added tag is not displayed on the model tiles on the Marketplace and Manage My Model pages when a user publishes a model; workaround: to add a new tag – after the model has been published, you need to go back to Publish to Company or Publish to Public and type in the tag name and then click someplace else on the screen for the tag to be added to the model (tag is still not added to drop-down list)

	Status is not moving for states when a model is published to Company

	Publish Request

	Filter is applied to entire list but existing page breaks are maintained even if filter results are less than selected number of records/page; workaround: select to show more requests/page than number of requests in the list

Security Notes

Integrated security and license scanning of models is not available.

Installation

Acumos provides a one-click installation script for deploying to Ubuntu 16.04
development environments. Both docker-compose and Kubernetes options are
supported. Please see the One Click Deploy User Guide for details.

Documentation

The Acumos Athena release provides multiple points of documentation:

	A high level Platform Architecture Guide of how components
relate to each other

	A collection of documentation provided
by each component

	The Acumos wiki [https://wiki.acumos.org] remains a good source of
information on meeting plans and notes from committees, project teams and
community events

Licenses

Acumos source code is licensed under the Apache Version 2 License [http://www.apache.org/licenses/LICENSE-2.0].
Acumos documentation is licensed under the Creative Commons Attribution 4.0
International License [http://creativecommons.org/licenses/by/4.0].

How to Get Help

There are two options for getting help installing and using the Acumos platform:

	the Acumos Community mailing list [https://lists.acumos.org/g/acumosaicommunity]

	You must create an account to use the mailing list

	Please use [acumosaicommunity]Help: plus your question in the subject line

	StackOverflow [https://stackoverflow.com/search?q=acumos]

Whether you post to the mailing list or to Stack Overflow, please be as
descriptive as possible in the body so it’s easier for a community member to
help.

How to Report a Bug

You can report a bug by creating a Jira issue in the Acumos Jira [https://jira.acumos.org]. You must log in with your Linux Foundation ID [https://identity.linuxfoundation.org].
Guidelines for the content of a bug report are here [https://wiki.acumos.org/display/AC/Reporting+Bugs].

Athena Manifest

Operating System

The multi-node installation of Acumos was tested on Ubuntu 16.04 LTS.

The One Click installation has been run on Centos 7 and Ubuntu 16, 17, and 18.

Platform Components

The components that comprise the Acumos Platform are released as Docker images on Nexus [https://nexus3.acumos.org/#browse/browse:docker.release].

Individual component release notes may be accessed from the Component Releases page.

Core Components

	Project

	Component

	Artifact

	Version

	Catalog, Data Model, and Data Management

	Common Data Service (CDS) – server

	common-dataservice

	1.18.4

	Catalog, Data Model, and Data Management

	Federation

	federation-gateway

	1.18.7

	Common Services

	Microservice Generation

	microservice-generation

	1.8.2

	Deployment

	Azure Client

	acumos-azure-client

	1.2.22

	Deployment

	Kubernetes Client

	kubernetes-client

	1.1.0

	Deployment

	OpenStack Client

	openstack-client

	1.1.22

	Design Studio

	Composition Engine

	ds-compositionengine

	1.40.2

	Model Onboarding

	Onboarding

	onboarding-app

	1.39.0

	OA&M

	Elasticsearch

	acumos-elasticsearch

	1.18.2

	OA&M

	Filebeat

	acumos-filebeat

	1.18.2

	OA&M

	Kibana

	acumos-kibana

	1.18.2

	OA&M

	Logstash

	acumos-logstash

	1.18.2

	OA&M

	Metricbeat

	acumos-metricbeat

	1.18.2

	Portal

	Hippo CMS

	acumos-cms-docker

	1.3.5

	Portal

	Portal Backend

	acumos-portal-be

	1.16.3

	Portal

	Portal Frontend

	acumos-portal-fe

	1.16.3

Model Execution Components

	Project

	Component

	Artifact

	Version

	DataBroker

	Data Broker

	databroker-zipbroker

	0.0.1

	Design Studio

	CSV Data Broker

	csvdatabroker

	1.4.0

	Design Studio

	Model Runner

	h2o-genericjava-modelrunner

	2.2.3

	Design Studio

	Proto Viewer (Probe)

	acumos-proto-viewer

	1.5.7

	Design Studio

	Runtime Orchestrator (Model Connector)

	blueprint-orchestrator

	2.0.11

	Design Studio

	SQL Data Broker

	sqldatabroker

	1.2.0

	Model Onboarding

	Onboarding Base – R

	onboarding-base-r

	1.0.0

Third Party Software

	Software

	Version

	MariaDB [https://mariadb.org/]

	10.2

	Kong [https://konghq.com/kong-community-edition/]

	0.11.0

	Nexus Repository OSS [https://www.sonatype.com/nexus-repository-oss]

	3.x

	Docker-CE [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-using-the-repository]

	18.06.1-ce for Ubuntu 16.04

	Kubernetes [https://kubernetes.io/]

	1.10

Supporting Libraries Used by Platform Components

These supporting libraries are released as Java JAR files and referenced as libraries by various platform components.

	Project

	Component

	JAR

	Version

	Design Studio

	Generic Data Mapper Service

	gdmservice

	1.2.0

	Design Studio

	TOSCAGeneratorClient

	TOSCAModelGeneratorClient

	1.33.1

	Catalog, Data Model, and Data Management

	Common Data Service Client

	cmn-data-svc-client

	1.18.2|1.18.3|1.18.4

	Common Services

	Nexus Client

	acumos-nexus-client

	2.2.1

Modeler Client Libraries

These libraries are used by modelers on their local workstations to prepare models for onboarding.

	Project

	Component

	Version

	Location

	Model Onboarding

	acumos-java-client

	1.11.0

	Nexus [https://nexus.acumos.org/#nexus-search;quick~acumos-java-client]

	Model Onboarding

	acumos-python-client

	0.7.0

	PyPI [https://pypi.org/project/acumos/]

	Model Onboarding

	acumos-r-client

	0.2-7

	RForge [http://rforge.net/acumos/]

Model Runners

	Project

	Component

	Version

	Location

	Common Services

	Python DCAE Model Runner

	0.1.2

	PyPI [https://pypi.org/project/acumos-dcae-model-runner/]

	Common Services

	Python Model Runner

	0.2.1

	PyPI [https://pypi.org/project/acumos-model-runner/]

Release Notes

	Component Releases
	Core Components
	Catalog, Data Model, and Data Management

	Common Services

	Design Studio

	Deployment

	Model Onboarding

	Portal and Marketplace

	Supporting Components
	Operations, Administration, and Management (OA&M)

	System Integration

	Example Models

	Weekly Builds

Component Releases

Each component maintains its own release notes.

Core Components

Catalog, Data Model, and Data Management

	Common Data Service

	Federation Gateway

	Model Schema

Common Services

	H2O Java Model Runner

	Microservice Generation

	Nexus Client

	Python DCAE Model Runner

	Python Model Runner

Design Studio

The Design Studio component repository includes the Composition Engine, TOSCA
Model Generator Client, Generic Data Mapper Service, CSV Data Broker, and SQL
Data Broker. Additional components are in separate repositories.

	Design Studio

	Proto Viewer (“Probe”)

	Runtime Orchestrator (“Model Connector”)

Deployment

	Deployment Client

	Kubernetes Client

	Azure Client

	OpenStack Client

Model Onboarding

	Java Client

	Onboading

	Python Client

	R Client

Portal and Marketplace

	Acumos Hippo CMS

	Portal

Supporting Components

Operations, Administration, and Management (OA&M)

	Platform OA&M

System Integration

	System Integration

Example Models

	Face Privacy Filter

	Image Classification

	Image Mood Classifier

	VM Predictor

Weekly Builds

Release notes for weekly builds are on the wiki here [https://wiki.acumos.org/display/REL/Weekly+Builds].

Weekly builds may be unstable and are not recommended for deployment to a production environment.

START HERE

For those unfamiliar with Acumos and by extension z2a, this is a quick intro.
If you are here, you may know what Acumos is but you probably don’t know:

	what is z2a?

	where do I start with z2a?

What is z2a?

Zero-to-Acumos (z2a) is a modular collection of Linux shell scripts that
have been assembled to perform a simple set of tasks: install and (where
possible) configure Acumos on a Kubernetes (k8s) cluster.

z2a is composed of two (2) distinct process flows; Flow-1 and Flow-2. In
each flow scenario, installation of additional Acumos plugins is optional
as a follow-on procedure.

What is z2a Flow-1?

z2a Flow-1 (default) performs an Acumos installation including:

	end-user environment creation;

	VM Operating System preparation;

	z2a dependency installation;

	Kubernetes cluster creation; and,

	deployment of Acumos noncore and core components on a single VM.

z2a Flow-1 is the original z2a process flow targeting development/test
environments where a Kubernetes cluster is built and Acumos is installed from
scratch on a single VM.

NOTE: z2a (Flow-1) should not be used as a production environment deployment
tool. z2a (Flow-1) has been primarily designed for development and/or test
environment installations on pre-built VMs. A key component of z2a (Flow-1),
kind - Kubernetes in Docker - is not recommended for production installs or
production workloads.

What is z2a Flow-2?

z2a Flow-2 performs an Acumos installation including:

	end-user environment creation;

	z2a dependency installation;

	deployment of Acumos noncore and core components on an existing Kubernetes cluster.

z2a Flow-2 is a new z2a process flow targeting pre-built Kubernetes cluster
environments. (i.e. BYOC - Bring Your Own Cluster)

NOTE: z2a (Flow-2) can be used as a production environment deployment tool when
appropriate preparations are made. z2a (Flow-2) has been primarily designed for
installation on a pre-built k8s cluster.

NOTE: Provisioning of a k8s cluster is beyond the scope of z2a.

Where do I start with z2a?

If you just want to start installing Acumos, refer to the TL;DR document
which provides an abbreviated installation guide for Acumos and Acumos plugins.
Please refer to the following documents for additional information:

NOTE: Some of the documents listed below are currently being updated.

CONFIGURATION - Acumos configuration information document

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/configuration.html

HOWTO - Acumos task document

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/how-to.html

INSTALLATION-GUIDE - Acumos installation document

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/installation-guide.html

README-PLUGINS-SETUP - Acumos Plugin Setup guidance

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/readme-proxy.html

README-PROXY - proxy configuration guidance

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/readme-proxy.html

README-VALUES - additional values configuration guidance

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/readme-values.html

START-HERE - brief Acumos introduction document (this document)

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/start-here.html

TL;DR - abbreviated installation guide

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/tl-dr.html

	Created

	2020/07/16

	Last Modified

	2020/10/21

Platform Operations, Administration, and Management (OA&M) User Guide

Operations, Administration and Management/Maintenance are the processes, activities, tools, and standards involved with operating, administering, managing and maintaining any system.

Acumos Elastic Stack for Log Analytics

One of the functions of (OA&M) for the Acumos platform is to collect and correlate log files from the other platform components in order to support debugging, metrics, alarms, etc. for development and operations purposes. These metrics can reveal issues and potential risks so administrators can take corrective action. To this end, the OA&M component has defined a logging standard to be used by all of those components in order to support correlation. OA&M uses the Elasticsearch, Logstack, Kibana stack [https://www.elastic.co/elk-stack] and Filebeat [https://www.elastic.co/products/beats/filebeat] to collect and centralize logs that are generated via the microservices. This guide that describes how to use the Acumos Elastic Stack (formerly known as the ELK Stack).

Target Users

Acumos Platform super admins

Assumptions

All the modules are following the Acumos Logging Guidelines. As per mentioned in Acumos Log Standards Wiki [https://wiki.acumos.org/display/OAM/Log+Standards]

Elastic Stack Architecture

[image: ../../../_images/elk_stack.png]

Elastic Stack Component Goal

Acumos ELK stack setup has five main components:

	Elasticsearch: Elasticsearch is a distributed open source search engine based on Apache Lucene. Acumos Elasticsearch stores all the logs and metrics of Acumos platform host.

	Logstash: Logstash is a data pipeline that helps collect, parse, and analyze a large variety of incoming logs generated across Acumos Platform.

	Kibana: Web interface for searching and visualizing logs.

	Filebeat: Filebeat serves as a log shipping agent, Installed on Acumos platform servers it sends logs to Logstash.

	Metricbeat: Installed on Acumos platform servers. it periodically collects the metrics from the Acumos platform host operating system which includes running components information and ships them to elasticsearch. These metrics are used for monitoring.

Elastic Stack Component Versions

	elasticsearch 5.5.1

	kibana:5.5.1

	logstash:5.5.1

	filebeat:6.0.1

	metricbeat:6.2.4

Elastic Stack Setup

Elastic Stack installation is automated with Docker Compose. Installation is done on a server separate from where Acumos has been installed.

Note We will install components namely Elasticsearch, Logstash and Kibana on a single server, which we will refer to as Acumos ELK stack log collector server. Beat agents namely Filebeat and Metricbeat are installed on Acumos platform host servers.

Prerequisites

Docker [https://docs.docker.com/] and Docker Compose [https://docs.docker.com/compose/install/] installed

Steps for first time, clean install

	Clone the platform-oam repository

$ git clone https://gerrit.acumos.org/r/platform-oam

	Create docker volume namely acumos-esdata and acumos-logs if no volumes created earlier.If acumos-esdata and acumos-logs volume already exist on host machine then skip this step.

$ docker volume create acumos-esdata
$ docker volume create acumos-logs

	The acumos-elk-env.sh file is the environment file for ELK stack. Update variables ELASTICSEARCH_IMAGE , LOGSTASH_IMAGE , KIBANA_IMAGE with the latest release image.

$ cd elk-stack

$ vi acumos-elk-env.sh

	The docker-compose.yml file as well as component directories are located in the elk-stack directory. Edit docker-compose.yml and make changes to these environment variables (ACUMOS_ELK_JDBC_CONNECTION_STRING, ACUMOS_ELK_JDBC_USERNAME, ACUMOS_ELK_JDBC_PASSWORD) to connect to database instance. Edit elasticsearch.yml and make changes to these environment variables ACUMOS_ELK_ELASTICSEARCH_HOST.

$ cd elk-stack

$ vi docker-compose.yml

	Starts and attaches to containers for Elasticsearch, Logstash, Kibana

$./docker-compose-elk.sh up -d

	To stop the running containers without removing them

$./docker-compose-elk.sh stop

Steps to upgrade

	A new version of the base code will need to be pulled from the garret repo. Before that step make a backup of your platform directory.

$ git clone https://gerrit.acumos.org/r/platform-oam

	Verify that the volumes previously created are present. If not create the volumes (same as step 2 in clean install):

$ docker volume create acumos-esdata
$ docker volume create acumos-logs

	Copy and replace “acumos-elk-env.sh” from your backup (which can be found out in the location as /elk-stack/acumos-elk-env.sh). That will have all the previous environment variables.

Else update the environment variable using below:

$ cd elk-stack

$ vi acumos-elk-env.sh

	Copy and replace “docker-compose.yml” (which can be found out in the location as /elk-stack/docker-compose.yml). Which will have all the previous changes.

Else update the environment variable using below:

$ cd elk-stack

$ vi docker-compose.yml

	Starts and attaches to containers for Elasticsearch, Logstash, Kibana

$./docker-compose-elk.sh up -d

	To stop the running containers without removing them

$./docker-compose-elk.sh stop

Filebeat setup steps:

Filebeat should be installed as an agent on the servers on which Acumos is running.
Add the configuration below to the docker-compose where the Acumos is installed.

filebeat:
 container_name: filebeat
 image: <filebeat-image-name>
 volumes:
 - <volume-name>:/filebeat-logs
 environment:
 - LOGSTASH_HOST=<elk-stack-host-hostname>
 - LOGSTASH_PORT=5000

Metricbeat setup steps:

Metricbeat should be installed as an agent on the servers on which Acumos is running.
Add the configuration below to the docker-compose where the Acumos is installed.

metricbeat:
 image: <metricbeat-image-name>
 network_mode: host
 volumes:
 #Mount the docker, filesystem to enable Metricbeat to monitor the host rather than the Metricbeat container.
 - /proc:/hostfs/proc:ro
 - /sys/fs/cgroup:/hostfs/sys/fs/cgroup:ro
 - /:/hostfs:ro
 - /var/run:/var/run:rw
 - /var/run/docker.sock:/var/run/docker.sock
 command: metricbeat -e -strict.perms=false -system.hostfs=/hostfs
 environment:
 - SHIPPER_NAME=DOCKY
 - ELASTICSEARCH_HOST=<elk-stack-host-hostname>
 - ELASTICSEARCH_PORT=9200
 - PROCS=.*
 - PERIOD=10s
 - SHIPPER_NAME=super-app

Adding a New Log

Filebeat docker is a customized image that depends on filebeat.yml, a configuration layer.
For adding new log under prospectors of filebeat.yml, need to add log location path as it is in <volume-name>.

filebeat.prospectors:
 - input_type: log
 paths:
 - /filebeat-logs/portal-be/*.log

Elastic Stack UI Tour

According to the Kibana website [https://www.elastic.co/guide/en/kibana/current/introduction.html], Kibana is an open source analytics and visualization platform designed to work with Elasticsearch. You use Kibana to search, view, and interact with data stored in Elasticsearch indices. You can easily perform advanced data analysis and visualize your data in a variety of charts, tables, and maps.
Kibana makes it easy to understand large volumes of data. Its simple, browser-based interface enables you to quickly create queries in real time.

For more details visit Kibana User Guide [https://www.elastic.co/guide/en/kibana/5.5/index.html/].

Site admins have access to Elastic Stack’s Kibana Dashboard. Login to the dashboard:

[image: ../../../_images/acumos_Sign_In.JPG]

Go to SITE ADMIN -> Monitoring and click on Login to Dashboard in the USERS section

[image: ../../../_images/acumos_site_admin.jpg]

Redirects to Loading Kibana visualization platform

[image: ../../../_images/loadingKibana.jpg]

Acumos Kibana Dashboard Creation

The Kibana dashboard is used to view all the saved Visualizations.

To create dashboard click on Create a dashboard or On plus sign show in the search bar.

[image: ../../../_images/kibana_dashboard_1.jpg]
click on Visit the Visualize app

[image: ../../../_images/kibana_dashboard_2.jpg]
click on “Create a visualization” or “+”(i.e Plus sign) show in the search bar.

[image: ../../../_images/kibana_visualization_1.jpg]
Select visualization type. For example click on “Pie”.

[image: ../../../_images/kibana_visualization_2.jpg]
Choose search source as logstash-*

[image: ../../../_images/kibana_visualization_3.jpg]
Click on Split Slices

[image: ../../../_images/kibana_visualization_4.jpg]
Select Aggregation as “Terms” and Field as “userAgent.keyword”, Click on “Apply changes”

Note: Elasticsearch aggregations are to extract and process your data.

[image: ../../../_images/kibana_visualization_5.jpg]
To save this chart click on “Save”, Enter a name appropriate name. For example “Acumos User Login”.

[image: ../../../_images/kibana_visualization_6.jpg]
Click on “Dashboard”, On the below screen visualization namely “Acumos User Login” is appearing. For select this visualization click on “+” (i.e. plus sign) show in the search bar.

[image: ../../../_images/kibana_dashboard_3.jpg]
Click on “Add” button, to add the visualization.

[image: ../../../_images/kibana_dashboard_4.jpg]
Select the visualization for example here we have visualization namely “Acumos User Login”.

[image: ../../../_images/kibana_dashboard_6.jpg]
Click on “Save” button. Enter a name appropriate name. For example “Acumos User Login”.

[image: ../../../_images/kibana_dashboard_7.jpg]
Click on “Dashboard”, On the below screen created dashboard can be viewed namely “Acumos User Login”.

[image: ../../../_images/kibana_dashboard_8.jpg]

Acumos Kibana Dashboard Save

Click on “Management”, On the below screen click on save object.

[image: ../../../_images/kibana_save_dashboard_1.JPG]
Click on “Export Everything” to export the dashboard and “Import” to import the saved dashboard.

[image: ../../../_images/kibana_save_dashboard_2.JPG]

Note

export/import document should be in JSON format.

An example JSON file that can be used to import a Dashboard is available in the platform-oam repo, elk-stack directory [https://gerrit.acumos.org/r/gitweb?p=platform-oam.git;a=tree;f=elk-stack;hb=refs/heads/master].

System Integration User Guide

Acumos API Management with Kong

According to the Kong website [https://getkong.org/], Kong is a scalable, open source API Layer/Gateway/Middleware. The Acumos Platform uses Kong as a reverse proxy server. SSL certificates are installed on the Kong server so each containerized app doesn’t have to install its own certs. Kong is highly configurable. Browse the Kong documentation [https://getkong.org/docs/] for a detailed description and user guides.

Kong API helps in reducing the rewriting of the same piece of code again and again for SSL certificates configuration in order to make the API secure. Now we don’t need to do any coding/configuration work in API anymore.

Backend Architecture

[image: ../../../_images/AcumosKongAPI.jpg]
Note: All the configuration data sent through the Admin API is stored in Kong’s data store. Kong is capable of supporting both Postgres and Cassandra as storage backend. We have chosen Postgres.

Kong API component versions

	postgres:9.4

	kong:0.11.0

Acumos Kong API setup

Kong API completely containerized solution is automated with docker compose. It installed with its own docker-compose file.

In dockers-compose definition, there are three services:

	kong-database

	kong-migration

	kong

Kong uses an external datastore to store its configuration such as registered APIs, Consumers and Plugins.
The entire configuration data is stored in Kong’s data store. The kong-migration service is used to create the objects in the kong-database. This bootstrap functionality is not provided by kong service, so kong-migration service run once inside the container.

By default Kong listens on the following ports:

:8000 on which Kong listens for incoming HTTP traffic from your clients, and forwards it to your upstream services.

:8443 on which Kong listens for incoming HTTPS traffic. This port has a similar behavior as the :8000 port, except that it expects HTTPS traffic only. This port can be disabled via the configuration file.

:8001 on which the Admin API used to configure Kong listens.

:8444 on which the Admin API listens for HTTPS traffic.

Acumos Kong is running on port

:7000 on which Acumos Kong listens for incoming HTTP traffic from your clients, and forwards it to your upstream services.

:443 on which Acumos Kong listens for incoming HTTPS traffic. This port has a similar behavior as the :7000 port, except that it expects HTTPS traffic only. This port can be disabled via the configuration file.

:7001 on which the Admin API used to configure Acumos Kong listens.

:7004 on which the Admin API listens for HTTPS traffic.

Note: Acumos Kong API docker-compose.yml and shell script can be run before or after the main docker-compose. Ensure before access the service URL via acumos Kong API all the services which we are going to access should be up and running.

Prerequisites

Docker [https://docs.docker.com/] and Docker Compose [https://docs.docker.com/compose/install/] installed

Steps

	Clone the system-integration repository

$ git clone https://gerrit.acumos.org/r/system-integration

	Builds, (re)creates, starts, and attaches to containers for kong, postgres.

$./docker-compose-kong.sh up -d

	To stop the running containers without removing them

$./docker-compose-kong.sh stop

Steps to create self signed in certificate

	Create the private server key

openssl genrsa -des3 -out server.key 2048

	Now we create a certificate signing request

openssl req -new -key server.key -out server.csr -sha256

	Remove the passphrase

cp server.key server.key.org

openssl rsa -in server.key.org -out server.key

	Signing the SSL certificate

openssl x509 -req -in server.csr -signkey server.key -out server.crt -sha256

Acumos API configuration

Please update the configuration settings in “secure-acumos-api.sh” script to match your environment:

	Copy your host certificate and key under acumos-kong-api “certs” directory

	Change the values of placeholders below before running the script

export ACUMOS_KONG_CERTIFICATE_PATH=./certs

export ACUMOS_CRT=localhost.csr

export ACUMOS_KEY=localhost.key

export ACUMOS_HOST_NAME=<your hostname>

export ACUMOS_HOME_PAGE_PORT=8085

export ACUMOS_CCDS_PORT=8003

export ACUMOS_ONBOARDING_PORT=8090

Run the “secure-acumos-api.sh” script, Please ensure that Acumos Kong API container is up.

./secure-acumos-api.sh

Expose new service:

Use the Admin API port 7001 to configure Kong. Acumos standard sample to expose the service is present in shell script:

./secure-acumos-api.sh

For more details visit Kong Admin API documentation [https://getkong.org/docs/0.5.x/admin-api/],

Deployment of Acumos platform under Azure-K8s

Introduction

This user guide describes how to deploy Acumos platform using Kubernetes an open-source container-orchestration system for automating deployment, scaling and management of containerized applications under public cloud Azure.

What’s included in the acumosk8s public cloud Azure

In system-integration repo folder acumosk8s-public-cloud/azure:

	deployments/all_start_stop.sh: the main script that kicks off the deployment, to setup
pods Acumos, elk, docker, kong, nexus, proxy and mariadb under a kubernetes environment.

	acumos-kubectl.env: environment setup file that is customized as new environment parameters get generated (e.g. passwords). Used by various scripts in this toolset, to set shell environment variables that they need.

	deployments/: kubernetes deployment templates for all system components.

	services/all_start_stop.sh: the script that gets all the services started, to setup
service for Acumos, elk, docker, kong, nexus, proxy, mariadb and federation under a kubernetes
environment.

	services/: kubernetes service templates for all system components.

	configmap/: kubernetes configmap templates for ELK stack.

	volumeclaim/all_start_stop.sh: the script that creates persistent volume claim for mariadb, nexus ,output,
web onboarding, federation certificates and acumos logs.

Release Scope

Current Release (Athena)

The Athena release includes these capabilities that have been implemented/tested:

	Multi-Node deployment of the Acumos platform under kubernetes.

	deployment with a new Acumos database or redeployment with a current database
and components compatible with that database version.

	Component services under kubernetes as named below (deployed as
one pod-based service a.k.a acumos):

	core components of the Acumos platform

	Portal Marketplace: acumos

	Hippo CMS: acumos

	Solution Onboarding: acumos

	Design Studio Composition Engine: acumos

	Federation Gateway: federation-service

	Azure Client: acumos

	Common Data Service: acumos

	Filebeat: acumos

	Elasticsearch: elasticsearch

	Logstash: logstash-service

	Kibana: kibana-service

	external/dependency components

	docker engine/API: acumos-docker-service under kubernetes.

	MariaDB: mariadb running as acumos-mysql service under kubernetes.

	Kong proxy: running as acumos-kong-proxy, acumos-postgres service under kubernetes.

	Nexus: running as acumos-nexus-service under kubernetes.

	Proxy: running as acumos-proxy under kubernetes.

Future Releases

Future releases may include these new features:

	Scaling up, monitoring health tool.

Prerequisites

Setup of Kubernetes cluster in Azure and kubectl, the Kubernetes command-line client ,Tiller to install using helm charts.

Step-by-Step Guide

	Clone the system-integration repository.

$ git clone https://gerrit.acumos.org/r/system-integration

	Change directory to acumosk8s-public-cloud/azure

$ cd acumosk8s-public-cloud/azure

	Edit acumos-kubectl.env file to make changes related to latest assembly , database connection , credentials ,etc.

$ vi acumos-kubectl.env

	Use kubectl create command on kubernetes client machine to create a namespace.

$ kubectl create namespace <namespace name>
Example: kubectl create namespace acumos-ns01

	Change directory to acumosk8s-public-cloud/azure/volumeclaim to create persistent volume claim (pvc).

$ cd acumosk8s-public-cloud/azure/volumeclaim

	Edit acumos-volumeclaim.sh file and update variable ENV_FILE for absolute path of acumos-kubectl.env file.

$ vi acumos-volumeclaim.sh

	Run all-start-stop.sh script under volumeclaim directory. This will create pvc for certs, nexus, output, acumos logs, webonboarding and mariadb.

$./all-start-stop.sh create

	This step needs to be executed only if all the pvc created earlier needs to be deleted.This will delete all the pvc created under the given namespace.

$./all-start-stop.sh delete

	If each volumeclaim need to be created individually then skip step 7 and use below command.

$./acumos-volumeclaim.sh <name of volumeclaim .yaml file> create
Example: ./acumos-volumeclaim.sh acumos-volumeclaim.yaml create

	Create a secret file for acumos that contains base64 encoding to pull docker image from nexus repo.

$ log "Create k8s secret for docker image pulling from nexus repo"
 b64=$(cat ~/.docker/config.json | base64 -w 0)
 cat <<EOF >acumos-secret.yaml
 apiVersion: v1
 kind: Secret
 metadata:
 name: acumos-secret
 namespace: acumos-ns01
 data:
 .dockerconfigjson: $b64
 type: kubernetes.io/dockerconfigjson
 EOF

	Create configmap for ELK stack.

$ cd acumosk8s-public-cloud/azure/configmap
$./acumos-configmap.sh <name of config.yaml file> create
Example: ./acumos-configmap.sh es-config.yaml create
 ./acumos-configmap.sh logstash-config.yaml create

	Change directory to acumosk8s-public-cloud/azure/deployments

$ cd acumosk8s-public-cloud/azure/deployments

	Edit acumos-deployment.sh file and update variable ENV_FILE for absolute path of acumos-kubectl.env file.

$ vi acumos-deployment.sh

	Run all-start-stop.sh script under deployments directory. This will create kubernetes deployment for mariadb ,kong, elk, acumos (containing all components), nexus, docker and proxy.

$./all-start-stop.sh create

	This step needs to be executed only if all the deployment.yaml created earlier needs to be deleted.This will delete kubernetes deployment for mariadb ,kong, elk, acumos (containing all components), nexus, docker and proxy created under the given namespace.

$./all-start-stop.sh delete

	If each deployment need to be created individually then skip step 14 and use below command.

$./acumos-deployment.sh <name of deployment.yaml file> create
Example: ./acumos-deployment.sh acumos-deployment.yaml create

	Change directory to acumosk8s-public-cloud/azure/services

$ cd acumosk8s-public-cloud/azure/services

	Edit acumos-service.sh file and update variable ENV_FILE for absolute path of acumos-kubectl.env file.

$ vi acumos-service.sh

	Run all-start-stop.sh script under services directory. This will create kubernetes service for mariadb ,kong, elk, acumos (containing all components), nexus, docker ,federation and proxy. After services are up and running we need to map external endpoints generated for kibana-service , federation-service and acumos-nexus-service to FQDN in azure e.g. IP 40.117.115.236 generated for kibana is mapped to acumosk8s-log.eastus.cloudapp.azure.com

$./all-start-stop.sh create

	This step needs to be executed only if all the services.yaml created earlier needs to be deleted.This will delete kubernetes services for mariadb ,kong, elk, acumos (containing all components), nexus, docker , federation and proxy created under the given namespace.

$./all-start-stop.sh delete

	If each service need to be created individually then skip step 19 and use below command.

$./acumos-service.sh <name of service.yaml file> create
Example: ./acumos-service.sh acumos-service.yaml create

	Create a certs directory in kubernetes client machine and generate files acumos-k8s.cert , acumos-k8s.key , acumos-k8s.pkcs12 and acumosTrustStore.jks

	Create certificate and run ./create-certs.sh , this shell file includes below line

openssl req -x509 -newkey rsa:4096 -keyout acumos-k8s.key -out acumos-k8s.cert -days 365

	Install certificates and run ./install-certificates.sh that includes below line. acumosk8s.eastus.cloudapp.azure.com is the FQDN and 8001 is port no that is exposed.

curl -i -X POST http://acumosk8s.eastus.cloudapp.azure.com:8001/certificates \
-F "cert=acumos-k8s.cert" \
-F "key=acumos-k8s.key" \
-F "snis=acumosk8s.eastus.cloudapp.azure.com,localhost"

	Add to certificates run ./add-to-cacert.sh , this shell file includes below line.

/usr/lib/jvm/java-8-oracle/bin/keytool -import -noprompt -keystore acumosTrustStore.jks -storepass changeit -alias acumos-k8s -file acumos-k8s.pem

	Generate pkcs12.sh file run ./generate-pkcs12.sh , this file includes below code.

#! /bin/bash
CERT_DIR=/path-to-directory/acumos-k8s/certs
CERT_FILE=acumos-k8s.cert
CERT_KEY=acumos-k8s.key
PKCS12_FILE=acumos-k8s.pkcs12
openssl pkcs12 -export -nokeys -in ${CERT_DIR}/${CERT_FILE} -out ${CERT_DIR}/${PKCS12_FILE}

	Give read and execute access to .pkcs12 and .jks file by making use of below command

chmod 755 acumosTrustStore.jks
chmod 755 acumos-k8s.pkcs12

28. Copy acumosTrustStore.jks and acumos-k8s.pkcs12 to volume mounted for federation gateway container. Make use of below commands. In our case /path-to-directory/acumos-k8s/certs/acumos-k8s.pkcs12 is the path where file is located under K8 , acumos-ns01 is the namespace created and acumos-1353575208-c235g is the pod name that contains all the containers including federation-gateway.
/app/certs is the mount directory for federation-gateway container

kubectl cp /path-to-directory/acumos-k8s/certs/acumos-k8s.pkcs12 acumos-ns01/acumos-1353575208-c235g:/app/certs/ -c federation-gateway

kubectl cp /path-to-directory/acumos-k8s/certs/acumosTrustStore.jks acumos-ns01/acumos-1353575208-c235g:/app/certs/ -c federation-gateway

	After copying .pkcs12 and .jks file restart the federation-gateway pod

	Run secure-acumos-api-internal.sh file on K8. You need to change few configuration listed below based on your environment in this file

export ACUMOS_KONG_API_HOST_NAME=acumosk8s.eastus.cloudapp.azure.com
export ACUMOS_KONG_API_HOST_SNIS=acumosk8s.eastus.cloudapp.azure.com
export ACUMOS_KONG_API_PORT=8001
export ACUMOS_KONG_CERTIFICATE_PATH=/path-to-directory/acumos-k8s/certs
export ACUMOS_CRT=acumos-k8s.cert
export ACUMOS_KEY=acumos-k8s.key
export ACUMOS_HOST_NAME=acumos.acumos-ns01
export ACUMOS_NEXUS_HOST_NAME=acumos-nexus-service.acumos-ns01
export ACUMOS_HOME_PAGE_PORT=8085
export ACUMOS_ONBOARDING_PORT=8090
export ACUMOS_CMS_PORT=9080
export ACUMOS_NEXUS_PORT=8001

	Follow below steps to set up CMS.

	Login to the Hippo CMS console as “admin/admin”, at
http://<hostname>:<ACUMOS_CMS_PORT>/cms/console, where ACUMOS_CMS_PORT is per
acumos-kubectl.env; for the default, the address is acumosk8s.eastus.cloudapp.azure.com:9080/cms/console

	On the left, click the + at hst:hst and then also at hst:hosts. Click
the + at the dev-env entry, and the same for the nodes as they appear:
com, azure, cloudapp, eastus

	Right-click on the “acumos-dev1-vm01-core” entry and select “Move node”.

	In the Move Node dialog, select the dev-env node, enter “<hostname>”
at To, and click``OK``. Default hostname is acumosk8s

	When the dialog closes, you should see your node renamed and moved under
dev-env. You may also want to save your changes by pressing the
Write changes to repository button in the upper right.

	With the “<hostname>” node selected, click Add Property from the toolbar.

	In the Add a new Property dialog, place your cursor in the Name field
and then select hst:schemeagnostic. click OK.

	Make sure the hostname is selected on the left. Then select the check box
under the new attribute. This attribute is essential, as internal to the
Acumos platform the Hippo CMS service is accessed via HTTP, but externally,
user web browsers access the Acumos portal via HTTPS. Also click the
Write changes to repository button on the upper right.

	Delete the superfluous node. Right-click the com node, select
Delete node.

	Select the Save immediately check box and click OK

	Follow below step to set up MariaDB

Run below command to connect to acumos-mysql container.

kubectl -n acumos-ns01 exec -it <acumos-mysql-pod name> /bin/sh

Connect to Mariadb.

mysql -u root -p <password>

Execute below scripts to create acumos and acumos cms database. e.g we have used CDS but it need to be same mentioned in env file.

drop database if exists CDS;
create database CDS;
create user 'CDS_USER'@'localhost' identified by 'CDS_PASS';
grant all on CDS.* to 'CDS_USER'@'localhost';
create user 'CCDS_USER'@'%' identified by 'CDS_PASS';
grant all on CDS.* to 'CDS_USER'@'%';

drop database if exists acumos_CMS;
create database acumos_CMS;
create user 'CMS_USER'@'localhost' identified by 'CMS_PASS';
grant all on acumos_CMS.* to 'CMS_USER'@'localhost';
create user 'CMS_USER'@'%' identified by 'CMS_PASS';
grant all on acumos_CMS.* to 'CMS_USER'@'%';

Execute the DDL and DML scripts for any database version that needs to be configured.

Set up using Helm Charts

	Clone the system-integration repository.

$ git clone https://gerrit.acumos.org/r/system-integration

	Change directory to acumosk8s-public-cloud/azure/HELM

$ cd acumosk8s-public-cloud/azure/HELM

	Create a secret file for acumos that contains base64 encoding to pull docker image from nexus repo.

$ log "Create k8s secret for docker image pulling from nexus repo"
 b64=$(cat ~/.docker/config.json | base64 -w 0)
 cat <<EOF >acumos-secret.yaml
 apiVersion: v1
 kind: Secret
 metadata:
 name: acumos-secret
 namespace: <namespace name>
 data:
 .dockerconfigjson: $b64
 type: kubernetes.io/dockerconfigjson
 EOF

	Use below helm install command on kubernetes client machine to install helm chart for non core components like nexus, mariadb ,etc and elk stack.

$ helm install k8-noncore-chart
$ helm install k8-elk-chart

	Follow below step to set up MariaDB

Run below command to connect to acumos-mysql container.

kubectl -n <namespace_name> exec -it <acumos-mysql-pod name> /bin/sh

Connect to Mariadb.

mysql -u root -p <password>

Execute below scripts to create acumos database. e.g we have used CDS but it need to be same mentioned in env file.

drop database if exists CDS;
create database CDS;
create user 'CDS_USER'@'localhost' identified by 'CDS_PASS';
grant all on CDS.* to 'CDS_USER'@'localhost';
create user 'CDS_USER'@'%' identified by 'CDS_PASS';
grant all on CDS.* to 'CDS_USER'@'%';

Execute the DDL and DML scripts for any database version that needs to be configured.This is available in common data service gerrit repo.

	Edit values.yaml file inside k8-acumos-chart to make changes related to latest assembly , database connection , credentials ,onboarding-cli service,etc.

$ cd k8-acumos-chart
$ vi values.yaml

	Use below helm install command on kubernetes client machine to install helm chart for acumos core components like portal- fe , portal-be, onboarding,etc.

$ helm install k8-acumos-chart

	To view and delete the helm charts installed.

$ helm list
$ helm delete <chart name>

9. Generate certificates using above mentioned steps. Copy acumosTrustStore.jks and acumos-k8s.pkcs12 to volume mounted for federation gateway container. Make use of below commands. In our case /path-to-directory/acumos-k8s/certs/acumos-k8s.pkcs12 is the path where file is located under K8 , acumos-ns01 is the namespace created and acumos-1353575208-c235g is the pod name that contains all the containers including federation-gateway.
/app/certs is the mount directory for federation-gateway container

kubectl cp /path-to-directory/acumos-k8s/certs/acumos-k8s.pkcs12 acumos-ns01/acumos-1353575208-c235g:/app/certs/ -c federation-gateway

kubectl cp /path-to-directory/acumos-k8s/certs/acumosTrustStore.jks acumos-ns01/acumos-1353575208-c235g:/app/certs/ -c federation-gateway

	After copying .pkcs12 and .jks file restart the federation-gateway pod.

	To redeploy core components based on weekly assembly use chart k8-acumos-redeploy-chart.

$ helm install k8-acumos-redeploy-chart

	Run secure-acumos-api-internal.sh file on K8. You need to change few configuration listed below based on your environment in this file

export ACUMOS_KONG_API_HOST_NAME=acumosk8s.FQDN

export ACUMOS_KONG_API_HOST_SNIS=acumosk8s.FQDN

export ACUMOS_KONG_API_PORT=8001

export ACUMOS_KONG_CERTIFICATE_PATH=/path-to-directory/certificates-is-stored

export ACUMOS_CRT=acumos-k8s.cert

export ACUMOS_KEY=acumos-k8s.key

export ACUMOS_HOST_NAME=<acumos service name>.<namespace>

export ACUMOS_NEXUS_HOST_NAME=acumos-nexus-service.<namespace>

export ACUMOS_HOME_PAGE_PORT=8085

export ACUMOS_ONBOARDING_PORT=8090

export ACUMOS_NEXUS_PORT=8001

Monitoring resource utilization in kubernetes using Prometheus and Grafana

	Create a folder called prometheus. Here we will create all our monitoring resources.Create a file called prometheus/namespace.yml with the content.

kind: Namespace
apiVersion: v1
metadata:
 name: prometheus

	Apply & Test the namespace exists.

$ kubectl get namespaces

	Deploy Prometheus into the prometheus namespace.

$ helm install stable/prometheus --namespace prometheus --name prometheus

	We can confirm by checking that the pods are running.

$ kubectl get pods -n prometheus

	Deploy Grafana into the prometheus namespace.

$ helm install stable/grafana --namespace prometheus --name grafana

	Grafana is deployed with a password. Run below command to get the initial password.The username is admin.

$ kubectl get secret --namespace prometheus grafana -o jsonpath="{.data.admin-password}"
 | base64 --decode ; echo

	Port Forward the Grafana dashboard to see whats happening

$ export POD_NAME=$(kubectl get pods --namespace prometheus -l "app=grafana,release=grafana" -o
 jsonpath="{.items[0].metadata.name}")
$ kubectl --namespace prometheus port-forward $POD_NAME 3000

	Go to http://localhost:3000 in your browser. You should see the Grafana login screen.If step 7 gives
connectivity issue then we can change type as LoadBalancer in Grafana service file that will create an
external endpoint and URL will be accessible.

	Set the SMTP settings in Grafana configmap to send email alerts notification.

Architecture Guide

	1. Introduction

	2. Scope

	3. Requirements

	4. Architecture
	4.1. Architecture Overview

	4.2. Component Interactions

	4.3. Interfaces and APIs

	4.4. Core Components

	4.5. Supplemental Components

	5. Platform Flow
	5.1. User Journeys

	5.2. Component Interaction

	5.3. Inter-Component Message Flows

1. Introduction

[image: ../_images/acumos-overview.png]
Acumos is a platform which enhances the development, training and deployment of
AI models. Its purpose is to scale up the introduction of AI-based software
across a wide range of industrial and commercial problems in order to reach a
critical mass of applications. In this way, Acumos will drive toward a
data-centric process for producing software based upon machine learning as the
central paradigm. The platform seeks to empower data scientists to publish more
adaptive AI models and shield them from the task of custom development of fully
integrated solutions. Ideally, software developers will use Acumos to change
the process of software development from a code-writing and editing exercise
into a classroom-like code training process in which models will be trained and
graded on their ability to successfully analyze datasets that they are fed.
Then, the best model can be selected for the job and integrated into a complete
application.

Acumos is not tied to any specific modeling language or toolkit and not limited
to any one run-time infrastructure or cloud service. Acumos creates an open
source mechanism for packaging, sharing, licensing and deploying AI models in
the form of portable, containerized microservices and publishes them in a
shared, secure catalog. Using Acumos, data scientists can build abstract AI
models, using their favorite or most appropriates tools, which can be adapted
to a variety of data formats, using data adaptation libraries, and formed into
applications using a simplified chaining process. These models are intended to
be used by IT professionals, who can integrate the models into practical
applications, without a data science background or training in the various AI
toolkits employed by the data scientists.

Acumos is intended to enable the use of a wide range of tools and technologies
in the development of machine learning models including support for both open
sourced and proprietary toolkits. Models can be easily onboarded and wrapped as
containerized microservices which are interoperable with many other components.

Acumos provides a toolkit-independent App Store called a Marketplace for
data-powered decision making and artificial intelligence software models. It
provides a means to securely share AI microservices along with information on
how they perform, such as ratings, popularity statistics and user-provided
reviews to apply crowd sourcing to software development. The platform provides
integration between model developers and applications in order to automate the
process of user feedback, exception handling and software updates.

Acumos Design Studio can be used to chain together multiple models, along with
data translation tools, filters and output adapters into a full end-to-end
solution which can then be deployed into any run-time environment. The Acumos
catalog contains information on the licensing and execution requirements of
both reusable AI models and fully integrated solutions and this can be easily
searched to make model selection a simple process.

Acumos’ Data Broker provides capabilities for acquiring data from external
sources, then using the data to train or tune models and retaining the data in
order to provide retraining of future models.

The source code of the Acumos platform, itself, is available under an
OSI-approved open source license so that any aspect can be readily adapted to
new development toolkits, private data source and datastreams and custom
run-time environments.

2. Scope

This document provides an architectural overview of the Acumos platform, as of
the Athena release. All aspects of the Acumos platform are represented in this
overview, including:

	the Acumos portal, a web-based framework and content management system
supporting Acumos platform operator and user interaction with the platform

	various core components of the Acumos platform that are deployed as integrated
services with the Acumos portal, and provide specific functions in support of
the user experience, such as

	a model onboarding service

	a model design studio service

	various model deployment clients and supporting components, as of this
release supporting deployment under Azure, OpenStack, and kubernetes

	an inter-platform model federation service

	various common services, such as a common data service and microservice
generation service

	various model developer support clients, used in model onboarding

	various non-Acumos components that provide necessary dependencies as services
to the platform, such as

	runtime environment and control based upon Docker-CE and/or Kubernetes

	a database backend service based upon MariaDB

	a default artifact repository for Maven and docker artifacts, based upon
Nexus

	a default ingress controller / reverse proxy for the plaform, based upon Kong

	various components that provde a platform logging and analytics service

	a platform component log aggregation service based upon Filebeat

	a platform host and container analytics service based upon Metricbeat

	logging/analytics storage, search, and visualization based upon the ELK
stack (ElasticSearch, Logstash, Kibana)

	deployment and operations support tools for the platform

3. Requirements

As described on the Acumos.org website [https://acumos.org], Acumos AI is a
platform and open source framework that makes it easy to build, share, and
deploy AI apps, and operate the Acumos portals that enable those capabilities.
Acumos standardizes the infrastructure stack and components required to run an
out-of-the-box general AI environment. This frees data scientists and model
trainers to focus on their core competencies and accelerates innovation.

The Acumos platform enables the following high-level set of capabilities in
support of the goals above, which are fulfilled through the various components
and interfaces of the Acumos platform architecture:

	Build machine-learning models and solutions

	Use client libraries to generate model package for onboarding by CLI or Web

	Generate model microservice images with embedded model runners based upon
an Ubuntu docker base image

	Design and generate composite solutions as a directed graph of multiple
model microservices, with additional supporting components

	Share models and solutions

	Onboard models by CLI and Web

	Share with your team, and publish to company and public marketplaces

	Federate multiple Acumos portals for model/solution distribution

	Deploy models and solutions

	Download for local deployment under docker and kubernetes

	Deploy to public and private clouds (Azure, OpenStack)

	Interact with models, and observe solution-internal dataflow

	Operate Acumos platforms

	Deploy the platform under docker or kubernetes, as a single-node
(all-in-one) or multi-node platform

	Secure the platform

	Administer the platform via the portal UI

	logging and analytics collectiom, storage, and visualization

4. Architecture

4.1. Architecture Overview

[image: ../_images/acumos-architecture.png]

4.2. Component Interactions

The following diagram shows the major dependencies among components of the
Acumos architecture, and with external actors. The arrow represent dependency,
e.g. upon APIs, user interfaces, etc. The arrows are directed at the provider
of the dependency. Some dependencies are so common that they aren’t shown
directly, for diagram clarity. These include:

	collection of logs from all components

	dependency upon the Common Data Service (shown as a single block of components)

The types of components/actors in the diagram are categorized as:

	Core Component: components that are developed/packaged by the Acumos project,
and provide/enable core functions of the Acumos platform as a service

	Supplemental Component: components that are integrated from upstream projects,
in some cases packaged as Acumos images, and provide supplemental/optional
support functions for the platform. These functions may be provided by other
components, or omitted from the platform deployment.

	Platform Dependency: upstream components that are required, to support
key platform functions such as relational database and docker image creation.
The examples shown (Nexus and Docker) may be replaced with other components
that are API-compatible, and may be pre-existing, or shared with other
applications.

	External Dependency: external systems/services that are required for the
related Acumos function to be fully usable

[image: ../_images/acumos-architecture-detail.png]

4.3. Interfaces and APIs

4.3.1. External Interfaces and APIs

4.3.1.1. E1 - Toolkit Onboarding

The various clients used to onboard models call the APIs in the Onboarding service.
See the Onboading App documentation for details.

4.3.1.2. E2 - Web APIs

The portal Web API (E2) are the interface for the users to upload their models to the platform. It
provides means to share AI microservices along with information on how they perform. See the following for more information:

	Portal Web API

4.3.1.3. E3 - OA&M APIs

The OA&M subsystem defines data formats supported by the various logging
and analytics support components described under
Operations, Admin, and Maintenance (OAM). These are primarily focused on
log formats that Acumos components will follow when saving log files that are
collected by the logging subsystem.

4.3.1.4. E4 - Admin APIs

The Admin API (E4) provides the interfaces to configure the site global parameters. See the following for more information:

	Portal Marketplace

4.3.1.5. E5 - Federation APIs

The federation (public) E5 interface is a REST-based API specification.
Any system that decides to federate needs to implement this interface, which
assumes a pull-based mechanism. As such, only the server side is defined by E5.
The server allows clients to poll to discover solutions, and to retrieve solution
metadata, solution artifacts and user-provided documents.
See the following for more information:

	Federation Gateway

4.3.1.6. E6 - Deployment APIs

The Deployment subsystem primarily consumes APIs of external systems such as
cloud service environments, including Azure, OpenStack, and private kubernetes
clouds. The developer guides for the “Deployers” that coordinate model
deployment in those specific environments address the specific APIs consumed by
those Deployers. See the following for more information:

	Acumos Azure Client

	Openstack Client

	Kubernetes Client

4.3.1.7. Microservice Generation

The DCAE model API is intended to be used with models dedicated for ONAP. It builds a DCAE/ONAP
microservice and required artifacts.
See the Microservice Generation
documentation for details.

4.3.2. Internal Interfaces and APIs

4.3.2.1. Common Data Service

The Common Data Service provides a storage and query micro service for use by system
components, backed by a relational database. The API provides Create, Retrive, Update
and Delete (CRUD) operations for system data including users, solutions, revisions,
artifacts and more. The microservice endpoints and objects are documented extensively
using code annotations that are published via Swagger in a running server, ensuring that
the documentation is exactly synchronized with the implementation. View this API
documentation in a running CDS instance at a URL like the following, but consult the
server’s configuration for the exact port number (e.g., “8000”) and context path
(e.g., “ccds”) to use:

http://localhost:8000/ccds/swagger-ui.html

See the following for more information:

	Common Data Service

4.3.2.2. Hippo CMS

4.3.2.3. Portal Backend

4.3.2.4. Federation Gateway

The federation (local) E5 interface is a REST-based API specification, just like the public
interface. This interface provides secure communication services to other components of the
same Acumos instance, primarily used by the Portal. The services include querying remote peers
for their content and fetching that content as needed.
See the following for more information:

	Federation Gateway

4.3.2.5. Microservice Generation

4.3.2.6. Azure Client

The Azure Client exposes two APIs that are used by the Portal-Markeplace to
initiate model deployment in the Azure cloud service environment:

	POST /azure/compositeSolutionAzureDeployment

	POST /azure/singleImageAzureDeployment

The Azure Client API URL is configured for the Portal-Markeplace in the Portal-FE
component template (docker or kubernetes).

See Azure Client API for details.

4.3.2.7. OpenStack Client

The OpenStack Client exposes two APIs that are used by the Portal-Markeplace to
initiate model deployment in an OpenStack service environment hosted by Rackspace:

	POST /openstack/compositeSolutionOpenstackDeployment

	POST /openstack/singleImageOpenstackDeployment

The OpenStack Client API URL is configured for the Portal-Markeplace in the Portal-FE
component template (docker or kubernetes).

See OpenStack Client API for details.

4.3.2.8. Kubernetes Client

The Kubernetes Client expose one API that is used by the Portal-Markeplace to
provide the user with a downloadable deployment package for a model to be
deployed in a private kubernetes service environment:

	GET /getSolutionZip/{solutionId}/{revisionId}

The Kubernetes Client API URL is configured for the Portal-Markeplace in the Portal-FE
component template (docker or kubernetes).

See Kubernetes Client API for details.

4.3.2.9. ELK Stack

The ELK Stack [https://www.elastic.co/elk-stack] is used to provide the
E3 - OA&M APIs via which components publish standard-format log files for
aggregation and presentation at operations dashboards.

4.3.2.10. Nexus

The Nexus component exposes two APIs enabling Acumos platform components to store
and access artifacts in various repository types, including:

	Maven (for generic artifacts)

	docker (as a docker registry), using the
Docker Registry HTTP API V2 [https://docs.docker.com/registry/spec/api/]

The Maven repository service is accessed via an API exposed thru the
Nexus Client Java library. The docker repository service is accessed via the
Docker Registry HTTP API V2 [https://docs.docker.com/registry/spec/api/].
Both services are configured for clients through URLs and credentials
defined in the component template (docker or kubernetes).

4.3.2.11. Docker

The docker-engine is the primary service provided by Docker-CE, as used in
Acumos. The docker-engine is accessed by the
Docker Engine API [https://docs.docker.com/engine/api/v1.30/].

The docker-engine API URL is configured for Acumos components in the template
(docker or kubernetes) for the referencing component.

4.3.2.12. Kong

Kong [https://konghq.com/kong-community-edition/] provides a reverse proxy
service for Acumos platform functions exposed to users, such as the
Portal-Marketplace UI and APIs, and the Onboarding service APIs.
The kong proxy service is configured via the
Kong Admin API [https://docs.konghq.com/0.14.x/admin-api/].

4.4. Core Components

The following sections describe the scope, role, and interaction of the core
Acumos platform components and component libraries. The sections are organized
per the Acumos project teams that lead development on the components.

4.4.1. Portal and User Experience

4.4.1.1. Portal Frontend

The Portal Frontend is designed to make it easy to discover, explore, and use AI models. It is completely built on
angularJs and HTML. It uses portal backend APIs to fetch the data and display.

4.4.1.2. Portal Backend

Provides REST endpoints and Swagger documentation. Portal backend is built on Spring Boot which exposes the endpoints to
manage the models.

For more information: Portal Backend Documentation

4.4.1.3. Acumos Hippo CMS

Acumos Hippo CMS is a content management system which is used to store the images of the text descriptions for the Acumos instance.

For more information: Acumos Hippo CMS Documentation

4.4.2. Model Onboarding

4.4.2.1. Onboarding App

The Onboarding app provides an ingestion interface for different types of
models to enter the Acumos platform. The solution for accommodating a myriad
of different model types is to provide a custom wrapping library for each
runtime. The client libraries encapsulate the complexity surrounding the
serialization and deserialization of models.

The Onboarding App interacts with the following Acumos platform components and
supporting services:

	the Portal,
which calls the Onboarding app during web-based model onboarding

	the Nexus Client,
which stores and retrieves model artifacts from the Nexus maven repo

	the Common Data Service Client,
which stores model attributes

	the Microservice Generation, which creates the dockerized microservice

For more information: Onboading Documentation.

4.4.2.2. Java Client

The Acumos Java Client is a Java client library used to on-board H2o.ai and
Generic Java models. This library creates artifacts required by Acumos,
packages them with the model in a bundle, and pushes the
model bundle to the onboarding server.

The Java Client interacts with the Onboading app.

For more information: Java Client Documentation.

4.4.2.3. Python Client

The Acumos Java Client is a Python client library used to on-board Python
models and more specifically Scikit learn, TensorFlow and TensorFlow/Keras
models. It creates artifacts required by Acumos, packages them with the model
in a bundle, and pushes the model bundle to the onboarding app.

The Python Client interacts with the Onboading app.

For more information: Python Client Documentation.

4.4.2.4. R Client

The R client is a R package that contains all the necessary functions to
create a R model for Acumos. It creates artifacts required by Acumos, packages
them with the model in a bundle, and pushes the model
bundle to the onboarding app.

The R Client interacts with the Onboading app.

For more information: R Client Documentation.

4.4.3. Design Studio

The Design Studio component repository includes following components:

	Composition Engine

	TOSCA Model Generator Client

	Generic Data Mapper Service

	Data Broker (CSV and SQL)

For more information: Design Studio Documentation

Additional components are in separate repositories.

4.4.3.1. Design Studio Composition Engine

The Acumos Portal UI has a Design Studio that invokes the Composition Engine API to:

	Create machine learning applications (composite solutions) out of the basic building blocks – the individual Machine Learning (ML) models contributed by the user community

	Validate the composite solutions

	Generate the blueprint of the composite solution for deployment on the target cloud

The Design Studio Composition Engine is Spring Boot
backend component which exposes REST APIs required to carry out CRUD operations
on composite solutions.

4.4.3.2. TOSCA Model Generator Client

The TOSCA Model Generator Client is a library used by the Onboarding component
to generate artifacts (TGIF.json, Protobuf.json) that are required by the Design Studio UI to perform
operations on ML models, such as drag-drop, display input output ports, display meta
data, etc.

4.4.3.3. Generic Data Mapper Service

The Generic Data Mapper Service enables users to connect two ML models ‘A’ and ‘B’
where the number of output fields of model ‘A’ and input fields of model ‘B’
are the same. The user is able to connect the field of model ‘A’ to required field
of model ‘B’. The Data Mapper performs data type transformations between
Protobuf data types.

4.4.3.4. Data Broker

At a high level, a Data Broker retrieves and converts the data into protobuf
format. The Data Brokers retrieve data from the different types of sources like
database, file systems (UNIX, HDFS Data Brokers, etc.), Router Data Broker, and
zip archives.

The Design Studio provides the following Databrokers:

	CSV DataBroker: used if source data resides in text file as a comma (,) separated fields.

	SQL DataBroker: used if source data is SQL Data base. Currently MYSQL database is supported.

4.4.3.5. Runtime Orchestrator

The Runtime Orchestrator (also called Blueprint Orchestrator or Model
Connector) is used to orchestrate communication between the different models in
a Composite AI/ML solution.

For more information: Runtime Orchestrator Documentation.

4.4.3.6. Proto Viewer

This component allows visualization of messages transferred in protobuf format.
This is a passive component that shows the messages explicitly delivered to it;
it does not listen (“sniff”) all network traffic searching for protobuf data.
Displaying the contents of a protobuf message requires the corresponding
protocol buffer definition (.proto) file, which are fetched from a network
server, usually a Nexus registry.

For more information: Proto Viewer Documentation.

4.4.4. Deployment

The deployment components enable users to launch models and solutions (composite
models with additional supporting components) in various runtime environments,
which are generally specific to the deployment component “client”. These clients
are invoked by user actions in the Portal, e.g. selecting a deployment target
for a model in the various UI views where deployment is an option.

4.4.4.1. Azure Client

The Azure Client assists the user in deploying models into the Azure cloud
service, as described in the Deploy Acumos Model to Azure User Guide.
The Azure Client uses Azure APIs to perform actions such as creating a VM where
the model will be deployed. The process depends upon a variety of prerequisite
configuration steps by the user, as described in the user guide linked above.

Once a VM has been created, the Azure Client executes commands on the VM to
download and deploy the various model components. See the
Acumos Azure Client Developers Guide
for more info.

The Azure Client interacts with the following Acumos platform components and
supporting services:

	the Portal,
for which the Azure Client coordinates model deployment upon request by
the user

	the Nexus Client,
which retrieves model artifacts from the Nexus maven repo

	the Common Data Service Client,
which retrieves model attributes stored in the CDS

	the Runtime Orchestrator,
which the Azure Client configures with the information needed to route
protobuf messages through a set of composite model microservices

	the Data Broker,
which the Azure Client configures with the information needed to ingest model
data into the model

	the Proto Viewer,
which the Azure Client configures with the information needed to display
model messages on the Proto Viewer web interface

	the Filebeat [https://www.elastic.co/products/beats/filebeat] service,
which collects the log files created by the Azure Client, using a shared
volume

	supporting services

	the docker-engine, which retrieves docker images from the Acumos platform
Nexus docker repo

	the Acumos project Nexus docker repo, for access to deployment components
such as the Runtime Orchestrator, Data Broker, and Proto Viewer

4.4.4.2. Openstack Client

The Openstack Client assists the user in deploying models into an Openstack
based public cloud hosted by Rackspace, as described in the
Openstack Client Users Guide.
The Openstack Client uses OpenStack APIs to perform actions such as creating a
VM where the model will be deployed. The process depends upon a variety of
prerequisite configuration steps by the user, as described in the user guide
linked above.

Once a VM has been created, the Openstack Client executes commands on the VM to
download and deploy the various model components. See the
Openstack Client Developers Guide
for more info.

The Openstack Client interacts with the following Acumos platform components and
supporting services:

	the Portal,
for which the OpenStack Client coordinates model deployment upon request by
the user

	the Nexus Client,
which retrieves model artifacts from the Nexus maven repo

	the Common Data Service Client,
which retrieves model attributes stored in the CDS

	the Runtime Orchestrator,
which the Openstack Client configures with the information needed to route
protobuf messages through a set of composite model microservices

	the Data Broker,
which the Openstack Client configures with the information needed to ingest model
data into the model

	the Proto Viewer,
which the Openstack Client configures with the information needed to display
model messages on the Proto Viewer web interface

	the Filebeat [https://www.elastic.co/products/beats/filebeat] service,
which collects the log files created by the Openstack Client, using a shared
volume

	supporting services

	the docker-engine, which retrieves docker images from the Acumos platform
Nexus docker repo

	the Acumos project Nexus docker repo, for access to deployment components
such as the Runtime Orchestrator, Data Broker, and Proto Viewer

4.4.4.3. Kubernetes Client

The Kubernetes Client and associated tools assists the user in deploying models
into a private kubernetes cloud, as described in
Acumos Solution Deployment in Private Kubernetes Cluster.

For a model that the user wants to deploy (via the “deploy to local” option),
the Kubernetes Client generates a deployable solution package, which as described
in the guide above, is downloaded by the user. After unpacking the solution
package (zip file), the user then takes further actions on the host where the
models will be deployed, using a set of support tools included in the downloaded
solution package:

	optionally installing a private kubernetes cluster (if not already existing)

	deploying the model using an automated script, and the set of model artifacts
included in the solution package

The Kubernetes Client interacts with the following Acumos platform components:

	the Portal,
for which the Kubernetes Client coordinates model deployment upon request by
the user

	the Nexus Client,
which retrieves model artifacts from the Nexus maven repo

	the Common Data Service Client,
which retrieves model attributes stored in the CDS

	the Filebeat [https://www.elastic.co/products/beats/filebeat] service,
which collects the log files created by the Kubernetes Client, using a shared
volume

The Kubernetes Client deployment support tool “deploy.sh” interacts with the
following Acumos platform components and supporting services:

	the Runtime Orchestrator,
which deploy.sh configures with the information needed to route
protobuf messages through a set of composite model microservices

	the Data Broker,
which deploy.sh configures with the information needed to ingest model
data into the model

	the Proto Viewer,
which deploy.sh configures with the information needed to display
model messages on the Proto Viewer web interface

	supporting services

	the docker-engine, which retrieves docker images from the Acumos platform
Nexus docker repo

	the kubernetes master (via the kubectl client), to configure, manage,
and monitor the model components

	the Acumos project Nexus docker repo, for access to deployment components
such as the Runtime Orchestrator, Data Broker, and Proto Viewer

4.4.4.4. Docker Proxy

As described in
Acumos Solution Deployment in Private Kubernetes Cluster,
the Docker Proxy provides an authentication proxy for the Acumos platform docker
repo. Apart from the use for model deployment into kubernetes, the Docker Proxy
addresses a key need of Acumos platform users, and opportunities to enhance the
other deployment clients related to:

	the ability to retrieve model microservice docker images from the Acumos
platform using the normal process of “docker login” followed by “docker pull”

Using the normal docker protocol for image download will enhance the simplicity,
speed, efficiency, and reliability of:

	user download of a model for local deployment, e.g. for local testing

	deployment processes using the Azure and OpenStack clients, to be considered
as a feature enhancement in the Boreas release

The Docker Proxy interacts with the following Acumos platform components and
supporting services:

	the Kubernetes Client deployment support tool “deploy.sh”, for which the
Docker Proxy provides docker login and image pull services

	supporting services

	The Nexus docker repo, from which the Docker Proxy pulls model microservice
images

4.4.5. Catalog, Data Model and Data Management

This project includes the Common Data Service, the Federation Gateway, and the Model Schema subprojects.

4.4.5.1. Common Data Service

The Acumos Common Data Service provides a storage and query layer between Acumos system
components and a relational database.
The server component is a Java Spring-Boot application that provides REST service to callers
and uses Hibernate to manage the persistent store.
The client component is a Java library that provides business objects (models) and
methods to simplify the use of the REST service.

For more info: Common Data Service

4.4.5.2. Federation Gateway

The Federation Gateway component provides a mechanism to exchange models
between two Acumos instances via a secure network channel. The Gateway is
implemented as a server that listens for requests on a REST API. It also
has a client feature that communicates with remote instances.

For more info: Federation Gateway

4.4.5.3. Model Schema

The Model Schema is the JSON schema used to define and validate the Acumos model metadata generated by client libraries
such as the Acumos python client library.

For more info: Model Schema

4.4.6. Common Services

4.4.6.1. Microservice Generation

The Microservice Generation component is in charge of dockerize the model, create the microservice and
store artifacts in Nexus.

For more information Microservice Generation.

4.4.6.2. Nexus Client

4.4.6.3. Generic Model Runner

4.4.6.4. Python DCAE Model Runner

4.5. Supplemental Components

The following sections describe the scope, role, and interaction of components
that supplement the Acumos platform as deployed components and tools. These
components and tools are developed and/or packaged by the Acumos project to
provide supplemental support for the platform.

4.5.1. Operations, Admin, and Maintenance (OAM)

The Platform-OAM project maintains the repos providing:

	Acumos platform deployment support tools

	Logging and Analytics components based upon the
ELK Stack [https://www.elastic.co/elk-stack], of which Acumos uses the
open source versions

4.5.1.1. System Integration

The System Integration repo [https://github.com/acumos/system-integration]
contains Acumos platform deployment support tools e.g.

	Docker-compose templates for manual platform installation under docker-ce

	Kubernetes templates for platform deployment in Azure-kubernetes

	Oneclick / All-In-One (AIO) platform deployment under docker-ce or kubernetes

	See One Click Deploy User Guide

4.5.1.2. Filebeat

Filebeat [https://www.elastic.co/products/beats/filebeat] is a support
component for the ELK stack. Filebeat monitors persistent volumes in which
Acumos components save various log files, and aggregates those files for
delivery to the Logstash service.

4.5.1.3. Metricbeat

Metricbeat [https://www.elastic.co/products/beats/metricbeat] is a support
component for the ELK stack. Metricbeat monitors host and process resources
and delivers the to the Logstash service.

4.5.1.4. ELK Stack

The ELK Stack [https://www.elastic.co/elk-stack] provides the core services
that archive, access, and present analytics and logs for operations support
dashboards. It includes:

	Logstash: a server-side data processing pipeline that ingests data from
multiple sources, transforms it, and then sends it to ElasticSearch for storage

	ElasticSearch: a data storage, search, and analytics engine

	Kibana: a visualization frontend for ElasticSearch based data

See Platform Operations, Administration, and Management (OA&M) User Guide for more info.

4.5.2. External Components

The following sections describe the scope, role, and interaction of
externally-developed components that are deployed (some, optionally) as part of
the Acumos platform or as container runtime environmments in which the Acumos
platform is deployed.

4.5.2.1. MariaDB

MariaDB [https://mariadb.org/] is a relational database system. Acumos
platform components that directly use MariaDB for database services include:

	Common Data Service, for storage of platform data in the CDS database

	Portal-Marketplace, for storage of Hippos CMS data

	ELK stack, for access to platform user analytics

Acumos platform components access the MariaDB service via a URL and credentials
defined in the component template (docker or kubernetes).

4.5.2.2. Nexus

Nexus [https://help.sonatype.com/repomanager3] (Nexus 3) is used as an
artifact repository, for

	artifacts related to simple and composite models

	model microservice docker images

Acumos platform components that directly use Nexus for repository services
include:

	Design Studio

	Onboarding

	Azure Client

	Microservice Generation

	Portal-Marketplace

	Federation

4.5.2.3. Kong

The Kong Community Edition [https://docs.konghq.com/] is an optional
component used as needed as a reverse proxy for web and API requests to the
platform. The primary web and API services exposed through the kong proxy are

	the Onboarding service APIs (URL paths based upon /onboarding-app)

	the Portal-Marketplace web frontend and APIs (all other URL paths)

4.5.2.4. Docker-CE

Docker Community Edition [https://docs.docker.com/install/] is used as a key
component in the platform for the purposes:

	accessing docker repositories, including the Acumos platform docker repository

	building docker images

	launching containers on request of the kubernetes master node

The docker-engine is the main feature of Docker-CE used in Acumos, and is
deployed:

	for Docker-CE based platform deployments, on one of the platform hosts (e.g.
VMs or other machines)

	for kubernetes based platform deployments, as a containerized service using the
Docker-in-Docker (docker-dind) [https://hub.docker.com/_/docker/]
variant of the official docker images

4.5.2.5. Kubernetes

Kubernetes provides a container management environment in which the Acumos
platform (as a collection of docker image components) and models can be deployed.
Kubernetes cluster installation tools are provided by the
kubernetes-client repo [https://github.com/acumos/kubernetes-client], and can
be used for establishing a private kubernetres cluster where the Acumos platform
and models can be deployed. The
Acumos AIO toolkit can
deploy the Acumos platform in a private kubernetes cluster. For kubernetes
clusters hosted by public cloud providers e.g. Azure, Acumos provides kubernetes
templates for the Acumos platform components in the
system-integration [https://github.com/acumos/system-integration] repo.

5. Platform Flow

5.1. User Journeys

Following are some illustrative “user journey” diagrams for common Acumos
workflows.

5.1.1. Acumos Platform User Flow

[image: Acumos Platform User Flow]

5.1.2. Acumos User Signup Flow

[image: Model User Signup Flow]

5.1.3. Acumos User Login Flow

[image: Model User Login Flow]

5.2. Component Interaction

Following are some illustrative diagrams for common Acumos component interactions.

5.2.1. Acumos Model Detail Flow

[image: Model Detail Flow]

5.2.2. Acumos Catalog Flow

[image: Acumos Catalog Flow]

5.3. Inter-Component Message Flows

Following are some actual message flows between Acumos components. Some
URI parameters have been abstracted to reduce the complexity of the flows.
You can click on the flows to view them in native SVG form, which makes it
easier to resize, scroll around, etc.

5.3.1. Web Onboarding

This flow shows a typical web onboarding sequence.

[image: Web Onboarding]

5.3.2. CLI Onboarding

This flow shows a typical web onboarding sequence.

[image: CLI Onboarding]

5.3.3. Model Publishing

This flow shows a typical model publishing sequence.

[image: Model Publishing]

5.3.4. Request for Published Solution Subscription, at Subscribing Platform

This flow shows the processing of a request for subcription to a solution
published by a peer platform, at the subscribing platform. Note that
some subsquent actions to these steps are not shown in this flow version, e.g.
retrieval of the artifacts for the subscribed solution.

[image: Request for Published Solution Subscription, at Subscribing Platform]

5.3.5. Request for Published Solution Subscription, at Publishing Platform

This flow shows the processing of a request for subcription to a solution
published by a platform, when received at the publishing platform. Note that
some subsquent actions to these steps are not shown in this flow version, e.g.
retrieval of the artifacts for the subscribed solution.

[image: Request for Published Solution Subscription, at Publishing Platform]

Component Guides

Component guides contain a variety of information that is useful to developers who would like to work on the code. Most projects are written in Java, and the Javadoc is available here [https://javadocs.acumos.org/] .

Note

Data Scientists who are contributing models should reference the Portal - For Modelers pages [https://docs.acumos.org/en/latest/AcumosUser/portal-user/portal/index.html] of the Portal and Marketplace User Guide [https://docs.acumos.org/en/latest/AcumosUser/portal-user/index.html].

Catalog, Data Model, and Data Management

	Common Data Service

	Federation Gateway

	Model Schema

Common Services

	H2O Model Builder

	H2O Model Runner

	H2O Java Model Runner

	Microservice Generation

	Nexus Client

	Python DCAE Model Runner

	Python Model Runner

	RDS Model Runner

	Security Verification of Models

	License Manager Client Library

	License Usage Manager

Design Studio

The Design Studio component repository includes the Composition Engine, TOSCA
Model Generator Client, Generic Data Mapper Service, CSV Data Broker, and SQL
Data Broker. Additional components are in separate repositories.

	Design Studio

	ML Workbench

	Proto Viewer (“Probe”)

	Runtime Orchestrator (“Model Connector”)

Deployment

This project maintains clients for deploying models to different environments.

	Deployment Client

	Kubernetes Client

	Azure Client

	OpenStack Client

	Predictor Management

Model On-Boarding

	On-boarding

	Java Client (Generic, H20, spark)

	Python Client, recommended version for CLIO release is 0.8.0

	R Client

	C++ Client

	Onnx Client,

Portal and Marketplace

	Acumos Hippo CMS

	Portal

Operations, Administration, and Management (OA&M)

	Platform OA&M

System Integration

	System Integration

Example Models

	Face Privacy Filter

	Image Classification

	Image Mood Classifier

	VM Predictor

Index

Supported Browsers, Devices, and Resolutions

	Browser

	Versions

	Desktop/Laptop Resolutions

	[image: ../_images/chrome.png]

	21 and above

	1024, 1280, 1366, 1440, 1600, 1920, 2560

	[image: ../_images/firefox.png]

	18 and above

	1024, 1280, 1366, 1440, 1600, 1920, 2560

	[image: ../_images/microsoft.png]

	11/Edge and above

	1024, 1280, 1366, 1440, 1600, 1920, 2560

	[image: ../_images/safari.png]

	9 and above

	1024, 1280, 1366, 1440, 1600, 1920, 2560

	Device

	Portrait

	Landscape

	Apple iPhone 6+, 6s+, 7+, 8+

	414x736

	736x414

	Apple iPhone 6, 6s,Apple iPhone 7, iPhone 8

	375x667

	667x375

	Apple iPhone 5

	320x568

	568x320

	LG G3,LG G4, LG G5,Samsung Galaxy S7, S7 edge,Samsung Galaxy S6,Samsung Galaxy S5,Samsung Galaxy S4,Samsung Galaxy S4 mini,Samsung Galaxy S3,Samsung Galaxy Note 4,Samsung Galaxy Note 3,Samsung Galaxy Note 2,LG Nexus 5,HTC One,HTC Evo 3D,Sony Xperia Z, Sony Xperia S,Sony Xperia P, Xiaomi Mi 4,Xiaomi Mi 3,Lenovo K900,Blackberry Z30,ZTE Grand S

	360x640

	640x360

	Apple iPhone 4,Apple iPhone 3,Microsoft Lumia 1020, Microsoft Lumia 925, Microsoft Lumia 920, Microsoft Lumia 900, Microsoft Lumia 830, Microsoft Lumia 620,HTC 8X,ZTE Open (Firefox OS)

	320x480

	480x320

	iPads, tablets

	768x1024

	1024x768

 Please click here [https://docs.acumos.org/en/athena/AcumosUser/portal-user/index.html] to view the Athena release version of the Portal and Marketplace User Guide.

 Please click here [https://docs.acumos.org/en/athena/AcumosUser/portal-user/portal/onboarding-java-guide.html] to view the Athena release version of the On-Boarding H2o.ai and Generic Java Models User Guide.

 Please click here [https://docs.acumos.org/en/athena/AcumosUser/portal-user/portal/onboarding-r-guide.html] to view the Athena release version of the On-Boarding an R Model User Guide.

Acumos License Management

Please see the documentation in the “docs” folder.

LicenseRtuEditor

This project was generated with Angular CLI [https://github.com/angular/angular-cli] version 8.1.0.

Setup

Run npm install for installing node modules.

Development server

Run ng serve for a dev server. Navigate to http://localhost:4200/. The app will automatically reload if you change any of the source files.

Code scaffolding

Run ng generate component component-name to generate a new component. You can also use ng generate directive|pipe|service|class|guard|interface|enum|module.

Build

Run ng build to build the project. The build artifacts will be stored in the dist/ directory. Use the --prod flag for a production build.

Running unit tests

Run ng test to execute the unit tests via Karma [https://karma-runner.github.io].

Running end-to-end tests

Run ng e2e to execute the end-to-end tests via Protractor [http://www.protractortest.org/].

Running iframe-license-editor for local testing

	Open Terminal 1 and run npm run start:lite-server - this will start the lite-server on port 3000 and watches the dist/license-rtu-editor directory for any changes.

	Open Terminal 2 and run ng build --prod --watch - this will build and copy output under dist folder.

	Once above command is over, Open Terminal 3 and run npm run copy:iframe - this will copy the iframe-license-editor.html to dist\license-rtu-editor directory.

	NOTE: you need to re-run copy task, if any changes to iframe-license-editor.html file.

	Open browser and load http://localhost:3000/iframe-license-editor.html document.

Running license-rtu-editor as web component for local testing

	Open Terminal 1 and run npm run start:lite-server - this will start the lite-server on port 3000 and watches the dist/license-rtu-editor directory for any changes.

	Open Terminal 2 and run npm run build:elements - this will build and copy output under dist folder + copy the web-cmp.html file

	Open browser and load http://localhost:3000/web-cmp.html document.

Further help

To get more help on the Angular CLI use ng help or go check out the Angular CLI README [https://github.com/angular/angular-cli/blob/master/README].

Application Programming Interfaces

This document defines the APIs that are being produced
or consumed by the license management sub-component in Acumos.

LicenseProfile.validate

Validate given License Profile JSON text based on $schema property.

Example api call:

// where client is instance of ICommonDataServiceRestClient
LicenseProfile licProfile = new LicenseProfile(client);
LicenseProfileValidationResults results = licProfile.validate(licProfileJson);
boolean isValid = results.getJsonSchemaErrors().isEmpty();

Learn more in LicenseJsonValidationResults java docs [https://javadocs.acumos.org/org.acumos.license-manager/master/org/acumos/licensemanager/jsonvalidator/model/LicenseJsonValidationResults.html]

LicenseProfile.getTemplates

Fetch list of default License Profile Templates.

Example api call:

// where client is instance of ICommonDataServiceRestClient
LicenseProfile licProfile = new LicenseProfile(client);
List<MLPLicenseProfileTemplate> templates = licProfile.getTemplates();

Learn more in LicenseProfile java docs [https://javadocs.acumos.org/org.acumos.license-manager/master/org/acumos/licensemanager/client/LicenseProfile.html]

LicenseProfile.getTemplate(templateID)

Fetch License Profile Template for given templateID.

Example api call:

// where client is instance of ICommonDataServiceRestClient
LicenseProfile licProfile = new LicenseProfile(client);
// where licProTplId is templateID of specific License Profile Template
// to fetch
MLPLicenseProfileTemplate licProTpl = licProfile.getTemplate(licProTplId);

Learn more in LicenseProfile java docs [https://javadocs.acumos.org/org.acumos.license-manager/master/org/acumos/licensemanager/client/LicenseProfile.html]

LicenseAsset.register

Method fetches information about the ML model (nexus and CDS) and
registers the software with License Usage Manager.

// where cdsClient is instance of ICommonDataServiceRestClient
// LUM_SERVER is url of the LUM service
// NEXUS_SERVER is the url of the nexus service
LicenseAsset asset = new LicenseAsset(cdsClient, LUM_SERVER, NEXUS_SERVER);
RegisterAssetRequest request = new RegisterAssetRequest();
request.setSolutionId(solutionId);
request.setRevisionId(revisionId);
request.setLoggedIdUser(loggedInUser);
CompletableFuture<RegisterAssetResponse> responseFuture = asset.register(request);
RegisterAssetResponse response = responseFuture.get();

Learn more in LicenseAsset java docs [https://javadocs.acumos.org/org.acumos.license-manager/master/org/acumos/licensemanager/client/rtu/LicenseAsset.html]

LicenseRtuVerifier.verifyRtu

Method fetches information about the ML model (nexus and CDS) and
registers the software with License Usage Manager.

VerifyLicenseRequest licenseDownloadRequest =
 new VerifyLicenseRequest(
 licenseAction, solutionId, revisionId, loggedInUserId, assetUsageId);
licenseDownloadRequest.setAction(licenseAction);
LicenseRtuVerifier licenseVerifier = new LicenseRtuVerifier(LUM_SERVER);
CompletableFuture<LicenseRtuVerification> verifyUserRTU =
 licenseVerifier.verifyRtu(licenseDownloadRequest);

Learn more in LicenseRtuVerifier java docs [https://javadocs.acumos.org/org.acumos.license-manager/master/org/acumos/licensemanager/client/rtu/LicenseRtuVerifier.html]

LicenseAsset.getEntitledSwidTagsByUser

Method fetches all the available SwidTags from LUM based on particular user.

// where cdsClient is instance of ICommonDataServiceRestClient
// LUM_SERVER is url of the LUM service
// NEXUS_SERVER is the url of the nexus service
LicenseAsset licenseAsset = new LicenseAsset(cdsClient, LUM_SERVER, NEXUS_SERVER);
String userId;
 String action;
 CompletableFuture<GetEntitledSwidTagsResponse> getEntitledSwidTagsFuture =
 licenseAsset.getEntitledSwidTagsByUser(userId, action);
GetEntitledSwidTagsResponse response = getEntitledSwidTagsFuture.get();

LicenseAsset.getAssetUsageAgreement

Method is used for import the data from LUM.

// where cdsClient is instance of ICommonDataServiceRestClient
// LUM_SERVER is url of the LUM service
// NEXUS_SERVER is the url of the nexus service
LicenseAsset licenseAsset = new LicenseAsset(cdsClient, LUM_SERVER, NEXUS_SERVER);
String softwareLicensorId;
 String assetUsageAgreementId;
 CompletableFuture<GetAssetUsageAgreementResponse> responseFuture =
 licenseAsset.getAssetUsageAgreement(softwareLicensorId, assetUsageAgreementId);
GetAssetUsageAgreementResponse response = responseFuture.get();

LicenseAsset.putAssetUsageAgreement

Method is used for export the data into LUM.

// where cdsClient is instance of ICommonDataServiceRestClient
// LUM_SERVER is url of the LUM service
// NEXUS_SERVER is the url of the nexus service
LicenseAsset licenseAsset = new LicenseAsset(cdsClient, LUM_SERVER, NEXUS_SERVER);
String softwareLicensorId;
 String assetUsageAgreementId;
 PutAssetUsageAgreementRequest request = new PutAssetUsageAgreementRequest();
 CompletableFuture<PutAssetUsageAgreementResponse> responseFuture =
 licenseAsset.putAssetUsageAgreement(softwareLicensorId, assetUsageAgreementId,request);
PutAssetUsageAgreementResponse response = responseFuture.get();

LicenseAsset.putAssetUsageAgreementRestriction

Method is used for export the data into LUM with Restriction.

// where cdsClient is instance of ICommonDataServiceRestClient
// LUM_SERVER is url of the LUM service
// NEXUS_SERVER is the url of the nexus service
LicenseAsset licenseAsset = new LicenseAsset(cdsClient, LUM_SERVER, NEXUS_SERVER);
String softwareLicensorId;
 String assetUsageAgreementId;
 PutAssetUsageAgreementRestrictionRequest request = new PutAssetUsageAgreementRestrictionRequest();
 CompletableFuture<PutAssetUsageAgreementResponse> responseFuture =
 licenseAsset.putAssetUsageAgreementRestriction(softwareLicensorId, assetUsageAgreementId,request);
PutAssetUsageAgreementResponse response = responseFuture.get();

Developer Guide - License Profile Editor

About License Profile Editor

	License Profile Editor provides a UI editor to create
license Profile and save / export in json format.

	
	The editor can be used as

	
	Web component inline to your web page

	iframe document launched from your web page

	For building and using as Web Component, refer
license-manager/license-profile-editor/README.md.

	This document discusses how to build and load
license profile editor as iframe document.

Build Prerequisites

	Git Shell (https://git-for-windows.github.io/) or
SourceTree (https://www.sourcetreeapp.com/) for Cloning
& pushing the code changes.

	Proxy setup to download dependencies from open source repositories

	Open Source or GitShell Command Line Interface

	Docker

Build Instructions

	Browse to your preferred directory and run below commands:

git clone "https://gerrit.acumos.org/r/license-manager"
cd license-profile-editor

	Install node modules

npm install

	Build via this command:

npm run build

	Command to build docker image:
docker build -t acumos/license-profile-editor:<<VERSION>> .

Portal UI Integration (docker-compose)

Following is the sample docker-compose yaml configuration
to include when building/running Portal UI service.

	docker-compose yaml for license-profile-editor service

services:
license-profile-editor-service:
 image: ${LICENSE_PROFILE_EDITOR_IMAGE}
 ports:
 - "8089:80"
 restart: on-failure

	docker-compose yaml for portal-fe service

This is to link / declare dependency for starting containers
locally and ensure that the license-profile-editor container
has started before running the portal.

services:
 portal-fe-service:
 image: ${PORTAL_FE_IMAGE}
 ...
 links:
 - portal-be-service
 - license-profile-editor-service
 depends_on:
 - portal-be-service
 - license-profile-editor-service
 ...

License Profile Editor - iframe communication

	JavaScript code block to enable the Portal UI parent window
to communicate with child License Profile Editor iframe window.

// add following code-block to Portal UI
var iframe;
// addEventListener and old browser support
function bindEvent(element, eventName, eventHandler) {
 if (element.addEventListener) {
 element.addEventListener(eventName, eventHandler, false);
 } else if (element.attachEvent) {
 element.attachEvent('on' + eventName, eventHandler);
 }
}
function licenseProfileMsgListener(event) {
 // TODO check #3 below
}
// TODO - call this function onload of license-profile-editor-iframe
function initOnLoad() {
 iframe = document.getElementById('license-profile-editor-iframe');
 bindEvent(window, 'message', licenseProfileMsgListener);
}

	Protocol to send License Profile Template.

// add following code-block to Portal UI
function sendMessage(msgObj) {
 var val = // must be VALID JSON value

 // outgoing message object has key and value properties
 // - "key": "input" - identifies input data
 // - "value": val - must be VALID JSON value
 // { } - empty JSON to clear editor selection
 var msgObj = {
 "key": "input",
 "value": val
 };
 iframe.contentWindow.postMessage(msgObj, '*');
}

	Protocol to receive License Profile JSON.

// add following code-block to Portal UI
function licenseProfileMsgListener(event) {
 // message listener
 if (event.data.key === 'output') {

 // incoming event.data object has key and value properties
 // - "key": "output" - identifies output from license profile editor iframe
 // - "value": JSON data value

 } else if (event.data.key === 'action') {

 // incoming event.data object has key and value properties
 // - "key": "action" - identifies action request from license profile editor iframe
 // - "value":
 // - possible value(s) 'cancel'

 if (event.data.value === 'cancel') {
 // TODO decide what to do on CANCEL
 }
 }
}

	Sample HTML iframe code block.

<iframe id="license-profile-editor-iframe"
 src="http://<<HOST>>:8089/license-profile-editor/index.html?mode=iframe"
 frameborder="0" style="width: 100%; height: 100%;"
 onload="initOnLoad();"></iframe>

Developer Guide - License RTU Editor

About License RTU Editor

	License RTU Editor provides a UI editor to create
right to use agreement and save / export in json format.

	
	The editor can be used as

	
	Web component inline to your web page

	iframe document launched from your web page

	For building and using as Web Component, refer
license-manager/license-rtu-editor/README.md.

Build Prerequisites

	Git Shell (https://git-for-windows.github.io/) or
SourceTree (https://www.sourcetreeapp.com/) for Cloning
& pushing the code changes.

	Proxy setup to download dependencies from open source repositories

	Open Source or GitShell Command Line Interface

	Docker

Build Instructions

	Browse to your preferred directory and run below commands:

git clone "https://gerrit.acumos.org/r/license-manager"
cd license-rtu-editor

	Install node modules

npm install

	Build via this command:

npm run build

	Command to build docker image:
docker build -t acumos/license-rtu-editor:<<VERSION>> .

Developer Guide

Uses of this library

	The license manager client library provides a java jar to perform the following functions:

	
	Provide a schema for license profile

	Validate license profiles against the schema

	Register ML models with License Usage Manager

	Verify entitlement with License Usage Manager

	Support Portal back end

	Fetch all the available SwidTags with License Usage Manager

How to build locally

	to build and install

`
mvn clean install
`

This will require settings setup for nexus for acumos.
See
CI / CD instructions [https://wiki.acumos.org/display/AC/Acumos+Developer%27s+Guide+to+CI-CD+Resources+and+Processes+at+the+LF#AcumosDeveloper'sGuidetoCI-CDResourcesandProcessesattheLF-Quickstart:Createandsubmitachangeforreview].

	To run license check and update headers

Maven license plugin [https://www.mojohaus.org/license-maven-plugin/].

	Other goals:

Check license headers do this before review.
`
mvn license:check-file-header
`

To update license headers automatically.
Note that if you have a header it will not update the copyright or description.

`
mvn license:update-file-header
`

	To check java docs are working

`
mvn javadoc:javadoc
`

You can view javadocs in the path provided in console

	Fixing java docs

`
mvn javadoc:fix -DfixTags="param,return,throws,link"
`

	Unit test coverage should be above 40%

Check html page under here
`
license-manager-client-library/target/site/jacoco/org.acumos.licensemanager.client.model/index.source.html
`

	Check style

`
mvn checkstyle:check
`

Linux Foundation Build Jobs

	Related LF Jenkins Jobs [https://jenkins.acumos.org/view/license-manager/].

	LF Sonar reports [https://sonar.acumos.org/dashboard?id=org.acumos.license-manager.license-manager%3Alicense-manager-client-library].

	Javadoc [https://javadocs.acumos.org/org.acumos.license-manager/master/].

License Manager

License Manager Client Library

	The license manager client library provides a java jar to perform the following functions:

	
	Provide a schema for license profile

	Api to Validate license profiles against the schema

	Api to Register ML models with License Usage Manager

	Api to Verify entitlement with License Usage Manager

	Api to Support Portal back end

	Api to fetch all the available SwidTags with License Usage Manager

	Application Programming Interfaces
	LicenseProfile.validate

	LicenseProfile.getTemplates

	LicenseProfile.getTemplate(templateID)

	LicenseAsset.register

	LicenseRtuVerifier.verifyRtu

	LicenseAsset.getEntitledSwidTagsByUser

	LicenseAsset.getAssetUsageAgreement

	LicenseAsset.putAssetUsageAgreement

	LicenseAsset.putAssetUsageAgreementRestriction

	Developer Guide
	Uses of this library

	How to build locally

	Linux Foundation Build Jobs

	License Manager Client Library Release Notes
	Version 1.5.1 08-May-2020

	Version 1.4.4 20 Feb 2020

	Version 1.4.3 2 Dec 2019

	Version 1.4.2 2 Dec 2019

	Version 1.4.1 31 Oct 2019

	Version 1.4.0 23 Oct 2019

	Version 1.3.0 17 Oct 2019

	Version 1.2.0 10 Oct 2019

	Version 1.1.0 01 Oct 2019

	Version 1.0.0 23 Sept 2019

	Version 0.0.14 4 Sept 2019

	Version 0.0.13 11 Jul 2019

	Version 0.0.12 11 Jul 2019

	Version 0.0.11 08 Jul 2019

	Version 0.0.10 04 Jun 2019

	Version 0.0.9, 29 May 2019

	Version 0.0.9, 30 May 2019

	Version 0.0.8, 14 May 2019

	Version 0.0.7, 17 May 2019

	Version 0.0.6, 14 May 2019

	Version 0.0.5, 10 May 2019

	Version 0.0.4, 01 May 2019

	Version 0.0.3, 09 April 2019

	Version 0.0.2, 20 March 2019

	Version 0.0.1, 8 March 2019

License Profile editor

	The license profile editor provides a micro front end for the creation of the license profile.

	
	Can work standalone or with the portal front end

	Angular 8 app that is served using a docker image with nginx web server.

	License Profile Editor User Guide
	Authoring a License Profile

	Viewing the License Profile in portal

	License Profile Examples

	License Profile Json Schema 1.0.0

	Admin: Add new or update license profile templates

	Developer Guide - License Profile Editor
	About License Profile Editor

	Build Prerequisites

	Build Instructions

	Portal UI Integration (docker-compose)

	License Profile Editor - iframe communication

	License Profile Editor Release Notes
	Version 0.0.13 15 May 2020

	Version 0.0.12 13 Jan 2020

	Version 0.0.11 06 Jan 2020

	Version 0.0.10 19 Nov 2019

	Version 0.0.9 4 Nov 2019

	Version 0.0.7 23 Oct 2019

	Version 0.0.6 09 Oct 2019

	Version 0.0.5 03 Oct 2019

	Version 0.0.4 01 Oct 2019

	Version 0.0.3 19 Sept 2019

	Version 0.0.2 30 Aug 2019

	Version 0.0.1, 12 August 2019

License Right To Use (RTU) editor

	The license right to use (RTU) editor provides a micro front end for the management of

	agreements and right.

	suppliers create an agreement with a subscriber.

	subscriber can review the agreement from the suppliers and save into
license usage manager

	subscriber can add restrictions on top of the agreement from the supplier
such as specifying specific users who can use the software.

	Angular 8 app that is served using a docker image with nginx web server.

	License Right to Use Editor User Guide
	Acumos Right to Use Actions

	Enabling License Right to Use (RTU) in license profile

	Step 1: Supplier Defines an agreement

	Step 2: Supplier shares an agreement with Subscriber

	Step 3: A subscriber reviews and saves agreement

	Step 4: A subscriber add restrictions to an existing agreement

	Troubleshooting Denial Messages

	Right to Use Open Digital Rights Language (ODRL) agreement examples

	License RTU agreement Json Schema 1.0.1

	License RTU agreement restrictions Json Schema 1.0.1

	Developer Guide - License RTU Editor
	About License RTU Editor

	Build Prerequisites

	Build Instructions

	License RTU Editor Release Notes
	Version 0.1.7 18 Jun 2020

	Version 0.1.6 15 May 2020

	Version 0.1.5 06 Jan 2020

	Version 0.1.4 05 Dec 2019

	Version 0.1.3 04 Nov 2019

	Version 0.1.1 29 Oct 2019

	Version 0.1.0 23 Oct 2019

	Version 0.0.7 10 Oct 2019

	Version 0.0.6 09 Oct 2019

	Version 0.0.5 03 Oct 2019

	Version 0.0.4 01 Oct 2019

	Version 0.0.3 20 Sep 2019

	Version 0.0.2 30 Aug 2019

	Version 0.0.1, 12 August 2019

Model Usage Tracking

When you deploy a model using kubernetes the default profile will use
the ELK stack and report back usage of the model.

	Model Usage Tracking
	Model Usage Tracking - Simple Model

	Model Usage Tracking - Composite Model

License Usage Management (LUM)

The license usage management (LUM) documentation is located here:
License Usage Manager

License Server Admin guide

	License Server Admin User Guide
	Introduction

	Docker-compose Prerequisites

	Using Docker Compose - License Editors

	Using Docker Compose - License Usage Manager

Model Usage Tracking - Composite Model

Composite Model deployment (Kubernetes cluster)

In this section, we will refer to composite model “detect-pixelate”.

Deploying model

	Once a Composite AI model onboarded to Acumos platform, you can download
the solution using the “Deploy to Local” feature.

[image: ../../../_images/downloadCompSol-1.png]
Click the “Download Solution Package” button to download the model solution
package for deployment.

[image: ../../../_images/downloadCompSol-2.png]
You will notice following artifacts from the downloaded solution package.

ls -al
total 48
drwxrwxr-x 3 acumos acumos 4096 Jun 4 17:15 .
drwxrwxr-x 13 acumos acumos 4096 Jun 4 17:15 ..
-rw-rw-r-- 1 acumos acumos 1253 Jun 1 01:19 blueprint.json
-rw-rw-r-- 1 acumos acumos 15992 Jun 1 01:19 deploy.sh
-rw-rw-r-- 1 acumos acumos 602 Jun 1 01:19 deploy_env.sh
-rw-rw-r-- 1 acumos acumos 318 Jun 1 01:19 dockerinfo.json
drwxrwxr-x 4 acumos acumos 4096 Jun 4 17:15 microservice
-rw-rw-r-- 1 acumos acumos 3291 Jun 1 01:19 setup_k8s.sh
-rw-rw-r-- 1 acumos acumos 2672 Jun 1 01:19 solution.yaml

	Deploy the model solution to your Kubernetes cluster using
following command:

bash deploy.sh <user> <pass> <namespace> [datasource]
 user: username on the Acumos platform
 pass: password on the Acumos platform
 namespace: Kubernetes namespace to deploy the solution under
 datasource: (optional) file path or URL of data source for databroker

For example, deploying the model solution under the
namespace “cmp6” would result in following running services:

kubectl get pods,svc -n cmp5
NAME READY STATUS RESTARTS AGE
pod/face-privacy-filter-detect1-6469c75d65-kg4xz 1/1 Running 0 3m1s
pod/face-privacy-filter-pixelate1-5bcc7dc9cc-cm2zh 1/1 Running 0 3m1s
pod/filebeat-gqm5h 1/1 Running 0 2m49s
pod/modelconnector-668544dffc-8xr9b 1/1 Running 0 3m1s
pod/nginx-proxy-face-privacy-filter-detect1-6c7dd4b87f-pg6mc 1/1 Running 0 2m47s
pod/nginx-proxy-face-privacy-filter-pixelate1-576b955888-k5hsp 1/1 Running 0 2m46s
pod/nginx-proxy-mc-69dbf6b57d-b64kd 1/1 Running 0 2m45s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/face-privacy-filter-detect1 ClusterIP 10.109.14.143 <none> 8556/TCP 3m1s
service/face-privacy-filter-pixelate1 ClusterIP 10.105.171.201 <none> 8556/TCP 3m1s
service/modelconnector NodePort 10.100.82.40 <none> 8555:30555/TCP 3m1s
service/nginx-proxy-face-privacy-filter-detect1 ClusterIP 10.105.159.42 <none> 8550/TCP 2m48s
service/nginx-proxy-face-privacy-filter-pixelate1 ClusterIP 10.96.232.124 <none> 8550/TCP 2m46s
service/nginx-proxy-mc NodePort 10.97.54.240 <none> 8550:30550/TCP 2m45s

	NOTE:

	
	To enable model usage tracking, there is a new nginx-proxy service for
each model - composite and source models.

	The nginx-proxy for model connector runs on port 30550.

Running model

	With Boreas release, the AI model can be accessed (via model runner)
using following URL pattern:

http://<model-runner-host>:<nginx-model-svc-port>/model/methods/<methodName>

You can get method name from the protobuf rpc section.

For the example composite model “detect-pixelate”, it would be

http://<model-runner-host>:30550/model/methods/detect

	NOTE:

	
	The nginx reverse proxy for composite model is exposed on port 30550.

	The new model runner takes protobuf as accept and content-type
i.e. Accept: application/vnd.google.protobuf and Content-Type: application/vnd.google.protobuf

[image: ../../../_images/runningCompSol.png]

Access model usage logs in Kibana

The usage data for all models in composite model are submitted to
Acumos platform Elastic Stack. The Acumos platform Elastic Search service
stores model usage data with the index name “acumos-model-usage-logs”.

	Admin can login to Kibana Dashboard and create index pattern
“acumos-model-usage-logs” with Time Filter field “@timestamp”.

[image: ../../../_images/createKibanaIndex.png]

	After adding the “acumos-model-usage-logs” index pattern, switch to the
Discover tab to search the model usage records at different time intervals.

	As an Admin, you can observe the requested model usage data along with
request/response details logged by nginx reverse proxy service.

[image: ../../../_images/simpleModelKibana-1.png]

	Switch to the JSON tab of any record to review the raw json data of
model usage record.

[image: ../../../_images/simpleModelKibana-2.png]

	Admin can create Visual Objects based on different visualization types.

	In this Guide, we will create Visualization to show usage metrics of
face-privacy-filter detect, pixelate and detect-pixelate composite models.

[image: ../../../_images/visualize-Kibana-1.png]

	To create Metrics visualization,

	Select “acumos-model-usage-logs” as search source.

	Under Buckets section, click “Split Group”.

	Under Aggregation dropdown, select “Filter” aggregation type.

[image: ../../../_images/visualize-Kibana-2.png]

	For Filter aggregation, add filter query based on detect model metadata,
for example,

model.solutionId:<<model_solution_id>>

You can also set the Filter label for visual clues.

NOTE:
You can use any other model fields to filter usage data based on
specific requirements.
For example, you can use model.revisionId to filter
usage records for a specific version of model.

	Click > button to apply/save changes and see the count change for each
model method request.

NOTE: You can turn on “Auto Refresh” to update UI for any model usage
data at specific time intervals.

[image: ../../../_images/simple-model-usage-1.gif]

	Repeat Steps 1 to 5 and create Metrics visualization for other source
models and composite model i.e. pixelate and detect-pixelate models
as per Soup-to-Nuts example.

	Kibana allows to setup a Dashboard based on available Visualizations.
To setup a new Dashboard, navigate to the Dashboard tab and click
“Create new dashboard” button.

	In new Dashboard, you can add visualizations that’s been created during
previous steps by selecting that visualization.

[image: ../../../_images/createKibanaDashboard-1.png]

	Once the visualizations added, you can re-arrange them and save
the Dashboard.

[image: ../../../_images/createKibanaDashboard-2.png]

	You can set “Auto Refresh” interval to pull model usage data
at specific intervals.

[image: ../../../_images/comp-model-usage-1.gif]

Model Usage Tracking - Simple Model

Simple Model deployment (Kubernetes cluster)

In this section, we will refer to simple model “face-privacy-filter-detect”.

Deploying model

	Once a Simple AI model onboarded to Acumos platform, you can download
the solution using the “Deploy to Local” feature.

[image: ../../../_images/downloadSimpleSol-1.png]
Click the “Download Solution Package” button to download the model solution
package for deployment.

[image: ../../../_images/downloadSimpleSol-2.png]
You will notice following artifacts from the downloaded solution package.

ls -al
total 36
drwxrwxr-x 2 acumos acumos 4096 Jun 4 00:41 .
drwxrwxr-x 12 acumos acumos 4096 Jun 4 00:41 ..
-rw-rw-r-- 1 acumos acumos 15992 Jun 4 00:24 deploy.sh
-rw-rw-r-- 1 acumos acumos 258 Jun 4 00:24 deploy_env.sh
-rw-rw-r-- 1 acumos acumos 3291 Jun 4 00:24 setup_k8s.sh
-rw-rw-r-- 1 acumos acumos 857 Jun 4 00:24 solution.yaml

	Deploy the model solution to your Kubernetes cluster using
following command:

bash deploy.sh <user> <pass> <namespace> [datasource]
 user: username on the Acumos platform
 pass: password on the Acumos platform
 namespace: Kubernetes namespace to deploy the solution under
 datasource: (optional) file path or URL of data source for databroker

For example, deploying the model solution under the
namespace “cmp6” would result in following running services:

kubectl get pods,svc -n cmp6
NAME READY STATUS RESTARTS AGE
pod/face-privacy-filter-detect-5bdb9c77f7-nnk5s 1/1 Running 0 11m
pod/filebeat-t6v56 1/1 Running 0 11m
pod/nginx-proxy-face-privacy-filter-detect-9b5645598-6drbh 1/1 Running 0 11m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/face-privacy-filter-detect ClusterIP 10.107.67.206 <none> 8556/TCP 11m
service/nginx-proxy-face-privacy-filter-detect NodePort 10.107.115.48 <none> 8550:30550/TCP 11m

NOTE: To enable model usage tracking, there is a new nginx-proxy service running on port 30550.

Running model

	With Boreas release, the AI model can be accessed (via model runner)
using following URL pattern:

http://<model-runner-host>:<nginx-model-svc-port>/model/methods/<methodName>

You can get method name from the protobuf rpc section.

For the example model “face-privacy-filter-detect”, it would be

http://<model-runner-host>:30550/model/methods/detect

	NOTE:

	
	The nginx reverse proxy for simple model is exposed on port 30550.

	The new model runner takes protobuf as accept and content-type
i.e. Accept: application/vnd.google.protobuf and Content-Type: application/vnd.google.protobuf

[image: ../../../_images/runningSimpleSol.png]

Access model usage logs in Kibana

The model usage tracking data are submitted to Acumos platform
Elastic Stack. The Acumos platform Elastic Search service stores model
usage data with the index name “acumos-model-usage-logs”.

	Admin can login to Kibana Dashboard and create index pattern
“acumos-model-usage-logs” with Time Filter field “@timestamp”.

[image: ../../../_images/createKibanaIndex.png]

	After adding the “acumos-model-usage-logs” index pattern, switch to the
Discover tab to search the model usage records at different time intervals.

	As an Admin, you can observe the requested model usage data along with
request/response details logged by nginx reverse proxy service.

[image: ../../../_images/simpleModelKibana-1.png]

	Switch to the JSON tab of any record to review the raw json data of
model usage record.

[image: ../../../_images/simpleModelKibana-2.png]

	Admin can create Visual Objects based on different visualization types.

	In this Guide, we will create Visualization to show usage metrics of
face-privacy-filter detect model.

[image: ../../../_images/visualize-Kibana-1.png]

	To create Metrics visualization,

	Select “acumos-model-usage-logs” as search source.

	Under Buckets section, click “Split Group”.

	Under Aggregation dropdown, select “Filter” aggregation type.

[image: ../../../_images/visualize-Kibana-2.png]

	For Filter aggregation, add filter query based on model metadata, for example,

model.solutionId:<<model_solution_id>>

You can also set the Filter label for visual clues.

NOTE:
You can use any other model fields to filter usage data based on
specific requirements.
For example, you can use model.revisionId to filter
usage records for a specific version of model.

	Click > button to apply/save changes and see the count change for each
model method request.

NOTE: You can turn on “Auto Refresh” to update UI for any model usage
data at specific time intervals.

[image: ../../../_images/simple-model-usage-1.gif]

Model Usage Tracking

Acumos AI is a platform and open source framework that makes it easy to build,
share, and deploy AI apps (models).

With Boreas release, Acumos platform comes with AI Model usage tracking feature
(for models that are deployed in a Kubernetes cluster).

Model usage tracking feature leverages on Elastic Stack which is part of the
Acumos platform for collecting, processing, searching/indexing usage data
and visualizing reports.

[image: ../../../_images/acp-single-tracking.png]
As the diagram illustrates, model access/calls are recorded by nginx sidecar to
a persistent volume (log file), which the Filebeat daemon instance reads and
pushes to Acumos platform Elastic Stack.

In this article, we are referring to Soup-to-Nuts Example [https://wiki.acumos.org/display/AC/Soup-to-Nuts+Example%3A+Onboarding+Models%2C+Creating+and+Deploying+a+Composite+Solution+in+Acumos]
that sets up face-privacy-filter - single and composite model
solutions. You can onboard those models (or any other models) as illustrated
in the Soup-to-Nuts example doc.

Following image illustrates AI model method calls and respective
usage count.

[image: ../../../_images/comp-model-usage-1.gif]

	Model Usage Tracking - Simple Model

	Model Usage Tracking - Composite Model

License Profile Editor Release Notes

Version 0.0.13 15 May 2020

	UI for License Profile Editor is not consistent- ACUMOS-3908 [https://jira.acumos.org/browse/ACUMOS-3908]

Version 0.0.12 13 Jan 2020

	Republish due to old version being published with missing asset

Version 0.0.11 06 Jan 2020

	Adding local file backup due to corporate proxy blocking github url- ACUMOS-3834 [https://jira.acumos.org/browse/ACUMOS-3834]

	Updating angular to latest runtime

	Update 2019 to 2020 for default year in copyright

Version 0.0.10 19 Nov 2019

	Show RTU Required field as mandatory - ACUMOS-3718 [https://jira.acumos.org/browse/ACUMOS-3718]

Version 0.0.9 4 Nov 2019

	Fix to handle non-privileged mode - ACUMOS-3648 [https://jira.acumos.org/browse/ACUMOS-3648]

Version 0.0.7 23 Oct 2019

	License Profile Editor UX fixes
ACUMOS-3546 [https://jira.acumos.org/browse/ACUMOS-3546]
ACUMOS-3547 [https://jira.acumos.org/browse/ACUMOS-3547]
ACUMOS-3548 [https://jira.acumos.org/browse/ACUMOS-3548]

	Title change as per content / action
- Create New License -OR- Modify License

	Sticky title bar

	Form fields to span across the page to avoid
blank space

	Bottom button bar as per Acumos UX

Version 0.0.6 09 Oct 2019

	Integration changes with clio ACUMOS-3538 [https://jira.acumos.org/browse/ACUMOS-3538]

	Show close icon (in iframe mode) to close the editor

	Some of the fields with possible longer text > show as text area field

	Introduction, Company URL

	Put the base version of app.version.ts in source repo so that
editor can run in non-build environment like stackblitz

Version 0.0.5 03 Oct 2019

	License Profile editor - fix layout path - ACUMOS-3494 [https://jira.acumos.org/browse/ACUMOS-3494]

Version 0.0.4 01 Oct 2019

	Support to process & render diff versions (latest and boreas releases)
of license profile documents - ACUMOS-3494 [https://jira.acumos.org/browse/ACUMOS-3494]

Version 0.0.3 19 Sept 2019

	Default license profiles ACUMOS-3435 [https://jira.acumos.org/browse/ACUMOS-3435]

	Adding rtuRequired flag to profile to activate lum entitlement requirement during software registration ACUMOS-3458 [https://jira.acumos.org/browse/ACUMOS-3458]

Version 0.0.2 30 Aug 2019

	No change - but release along with other sub-project -
License Manager Client Library

Version 0.0.1, 12 August 2019

	Support loading as iframe doc ACUMOS-3280 [https://jira.acumos.org/browse/ACUMOS-3280]

	Support using as web component ACUMOS-3280 [https://jira.acumos.org/browse/ACUMOS-3280]

	Changes to support only single license profile ACUMOS-3307 [https://jira.acumos.org/browse/ACUMOS-3307]

	Form editor and schema improvements ACUMOS-3279 [https://jira.acumos.org/browse/ACUMOS-3279]

	License Profile Editor for creating license profiles ACUMOS-3200 [https://jira.acumos.org/browse/ACUMOS-3200]

License RTU Editor Release Notes

Version 0.1.7 18 Jun 2020

	Unable to click to retrieve RTU Agreement from LUM- ACUMOS-4158 [https://jira.acumos.org/browse/ACUMOS-4158]

Version 0.1.6 15 May 2020

	Option to click a reset button- ACUMOS-3905 [https://jira.acumos.org/browse/ACUMOS-3905]

	RTU Editor: Mandatory Fields in RTU- ACUMOS-3904 [https://jira.acumos.org/browse/ACUMOS-3904]

	RTU Editor: Quit Button(X) is required on the i frame- ACUMOS-4131 [https://jira.acumos.org/browse/ACUMOS-4131]

	RTU Editor:-UI for RTU editor is not consistent- ACUMOS-3908 [https://jira.acumos.org/browse/ACUMOS-3908]

	As a License Admin I want to be able to launch the RTU editor and have the ability to import/export the agreement with LUM to fill out RTU Agreement- ACUMOS-4084 [https://jira.acumos.org/browse/ACUMOS-4084]

Version 0.1.5 06 Jan 2020

	Adding local file backup due to corporate proxy blocking github url- ACUMOS-3834 [https://jira.acumos.org/browse/ACUMOS-3834]

	Updating angular to latest runtime

Version 0.1.4 05 Dec 2019

	Adding Required indicator to Target Identifier - ACUMOS-3799 [https://jira.acumos.org/browse/ACUMOS-3799]

Version 0.1.3 04 Nov 2019

	Fix to handle non-privileged mode - ACUMOS-3648 [https://jira.acumos.org/browse/ACUMOS-3648]

Version 0.1.1 29 Oct 2019

	Fix to handle nested array types (like refinements, Constraints etc.) - ACUMOS-3610 [https://jira.acumos.org/browse/ACUMOS-3610]

Version 0.1.0 23 Oct 2019

	RTU editor changes for Supplier/Subscriber - ACUMOS-3115 [https://jira.acumos.org/browse/ACUMOS-3115]

	As a Supplier, I can

	select / apply pre-defined Open digital rights language (ODRL)
RTU agreement examples

	import / apply sample Open digital rights language (ODRL) RTU
agreement from a file

	Use RTU editor to create RTU LUM Asset Usage Agreement and
download it to local file system

	As a Subscriber, I can

	import / apply RTU LUM Asset Usage agreement from a file

	review Open digital rights language (ODRL) RTU agreement in
READ-ONLY mode and save to LUM server

	fetch RTU LUM Asset Usage agreement from LUM server

	add / edit restrictions

	save restrictions (of RTU LUM agreement) to LUM server

	schema changes - v1.0.1

	added new attribute “schemaType” to distinguish between the
RTU agreement and restrictions schema

	used the value of “schemaType” to identify respective layout

	added new schema for agreement “restrictions”

	replaced / removed ‘dateTime’ as only ‘date’ would be supported

	layout changes - v1.0.1

	added layout for RTU agreement restrictions fields

	Added field to submit ‘userId’ while saving to LUM server

	Subscriber > initialize restriction uid, permission and
prohibition from respective agreement fields

Version 0.0.7 10 Oct 2019

	Remove redundant property under refinements - lum:swLicensor ACUMOS-3553 [https://jira.acumos.org/browse/ACUMOS-3553]

Version 0.0.6 09 Oct 2019

	Integration changes with clio ACUMOS-3538 [https://jira.acumos.org/browse/ACUMOS-3538]

	Show UI field to enter LUM server URL

	Ability to save the RTU document to LUM server

	Changes to RTU document as per LUM API expectations

	Put the base version of app.version.ts in source repo so that
editor can run in non-build environment like stackblitz

Version 0.0.5 03 Oct 2019

	License RTU editor - fix layout path - ACUMOS-3494 [https://jira.acumos.org/browse/ACUMOS-3494]

Version 0.0.4 01 Oct 2019

	Support to process & render diff versions of license
RTU documents - ACUMOS-3494 [https://jira.acumos.org/browse/ACUMOS-3494]

Version 0.0.3 20 Sep 2019

	Provide a web based editor to create RTU Agreement ACUMOS-3310 [https://jira.acumos.org/browse/ACUMOS-3310]

	Removed RTU prohibitions > constraints node ACUMOS-3311 [https://jira.acumos.org/browse/ACUMOS-3311]

	Added RTU target > refinement node ACUMOS-3312 [https://jira.acumos.org/browse/ACUMOS-3312]

	Added RTU assignee > refinement node ACUMOS-3313 [https://jira.acumos.org/browse/ACUMOS-3313]

	Added RTU permission > constraints node ACUMOS-3343 [https://jira.acumos.org/browse/ACUMOS-3343]

	RTU editor style improvements ACUMOS-3468 [https://jira.acumos.org/browse/ACUMOS-3468]

Version 0.0.2 30 Aug 2019

	No change - but release along with other sub-project -
License Manager Client Library

Version 0.0.1, 12 August 2019

	Support loading as iframe doc ACUMOS-3280 [https://jira.acumos.org/browse/ACUMOS-3280]

	Support using as web component ACUMOS-3280 [https://jira.acumos.org/browse/ACUMOS-3280]

	License RTU Editor for creating RTU ACUMOS-3079 [https://jira.acumos.org/browse/ACUMOS-3079]

License Manager Client Library Release Notes

Version 1.5.1 08-May-2020

	lum-java-rest-client 1.2.0 upgrade

	New method is written in LMCL to call new LUM API to retrieve models available for Accucompose composition - ACUMOS-3971 [https://jira.acumos.org/browse/ACUMOS-3971]

	New method is written in LMCL to call existing LUM API for new RTU flow - ACUMOS-4112 [https://jira.acumos.org/browse/ACUMOS-4112]

Version 1.4.4 20 Feb 2020

	LicenseAsset support NexusArtifactClient - ACUMOS-3960 [https://jira.acumos.org/browse/ACUMOS-3960]

Version 1.4.3 2 Dec 2019

	CDS 3.1.0 upgrade

Version 1.4.2 2 Dec 2019

	Fix Logging support reduce amount of logging and use logback - ACUMOS-3600 [https://jira.acumos.org/browse/ACUMOS-3600]

Version 1.4.1 31 Oct 2019

	Prepublish exclusion from LUM since software is not registered - ACUMOS-3651 [https://jira.acumos.org/browse/ACUMOS-3651]

Version 1.4.0 23 Oct 2019

	Integration changes with LUM 0.28.0 - actionable rtu denial messages - ACUMOS-3601 [https://jira.acumos.org/browse/ACUMOS-3601]

Version 1.3.0 17 Oct 2019

	Integration changes with LUM 0.27.1 - ACUMOS-3082 [https://jira.acumos.org/browse/ACUMOS-3082]

Version 1.2.0 10 Oct 2019

	LMCL - ACUMOS-3537 [https://jira.acumos.org/browse/ACUMOS-3537] , ACUMOS-3553 [https://jira.acumos.org/browse/ACUMOS-3553]

	Class not found issues with LUM java client

	Handle 402 response

	Support single action rtu verifications - multiple lookups causing issues

	LicenseRtuVerifier api updates - handle isAllowed without passing
action again

	Support rtu denials from lum

Version 1.1.0 01 Oct 2019

	Support to parse & validate diff versions (latest and boreas releases)
of license profile documents - ACUMOS-3494 [https://jira.acumos.org/browse/ACUMOS-3494]

Version 1.0.0 23 Sept 2019

	Adding rtuRequired flag to profile to activate lum entitlement requirement during
software registration ACUMOS-3458 [https://jira.acumos.org/browse/ACUMOS-3458]
New api
org.acumos.licensemanager.client.rtu.LicenseAsset

	register software with LUM ACUMOS-3339 [https://jira.acumos.org/browse/ACUMOS-3339]
org.acumos.licensemanager.client.rtu.LicenseRtuVerifier

	verfiyRtu software with LUM ACUMOS-3228 [https://jira.acumos.org/browse/ACUMOS-3228]

	New dependency org.acumos.license-usage-manager:lum:java-rest-client

	Updatd CDS dependency to 3.0.0

	Java 11 support

	
	Removed RTU creation APIs – LUM agreement api will be used to create rtu

	org.acumos.licensemanager.client.LicenseCreator
org.acumos.licensemanager.client.model.CreatedRtu
org.acumos.licensemanager.client.model.CreateRtuRequest
org.acumos.licensemanager.client.model.ICreatedRtuResponse
org.acumos.licensemanager.client.model.ILicenseCreator

	
	Renamed APIs

	org.acumos.licensemanager.client.LicenseVerifier ->
org.acumos.licensemanager.client.rtu.LicenseRtuVerifier

	Updated classes
org.acumos.licensemanager.client.model.BaseLicenseRequest
org.acumos.licensemanager.client.model.ICommonLicenseRequest
org.acumos.licensemanager.exceptions.RightToUseException
org.acumos.licensemanager.client.model.VerifyLicenseRequest

	LicenseProfile validator bump json schema validator library to 1.0.20 - see fixes in change log https://github.com/networknt/json-schema-validator/blob/master/CHANGELOG.md

	LicenseProfile validator update docs to answer questions in ACUMOS-3338 ACUMOS-3338 [https://jira.acumos.org/browse/ACUMOS-3338]

	Sequence diagrams

Version 0.0.14 4 Sept 2019

	LicenseProfile APIs - getTemplate(s) ACUMOS-3387 [https://jira.acumos.org/browse/ACUMOS-3387]

	LicenseProfile APIs - validate ACUMOS-3336 [https://jira.acumos.org/browse/ACUMOS-3336]

Version 0.0.13 11 Jul 2019

	No change - but release along with other sub-projects - License
Profile and RTU Editors

Version 0.0.12 11 Jul 2019

	License JSON schema with required fields ACUMOS-3197 [https://jira.acumos.org/browse/ACUMOS-3197]

Version 0.0.11 08 Jul 2019

	Moved LMCL from security-verification to license-manager repo ACUMOS-3189 [https://jira.acumos.org/browse/ACUMOS-3189]

Version 0.0.10 04 Jun 2019

	Support RTU removing users from RTU ACUMOS-3003 [https://jira.acumos.org/browse/ACUMOS-3003]

Version 0.0.9, 29 May 2019

	Update license-manager-client-library version as security-verification
version changes

	Update RTU refs ACUMOS-2896 [https://jira.acumos.org/browse/ACUMOS-2896]

Version 0.0.9, 30 May 2019

	Update license-manager-client-library version as security-verification
version changes

Version 0.0.8, 14 May 2019

	Update license-manager-client-library version as security-verification
version changes

Version 0.0.7, 17 May 2019

	Update license-manager to support associating Rtu to userId. (ACUMOS-2896 [https://jira.acumos.org/browse/ACUMOS-2896])

Version 0.0.6, 14 May 2019

	Update license-manager-client-library version as security-verification version changes (ACUMOS-2887 [https://jira.acumos.org/browse/ACUMOS-2887])

Version 0.0.5, 10 May 2019

	Update license-manager-client-library version as security-verification version changes (ACUMOS-2887 [https://jira.acumos.org/browse/ACUMOS-2887])

Version 0.0.4, 01 May 2019

	Update license-manager-client-library, security-verification-client and security-verification-service For LF release (ACUMOS-2830 [https://jira.acumos.org/browse/ACUMOS-2830])

	Updated license headers ACUMOS-2794 [https://jira.acumos.org/browse/ACUMOS-2794]

	Documentation cleanup ACUMOS-2795 [https://jira.acumos.org/browse/ACUMOS-2795]

	Updated to CDS 2.2.2 to be compatible with portal ACUMOS-2793 [https://jira.acumos.org/browse/ACUMOS-2793]

	Api Docs move from wiki - ACUMOS-2792 [https://jira.acumos.org/browse/ACUMOS-2792]

Version 0.0.3, 09 April 2019

	Adding support for validating license.json

	ACUMOS-2731 [https://jira.acumos.org/browse/ACUMOS-2731]

	Checkstyle - based on google checks – a couple compatibity issue

	ILicenseVerifier.verifyRTU -> ILicenseVerifier.verfiyRtu (case change)

	ILicenseCreator.createRTU -> ILicenseCreator.createRtu (case change)

Version 0.0.2, 20 March 2019

adding CDS support, simplify api
* ACUMOS-2631 [https://jira.acumos.org/browse/ACUMOS-2631]
* ACUMOS-2614 [https://jira.acumos.org/browse/ACUMOS-2614]

Version 0.0.1, 8 March 2019

initial dev version
* ACUMOS-2546 [https://jira.acumos.org/browse/ACUMOS-2546]
* ACUMOS-2606 [https://jira.acumos.org/browse/ACUMOS-2606]

License Server Admin User Guide

Introduction

	This administration guide walks an administrator/developer to be able to run the following 4 services by way of docker images:

	
	license-profile-editor

	license-rtu-editor

	lum-server

	lum-db

	using either

	
	docker compose

	kubernetes (we use minikube for our example)

	with the rest of Acumos using All in One tooling

Acumos AIO installation allows to setup above services based on kubernetes and
docker-compose.

This document provides instructions to explicitly install / run
above services using docker-compose.

Docker-compose Prerequisites

	Be logged into the acumos docker registry:

docker login nexus3.acumos.org:10002

user name: docker
password: docker

Using Docker Compose - License Editors

	For the license-profile-editor and license-rtu-editor, we have
the following example docker compose file.

version: "3"
services:
 license-rtu-editor:
 # replace username/repo:tag with your name and image details
 image: nexus3.acumos.org:10002/acumos/license-rtu-editor:0.1.3
 ports:
 - "8092:8080"
 license-profile-editor:
 # replace username/repo:tag with your name and image details
 image: nexus3.acumos.org:10002/acumos/license-profile-editor:0.0.12
 ports:
 - "8093:8080"

	Note:

	
	You can change the 8092 and 8093 ports to match your available ports

	on your host.

	
	If you change the ports, then make sure that the portal-be >
“license_profile” configuration refers to correct port.

	Then run the following docker-compose command

docker-compose up

	Each editor can be accessed using following URLs:

License Profile editor:
http://localhost:8093/

License Right to Use (RTU) editor:
http://localhost:8092/

Using Docker Compose - License Usage Manager

	We start with a lum_config.json

{
 "lumServer": {
 "database": {
 "user": "lum-user",
 "host": "lum-database",
 "database": "lumdb",
 "port": 5432,
 "max": 10,
 "idleTimeoutMillis": 30000
 },
 "serverName": "lum-server",
 "maxTxRetryCount": 10
 }
}

	Create a .env file with the password for the database

postgresqlPassword=lum-db-password
postgresqlUser=lum-user

	For the License Usage Manager services, we have the following
example docker compose file.

version: "3.4"
services:
 lum-database:
 image: nexus3.acumos.org:10002/acumos/lum-db:0.28.1
 environment:
 POSTGRES_USER: ${postgresqlUser}
 POSTGRES_PASSWORD: ${postgresqlPassword}
 expose:
 - 5432
 lum-server:
 # replace username/repo:tag with your name and image details
 image: nexus3.acumos.org:10002/acumos/lum-server:0.28.1
 depends_on:
 - lum-database
 volumes:
 - ./lum_config.json:/opt/app/lum/etc/config.json
 environment:
 DATABASE_PASSWORD: ${postgresqlPassword}
 ports:
 - "2080:2080"

	Note:

	
	Make sure that the portal-be > “lum” configuration service url refers
to 2080 port.

	Then run the following docker-compose command

docker-compose up

	LUM service provides an OpenApi web interface that shows list of LUM apis
and provides an opportunity to test APIs using the web interface.
To access the LUM OpenApi web interface, launch follwing URL:

http://localhost:2080/ui/openapi/

License Profile Editor User Guide

Authoring a License Profile

When you onboard a model or create a composite model on Acumos platform,
you can add a license profile to your model. You can also update the license
profile from the my models license profile tab before publishing in case things
change during the development process:

	Upload a license profile json file

	Select from default list of license profiles templates and modify

	Create a new license profile

When you modify or create a new license profile the portal will present
you with the license profile editor.

When creating your license profile, we require the following fields
to be specified:

	License Key - Such as a SPDX License Identifier

	License Name - Friendly license name not the license Identifier

	Copyright year

	Copyright Company

	Copyright Suffix: for example, “All Rights Reserved.”

	Contact Name

	Contact URL or place to find out how to purchase the model.

	Contact email

	Right to Use Required - yes or no – if yes then
a Right To Use agreement is required.

Examples:

New license profile:

[image: ../../../_images/license-profile-editor-new.png]
Modify an existing license profile:

[image: ../../../_images/license-profile-editor-modify.png]

Viewing the License Profile in portal

[image: ../../../_images/view-license-in-portal.png]

License Profile Examples

We have 3 different examples of license profiles here:

	Company B Proprietary License Profile

{
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-manager-client-library/src/main/resources/schema/1.0.0/license-profile.json",
 "keyword": "Company-B-Commercial",
 "licenseName": "Company B Commmercial License",
 "copyright": {
 "year": 2020,
 "company": "Company B",
 "suffix": "All Rights Reserved"
 },
 "softwareType": "Machine Learning Model",
 "companyName": "Company B",
 "contact": {
 "name": "Company B Team Member",
 "URL": "http://Company-B.com",
 "email": "support@Company-B.com"
 },
 "additionalInfo": "http://Company-B.com/licenses/Company-B-Commercial",
 "rtuRequired": true
}

	Vendor A OSS License Profile

{
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-manager-client-library/src/main/resources/schema/1.0.0/license-profile.json",
 "keyword": "Vendor-A-OSS",
 "licenseName": "Vendor A Open Source Software License",
 "copyright": {
 "year": 2020,
 "company": "Vendor A",
 "suffix": "All Rights Reserved"
 },
 "softwareType": "Machine Learning Model",
 "companyName": "Vendor A",
 "contact": {
 "name": "Vendor A Team",
 "URL": "http://Vendor-A.com",
 "email": "support@Vendor-A.com"
 },
 "additionalInfo": "http://Vendor-A.com/licenses/Vendor-A-OSS",
 "rtuRequired": true
}

	Apache 2.0 License Profile

{
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-manager-client-library/src/main/resources/schema/1.0.0/license-profile.json",
 "keyword": "Apache-2.0",
 "licenseName": "Apache License 2.0",
 "copyright": {
 "year": 2020,
 "company": "Company A",
 "suffix": "All Rights Reserved"
 },
 "softwareType": "Machine Learning Model",
 "companyName": "Company A",
 "contact": {
 "name": "Company A Team Member",
 "URL": "http://companya.com",
 "email": "support@companya.com"
 },
 "rtuRequired": true
}

Using the Portal UI, You can select and modify these examples as per your
licensing requirements.

License Profile Json Schema 1.0.0

The schema for the license profile:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "version": "1.0.0",
 "required": [
 "$schema",
 "keyword",
 "licenseName",
 "copyright",
 "rtuRequired"
],
 "properties": {
 "$schema": {
 "type": "string",
 "default": "https://raw.githubusercontent.com/acumos/license-manager/master/license-manager-client-library/src/main/resources/schema/1.0.0/license-profile.json"
 },
 "keyword": {
 "type": "string"
 },
 "licenseName": {
 "type": "string"
 },
 "intro": {
 "type": "string"
 },
 "copyright": {
 "type": "object",
 "required": [
 "year",
 "company",
 "suffix"
],
 "properties": {
 "year": {
 "type": "integer",
 "default": 2019
 },
 "company": {
 "type": "string"
 },
 "suffix": {
 "type": "string"
 }
 }
 },
 "softwareType": {
 "type": "string"
 },
 "companyName": {
 "type": "string"
 },
 "contact": {
 "type": "object",
 "required": [
 "name",
 "URL",
 "email"
],
 "properties": {
 "name": {
 "type": "string"
 },
 "URL": {
 "type": "string"
 },
 "email": {
 "type": "string"
 }
 }
 },
 "additionalInfo": {
 "type": "string"
 },
 "rtuRequired":{
 "type": "boolean",
 "description": "When true a right to use must be provided by the supplier to enable use."
 }
 }
}

Admin: Add new or update license profile templates

As a Platform Operator, you can configure different license profile templates
- making it easy for the onboarding of a model with a license profile.

Prerequisite: Must have access to Common data service swagger.

Steps:

	get admin CDS user Id (not user name)

	POST /lic/templ

From the CDS swagger find the license controller

[image: ../../../_images/license-controller-cds.png]
Example payload creating a new license profile template for Company Z

{
 "priority": 10,
 "template": "{\"$schema\":\"https://raw.githubusercontent.com/acumos/license-manager/master/license-manager-client-library/src/main/resources/schema/1.0.0/license-profile.json\",\"keyword\":\"Company-Z-Commercial\",\"licenseName\":\"Company Z Commmercial License\",\"copyright\":{\"year\":2019,\"company\":\"Company Z\",\"suffix\":\"All Rights Reserved\"},\"softwareType\":\"Machine Learning Model\",\"companyName\":\"Company Z\",\"contact\":{\"name\":\"Company Z Team Member\",\"URL\":\"http://Company-Z.com\",\"email\":\"support@Company-Z.com\"},\"additionalInfo\":\"http://Company-Z.com/licenses/Company-Z-Commercial\",\"rtuRequired\":true}",
 "templateId": 4,
 "templateName": "Company Z License",
 "userId": "12345678-abcd-90ab-cdef-1234567890ab"
}

The “priority” attribute would allow you to define order for
license profile templates entries.

	Go back to Onboarding and notice new license profile template

[image: ../../../_images/company-z-new-license-profile-template.png]
4. If you have enabled security verification license checking then make sure
that you have the correct configuration for any new license profile keyword
that you introduce.
This is important if you have the security verification feature enabled in your
Acumos instance. For example if you added “Company Z Commercial” license
profile template, you also need to add to the SV scan code rules

License Scanning setup

License Right to Use Editor User Guide

The Right To Use (RTU) editor allows supplier and subscriber
to create, review and restrict asset usage agreements for using
the models.

Steps:

1.
The right to use flag in the license profile indicates
that a right to use agreement must be setup in license
usage manager. The creator of the software will always
be able to use the software. No agreement is required for
the creator.

2.
A Supplier

	Defines an agreement

	for a target asset or asset collection (one ML model at
a specific version to a larger collection of models)

	with specific permitted actions

	with specific prohibited actions (optional)

	Downloads the agreement.

	Sends the agreement to subscriber.

3.
Subscriber reviews and saves the agreement into License Usage manager (LUM)

4. Subscriber can optionally add restrictions on top of
the agreement (such which user names are allowed to use the software)

The most basic Open Digital Rights Language (ODRL) agreement looks like this:

	Company A allows Company B to use “face-detect-model” at
revision id “edc76757-cd54-4256-9c3d-f865d88db1ff”
(no constraints)

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "uid": "acumos://software-licensor/Company%25252520A/agreement/487b1c01-b017-4516-85bc-9ad9610dfa70",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": [
 "face-detect-model"
]
 },
 {
 "@type": "Constraint",
 "leftOperand": "lum:swTagId",
 "operator": "lum:in",
 "rightOperand": [
 "edc76757-cd54-4256-9c3d-f865d88db1ff"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "uid": "acumos://software-licensor/Company%25252520A/permission/1a21e418-ecd5-41b6-936f-78c707105b3c",
 "@type": "Rule",
 "action": [
 "use"
]
 }
]
}

	language

	json

	Agreement ready to be submitted to License Usage Manager
PUT /api​/v1​/asset-usage-agreement

{
 "assetUsageAgreement": {
 "softwareLicensorId": "Company A",
 "assetUsageAgreementId": "acumos://software-licensor/Company%20A/agreement/af3912bd-ecb7-48a3-9e9d-d0c2c4da1843",
 "agreement": {
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "@type": "Agreement",
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "uid": "acumos://software-licensor/Company%20A/agreement/af3912bd-ecb7-48a3-9e9d-d0c2c4da1843",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": [
 "face-detect-model"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "uid": "acumos://software-licensor/Company%20A/permission/52acd203-ea02-43ac-b418-223bf75f1b55",
 "@type": "Rule",
 "action": [
 "use"
]
 }
]
 }
 }
}

	language

	json

Acumos Right to Use Actions

The Acumos platform is integrated with the license usage manager
to deny usage if agreed usage is out of bounds.

In the Clio release, the following actions can provide a denial:

	acumos:download

	acumos:deploy

Other actions that can be described in right to use but are not
being denied are:

	transfer (such as allowing solution to be federated again)

	aggregate (allowing model to be added to a composition model)

	modelrunner:predict (calling the machine learning model methods api)

	modelrunner:train (allowing retraining the machine learning models
in a subscription)

Enabling License Right to Use (RTU) in license profile

When you publish a model with a license profile that indicates
right to use required. An agreement / right to use agreement
for the software must be setup using the right to use editor
and license usage manager (LUM) service.

License Profile indicating right to use required:

[image: ../../../_images/license-profile-rtu-required.png]

Sample field in license.json:

"rtuRequired": true

Here is a License Profile for fictitious Company B for square model:

[image: ../../../_images/license-profile-rtu-required-full.png]

Step 1: Supplier Defines an agreement

Target software:

	To target all versions of a model, use Acumos solution ID as
the software persistent ID (lum:swPersistentId)

	To target specific version of a model, use Acumos revision ID as
the software tag ID (lum:swTagId)

	To target specific version of a Catalog, use Acumos catalog ID as
the catalog ID (lum:swCatalogId) - you can the ID find in the url
when filtering on catalog in portal

	To target set of model solutions by name, use the lum:swProductName
(this will match any solution by name)

	The lum:swCatalogType currently is for the public (PB)
or restricted catalog (RS) - you just need to enter RS or PB.

Supplier:

	The Supplier Company name must match what is in the license profile
company name.

	Please also enter the url of the company and email address.

Subscriber:

	The Subscriber name, url and email are required but are informational.

Permitted Actions:

	Please select actions that are allowed.

	If you choose the “use” option then all sub actions will be allowed.

	Each action can have constraints by count or by date.

	If using date, the format is YYYY-MM-DD or 2019-10-31 for October 31, 2019

	When using download action it will count any artifact download
for a solution as a download action.

Prohibited Actions:

	Any actions you do not allow, for example, “transfer” the software to
another party.

Download the file and send to the subscriber.

In our example, we can create an agreement for square model
(solution id: b11dadf9-db03-43a8-94f4-e9f8155b8f42,
revision id: 9f603957-b720-45f4-8b8e-512d081e9a5f) which we received
from the URL parameters:
https://<ACUMOS_PORTAL_URL>#/marketSolutions?solutionId=b11dadf9-db03-43a8-94f4-e9f8155b8f42&revisionId=9f603957-b720-45f4-8b8e-512d081e9a5f&parentUrl=marketplace
using the RTU editor:

[image: ../../../_images/rtu-editor-agreement-companyb-companyz.png]

Step 2: Supplier shares an agreement with Subscriber

	Once the Open Digital Rights Language (ODRL) agreement is defined
using the RTU Editor, Supplier can click the download button to save
the ODRL RTU agreement.

	Supplier shall share the ODRL RTU agreement with Subscriber.

Step 3: A subscriber reviews and saves agreement

Once Subscriber receives the ODRL RTU agreement from Supplier,
The Subscriber can review the agreement by looking at the JSON or
by use the RTU editor to import the ODRL RTU agreement and review.

If you have LUM service available under the same domain as the
RTU editor then you can submit the agreement directly from
the RTU editor.

[image: ../../../_images/rtu-editor-review.png]

Add the user name in the last field and if RTU editor
has been configured to work with LUM you can directly save to LUM.

Step 4: A subscriber add restrictions to an existing agreement

This step is optional. A subscriber can use this step if they want to
assign team member’s user names to the agreement or further narrow the
agreement’s permissions and prohibitions.

You must know the Supplier’s company name and the agreement Unique ID (or UID).

[image: ../../../_images/rtu-editor-restrictions.png]

In above example, we are adding 2 users “consumer1” and “consumer2” and
adding prohibitions of “transfer” and “aggregation”.

Troubleshooting Denial Messages

Did the software get registered with LUM during publishing?

you may see this denial if software was published before license usage manager
was installed.

[image: ../../../_images/denial-message-no-swid-tag.png]

– ie is there a SwidTag? yes or no?

If no republish the software or resubscribe to catalog.
If yes you may need an agreement.

If you don’t have an agreement for the software you must get
one from the supplier.

This is the denial message you will see if there is no agreement
for the software:

[image: ../../../_images/denial-message-no-agreement.png]

Do I need to create a new agreement with a software licensor?

There is no agreement in the agreement inventory that matches
this SwTagId or asset collections (SwPersistentId/SolutionId,
SwCatalogId, SwCatalogType, SwProductName, SwCategory).

Example agreement to resolve error:

{
 "assetUsageAgreement": {
 "softwareLicensorId": "Company B",
 "assetUsageAgreementId": "acumos://software-licensor/Company%20B/agreement/6653aab1-aca1-41c7-a246-d91a92693082",
 "agreement": {
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "@type": "Agreement",
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyz.com",
 "vcard:fn": "Company Z",
 "vcard:hasEmail": "team@companyz.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "sales@companyb.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swTagId",
 "operator": "lum:in",
 "rightOperand": [
 "9f603957-b720-45f4-8b8e-512d081e9a5f)"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "@type": "Rule",
 "action": [
 "acumos:deploy",
 "acumos:download"
],
 "constraint": [
 {
 "rightOperand": {
 "@value": "2019-12-31",
 "@type": "xsd:date"
 },
 "@type": "Constraint",
 "leftOperand": "date",
 "operator": "lt"
 }
],
 "uid": "acumos://software-licensor/Company%20B/permission/274f9e90-d1f9-41f8-ae2b-201a62769957"
 }
],
 "prohibition": [
 {
 "@type": "Rule",
 "action": [
 "transfer"
],
 "uid": "acumos://software-licensor/Company%20B/prohibition/f7785dea-7279-4207-9edc-09221b87d949"
 }
],
 "uid": "acumos://software-licensor/Company%20B/agreement/6653aab1-aca1-41c7-a246-d91a92693082"
 }
 }
}

[image: ../../../_images/supplier-company-b-agreement-in-editor.png]
Do I need to have an amended agreement to include additional rights?

	– Is there a close match such as there was an agreement

	for a revision id but now I need a new agreement for new revision.

Are there restricted rights that need to be amended?

Was the target restricted by the restrictions vs supplier agreement?

Right to Use Open Digital Rights Language (ODRL) agreement examples

We have 7 different examples of license agreements:

	Use solution all versions no transfer, aggregate

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com",
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:countUniqueUsers",
 "operator": "lteq",
 "rightOperand": {
 "@value": "10",
 "@type": "xsd:integer"
 }
 }
]
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": [
 "face-detect"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "@type": "Rule",
 "action": [
 "acumos:deploy",
 "acumos:download",
 "modelrunner:predict",
 "modelrunner:train"
],
 "constraint": [
 {
 "@type": "Constraint",
 "leftOperand": "count",
 "operator": "lt",
 "rightOperand": {
 "@value": "100",
 "@type": "xsd:integer"
 }
 }
],
 "uid": "acumos://software-licensor/Company%20A/permission/98378924-84ff-41f5-87ac-02fd2012c727"
 }
],
 "prohibition": [
 {
 "@type": "Rule",
 "action": [
 "transfer",
 "aggregate"
],
 "uid": "acumos://software-licensor/Company%20A/prohibition/cb32d403-3d34-4468-9b41-1c1beaf4aba7"
 }
],
 "uid": "acumos://software-licensor/Company%20A/agreement/3eb8c43a-bf19-46ab-8392-99c7efdf4106"
}

	Allow all software from a company

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
],
 "@type": "Target"
 },
 "permission": [
 {
 "@type": "Rule",
 "action": [
 "use"
],
 "uid": "acumos://software-licensor/Company%20A/permission/715dc5af-4829-4457-98a3-37bde9ffdd17"
 }
],
 "uid": "acumos://software-licensor/Company%20A/agreement/eff30856-0695-4083-a832-59be5267a192"
}

	Allow all software from a catalog

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swCatalogId",
 "operator": "lum:in",
 "rightOperand": [
 "6eb3ce3e-c4b6-46cd-b8a8-0991abf0413e",
 "10945603-2e8f-45a1-8912-7bdd0d4a6361"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "@type": "Rule",
 "action": [
 "use"
],
 "uid": "acumos://software-licensor/Company%20A/permission/1a21e418-ecd5-41b6-936f-78c707105b3c"
 }
],
 "uid": "acumos://software-licensor/Company%20A/agreement/487b1c01-b017-4516-85bc-9ad9610dfa70"
}

	Allow all software from public catalogs

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "uid": "acumos://software-licensor/Company%2520A/agreement/487b1c01-b017-4516-85bc-9ad9610dfa70",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swCatalogType",
 "operator": "lum:in",
 "rightOperand": [
 "PB"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "uid": "acumos://software-licensor/Company%2520A/permission/1a21e418-ecd5-41b6-936f-78c707105b3c",
 "@type": "Rule",
 "action": [
 "use"
]
 }
]
}

	Face Detect Model - any usage

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "uid": "acumos://software-licensor/Company%252520A/agreement/487b1c01-b017-4516-85bc-9ad9610dfa70",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": [
 "face-detect-model"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "uid": "acumos://software-licensor/Company%252520A/permission/1a21e418-ecd5-41b6-936f-78c707105b3c",
 "@type": "Rule",
 "action": [
 "use"
]
 }
]
}

	Face Detect Model - specific version can be used

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "uid": "acumos://software-licensor/Company%25252520A/agreement/487b1c01-b017-4516-85bc-9ad9610dfa70",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com"
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": [
 "face-detect-model"
]
 },
 {
 "@type": "Constraint",
 "leftOperand": "lum:swTagId",
 "operator": "lum:in",
 "rightOperand": [
 "edc76757-cd54-4256-9c3d-f865d88db1ff"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "uid": "acumos://software-licensor/Company%25252520A/permission/1a21e418-ecd5-41b6-936f-78c707105b3c",
 "@type": "Rule",
 "action": [
 "use"
]
 }
]
}

	Face Detect Model - specific version, 10 users, expires,
constrained actions, some prohibited actions.

{
 "@context": {
 "@vocab": "https://www.w3.org/ns/odrl.jsonld#",
 "vcard": "http://www.w3.org/2006/vcard/ns#"
 },
 "$schema": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.1/rtu-agreement.json",
 "@type": "Agreement",
 "uid": "acumos://software-licensor/Company%2525252520A/agreement/487b1c01-b017-4516-85bc-9ad9610dfa70",
 "assignee": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companyb.com/team",
 "vcard:fn": "Company B",
 "vcard:hasEmail": "team@companyb.com",
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:countUniqueUsers",
 "operator": "lteq",
 "rightOperand": {
 "@value": "10",
 "@type": "xsd:integer"
 }
 }
]
 },
 "assigner": {
 "@type": [
 "Party",
 "vcard:Organization"
],
 "vcard:hasUrl": "companya.com",
 "vcard:fn": "Company A",
 "vcard:hasEmail": "sales@companya.com"
 },
 "target": {
 "refinement": [
 {
 "@type": "Constraint",
 "leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": [
 "face-detect-model"
]
 },
 {
 "@type": "Constraint",
 "leftOperand": "lum:swTagId",
 "operator": "lum:in",
 "rightOperand": [
 "edc76757-cd54-4256-9c3d-f865d88db1ff"
]
 }
],
 "@type": "Target"
 },
 "permission": [
 {
 "uid": "acumos://software-licensor/Company%2525252520A/permission/1a21e418-ecd5-41b6-936f-78c707105b3c",
 "@type": "Rule",
 "action": [
 "acumos:deploy",
 "acumos:download"
],
 "constraint": [
 {
 "@type": "Constraint",
 "leftOperand": "count",
 "operator": "lt",
 "rightOperand": {
 "@value": "10",
 "@type": "xsd:integer"
 }
 },
 {
 "@type": "Constraint",
 "leftOperand": "date",
 "operator": "lt",
 "rightOperand": {
 "@value": "01-01-2020",
 "@type": "xsd:date"
 }
 }
]
 },
 {
 "@type": "Rule",
 "action": [
 "modelrunner:predict",
 "modelrunner:train"
],
 "constraint": [
 {
 "@type": "Constraint",
 "leftOperand": "date",
 "operator": "lt",
 "rightOperand": {
 "@value": "01-01-2020",
 "@type": "xsd:date"
 }
 }
],
 "uid": "acumos://software-licensor/Company%20A/permission/c7cb9a72-86d1-4fe3-87e6-0c275fcd2a29"
 }
],
 "prohibition": [
 {
 "@type": "Rule",
 "action": [
 "transfer",
 "aggregate"
],
 "uid": "acumos://software-licensor/Company%20A/prohibition/85d7767c-f9db-4b95-a395-1c94bd23c1be"
 }
]
}

These should be customized for your licensing agreements.
The license rtu editor has a shortcut where
you can click on the example button to auto fill with these examples.

License RTU agreement Json Schema 1.0.1

The schema for the license rtu agreement - the supplier creates:

{
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$id": "http://example.com/root.json",
 "type": "object",
 "title": "The Root Schema",
 "schemaType": "rtu",
 "version": "1.0.1",
 "required": [
 "@context",
 "@type",
 "$schema",
 "target",
 "assignee",
 "assigner",
 "permission"
],
 "properties": {
 "@context": {
 "$id": "#/properties/@context",
 "type": "object",
 "title": "The @context Schema",
 "required": [
 "@vocab",
 "vcard"
],
 "properties": {
 "@vocab": {
 "$id": "#/properties/@context/properties/@vocab",
 "type": "string",
 "title": "The @vocab Schema",
 "default": "https://www.w3.org/ns/odrl.jsonld#",
 "examples": [
 "https://www.w3.org/ns/odrl.jsonld"
],
 "pattern": "^(.*)$"
 },
 "vcard": {
 "$id": "#/properties/@context/properties/vcard",
 "type": "string",
 "title": "The Vcard Schema",
 "default": "http://www.w3.org/2006/vcard/ns#",
 "examples": [
 "http://www.w3.org/2006/vcard/ns#"
],
 "pattern": "^(.*)$"
 }
 }
 },
 "@type": {
 "$id": "#/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Agreement",
 "examples": [
 ""
],
 "pattern": "^(.*)$"
 },
 "$schema": {
 "type": "string",
 "default": "https://raw.githubusercontent.com/acumos/license-manager/master/license-rtu-editor/src/assets/schema/1.0.0/rtu-agreement.json"
 },
 "uid": {
 "$id": "#/properties/uid",
 "type": "string",
 "title": "Agreement UID",
 "default": "",
 "examples": [
 "acumos://software-licensor/CompanyB/agreement/<target-uuid>"
],
 "pattern": "^(.*)$"
 },
 "assignee": {
 "$id": "#/properties/assignee",
 "type": "object",
 "title": "Subscriber",
 "required": [
 "@type",
 "vcard:fn",
 "vcard:hasEmail",
 "vcard:hasUrl"
],
 "properties": {
 "@type": {
 "$id": "#/properties/assignee/properties/@type",
 "type": "array",
 "title": "The @type Schema",
 "default": ["Party","vcard:Organization"],
 "items": {
 "$id": "#/properties/assignee/properties/@type/items",
 "type": "string",
 "title": "The Items Schema",
 "default": "Party",
 "examples": [
 "Party",
 "vcard:Organization"
],
 "pattern": "^(.*)$"
 }
 },
 "vcard:hasUrl": {
 "$id": "#/properties/assignee/properties/vcard:hasUrl",
 "type": "string",
 "title": "Company/Team URL",
 "default": "",
 "examples": [
 "http://example.com/team/A"
],
 "pattern": "^(.*)$"
 },
 "vcard:fn": {
 "$id": "#/properties/assignee/properties/vcard:fn",
 "type": "string",
 "title": "Company / Team Name",
 "default": "",
 "examples": [
 "Team A"
],
 "pattern": "^(.*)$"
 },
 "vcard:hasEmail": {
 "$id": "#/properties/assignee/properties/vcard:hasEmail",
 "type": "string",
 "title": "Email",
 "default": "",
 "examples": [
 "teamA@example.com"
],
 "pattern": "^(.*)$"
 },
 "refinement": {
 "$id": "#/properties/assignee/properties/refinement",
 "type": "array",
 "title": "Assignee Refinement(s)",
 "items": {
 "$id": "#/properties/assignee/properties/refinement/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "leftOperand",
 "operator",
 "rightOperand"
],
 "properties": {
 "@type": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Constraint",
 "examples": [
 "Constraint"
],
 "pattern": "^(.*)$"
 },
 "leftOperand": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/leftOperand",
 "type": "string",
 "title": "Refine Assignee by",
 "default": "lum:countUniqueUsers",
 "enum": [
 "lum:countUniqueUsers"
],
 "examples": [
 "lum:countUniqueUsers"
],
 "pattern": "^(.*)$"
 },
 "operator": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/operator",
 "type": "string",
 "title": "Operator",
 "default": "lteq",
 "enum": [
 "lteq"
],
 "pattern": "^(.*)$"
 },
 "rightOperand": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/rightOperand",
 "type": "object",
 "title": "Limited to value",
 "required": [
 "@value"
],
 "properties": {
 "@value": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/rightOperand/properties/@value",
 "type": "string",
 "title": "Limited to",
 "default": "",
 "examples": [
 "1"
],
 "pattern": "^(.*)$"
 },
 "@type": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/rightOperand/properties/@type",
 "type": "string",
 "title": "Data format",
 "default": "xsd:integer",
 "examples": [
 "xsd:integer"
],
 "pattern": "^(.*)$"
 }
 }
 }
 }
 }
 }
 }
 },
 "assigner": {
 "$id": "#/properties/assigner",
 "type": "object",
 "title": "Supplier",
 "required": [
 "@type",
 "vcard:fn",
 "vcard:hasEmail",
 "vcard:hasUrl"

],
 "properties": {
 "@type": {
 "$id": "#/properties/assigner/properties/@type",
 "type": "array",
 "default": ["Party","vcard:Organization"],
 "title": "The @type Schema",
 "items": {
 "$id": "#/properties/assigner/properties/@type/items",
 "type": "string",
 "title": "The Items Schema",
 "default": "Party",
 "examples": [
 "Party",
 "vcard:Organization"
],
 "pattern": "^(.*)$"
 }
 },

 "uid": {
 "$id": "#/properties/assigner/properties/uid",
 "type": "string",
 "title": "Assignee UID",
 "default": "",
 "examples": [
 "acumos://software-licensor/CompanyB/assigner/<target-uuid>"
],
 "pattern": "^(.*)$"
 },
 "vcard:hasUrl": {
 "$id": "#/properties/assigner/properties/vcard:hasUrl",
 "type": "string",
 "title": "Company/Team URL",
 "default": "",
 "examples": [
 "http://example.com/team/A"
],
 "pattern": "^(.*)$"
 },
 "vcard:fn": {
 "$id": "#/properties/assigner/properties/vcard:fn",
 "type": "string",
 "title": "Company name",
 "default": "",
 "examples": [
 "Company A"
],
 "pattern": "^(.*)$"
 },
 "vcard:hasEmail": {
 "$id": "#/properties/assigner/properties/vcard:hasEmail",
 "type": "string",
 "title": "Email ",
 "default": "",
 "examples": [
 "sales@companya.com"
],
 "pattern": "^(.*)$"
 }
 }
 },
 "target": {
 "$id": "#/properties/target",
 "type": "object",
 "title": "Target Asset(s) or Asset Collection(s) ",
 "required": [
 "@type",
 "refinement"
],
 "properties": {
 "@type": {
 "$id": "#/properties/target/properties/@type",
 "type": "string",
 "title": "Target",
 "default": "Target",
 "examples": [
 ""
],
 "pattern": "^(.*)$"
 },
 "refinement": {
 "$id": "#/properties/target/items/properties/refinement",
 "type": "array",
 "title": "",
 "items": {
 "$id": "#/properties/target/items/properties/refinement/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "leftOperand",
 "operator",
 "rightOperand"
],
 "properties": {
 "@type": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Constraint",
 "examples": [
 "refinement"
],
 "pattern": "^(.*)$"
 },
 "leftOperand": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/leftOperand",
 "type": "string",
 "title": "Refine Target by",
 "default": "lum:swPersistentId",
 "enum": [
 "lum:swPersistentId",
 "lum:swTagId",
 "lum:swProductName",
 "lum:swCategory",
 "lum:swCatalogId",
 "lum:swCatalogType"
],
 "examples": [
 "lum:swPersistentId"
],
 "pattern": "^(.*)$"
 },
 "operator": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/operator",
 "type": "string",
 "title": "Operator",
 "default": "lum:in",
 "enum": [
 "lum:in"
],
 "examples": [
 "lum:in"
],
 "pattern": "^(.*)$"
 },
 "rightOperand": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/rightOperand",
 "type": "array",
 "title": "Target Identifier(s) *",
 "items": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/rightOperand/items",
 "type": "string",
 "title": "Target Identifier"
 }
 }
 }
 }
 }
 }
 },
 "permission": {
 "$id": "#/properties/permission",
 "type": "array",
 "title": "Permitted Usage",
 "items": {
 "$id": "#/properties/permission/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "action"
],
 "properties": {
 "uid": {
 "type": "string",
 "examples": ["acumos://software-licensor/CompanyB/permission/<target-uuid>"
]
 },
 "@type": {
 "$id": "#/properties/permission/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Rule",

 "examples": [
 "Rule"
],
 "pattern": "^(.*)$"
 },
 "action": {
 "$id": "#/properties/permission/items/properties/action",
 "type": "array",
 "title": "Actions",
 "default": ["acumos:download"],
 "items": {
 "$id": "#/properties/permission/items/properties/action/items",
 "type": "string",
 "title": "Actions",
 "default": "acumos:download",
 "enum": [
 "use",
 "transfer",
 "aggregate",
 "acumos:deploy",
 "acumos:download",
 "modelrunner:predict",
 "modelrunner:train"
]
 }
 },
 "constraint": {
 "$id": "#/properties/permission/items/properties/constraint",
 "type": "array",
 "title": "Action(s) Constraints",
 "items": {
 "$id": "#/properties/permission/items/properties/constraint/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "leftOperand",
 "operator",
 "rightOperand"
],
 "properties": {
 "uid": {
 "type": "string",
 "examples": ["acumos://software-licensor/CompanyB/constraint/<target-uuid>"
]
 },
 "@type": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Constraint",
 "examples": [
 "Constraint"
],
 "pattern": "^(.*)$"
 },
 "leftOperand": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/leftOperand",
 "type": "string",
 "title": "Limit use by",
 "default": "count",
 "enum": [
 "count",
 "date"
],
 "examples": [
 "date"
],
 "pattern": "^(.*)$"
 },
 "operator": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/operator",
 "type": "string",
 "title": "Operator",
 "default": "lt",
 "enum": [
 "eq",
 "gt",
 "gteq",
 "lt",
 "lteq",
 "lum:in"
],
 "examples": [
 "lt"
],
 "pattern": "^(.*)$"
 },
 "rightOperand": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/rightOperand",
 "type": "object",
 "title": "Limited to value",
 "required": [
 "@value"
],
 "properties": {
 "@value": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/rightOperand/properties/@value",
 "type": "string",
 "title": "Limited to",
 "default": "",
 "examples": [
 "2019-12-31"
],
 "pattern": "^(.*)$"
 },
 "@type": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/rightOperand/properties/@type",
 "type": "string",
 "title": "Data format",
 "default": "xsd:integer",
 "enum": [
 "xsd:integer",
 "xsd:date"
],
 "examples": [
 "xsd:date"
],
 "pattern": "^(.*)$"
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "prohibition": {
 "$id": "#/properties/prohibition",
 "type": "array",
 "title": "Prohibited Usage",
 "items": {
 "$id": "#/properties/prohibition/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "action"
],
 "properties": {
 "@type": {
 "$id": "#/properties/prohibition/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Rule",
 "examples": [
 "Rule"
],
 "pattern": "^(.*)$"
 },
 "action": {
 "$id": "#/properties/prohibition/items/properties/action",
 "type": "array",
 "title": "Prohibited Actions",
 "default": ["transfer"],
 "items": {
 "$id": "#/properties/prohibition/items/properties/action/items",
 "type": "string",
 "title": "Prohibited Actions",
 "default": "transfer",
 "enum": [
 "use",
 "transfer",
 "aggregate",
 "acumos:deploy",
 "acumos:download",
 "modelrunner:predict",
 "modelrunner:train"
]
 }
 }
 }
 }
 }
 }
}

License RTU agreement restrictions Json Schema 1.0.1

The schema for the license rtu agreement restrictions
- the subscriber creates:

{
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "$id": "http://example.com/root.json",
 "type": "object",
 "title": "The Root Schema",
 "schemaType": "restrictions",
 "version": "1.0.1",
 "required": [
 "@context",
 "@type",
 "$schema"
],
 "properties": {
 "@context": {
 "$id": "#/properties/@context",
 "type": "object",
 "title": "The @context Schema",
 "required": [
 "@vocab",
 "vcard"
],
 "properties": {
 "@vocab": {
 "$id": "#/properties/@context/properties/@vocab",
 "type": "string",
 "title": "The @vocab Schema",
 "default": "https://www.w3.org/ns/odrl.jsonld#",
 "examples": [
 "https://www.w3.org/ns/odrl.jsonld"
],
 "pattern": "^(.*)$"
 },
 "vcard": {
 "$id": "#/properties/@context/properties/vcard",
 "type": "string",
 "title": "The Vcard Schema",
 "default": "http://www.w3.org/2006/vcard/ns#",
 "examples": [
 "http://www.w3.org/2006/vcard/ns#"
],
 "pattern": "^(.*)$"
 }
 }
 },
 "@type": {
 "$id": "#/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "AgreementRestriction",
 "examples": [
 ""
],
 "pattern": "^(.*)$"
 },
 "$schema": {
 "type": "string",
 "default": "assets/schema/1.0.0/rtu-restrictions.json"
 },
 "uid": {
 "$id": "#/properties/uid",
 "type": "string",
 "title": "Agreement UID",
 "default": "",
 "examples": [
 "acumos://software-licensor/CompanyB/agreement/<target-uuid>"
],
 "pattern": "^(.*)$"
 },
 "assignee": {
 "$id": "#/properties/assignee",
 "type": "object",
 "title": "Subscriber",
 "required": [
 "@type"
],
 "properties": {
 "@type": {
 "$id": "#/properties/assignee/properties/@type",
 "type": "array",
 "title": "The @type Schema",
 "default": ["Party","vcard:Organization"],
 "items": {
 "$id": "#/properties/assignee/properties/@type/items",
 "type": "string",
 "title": "The Items Schema",
 "default": "Party",
 "examples": [
 "Party",
 "vcard:Organization"
],
 "pattern": "^(.*)$"
 }
 },
 "refinement": {
 "$id": "#/properties/assignee/properties/refinement",
 "type": "array",
 "title": "Assignee Refinement(s)",
 "items": {
 "$id": "#/properties/assignee/properties/refinement/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "leftOperand",
 "operator",
 "rightOperand"
],
 "properties": {
 "@type": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Constraint",
 "examples": [
 "Constraint"
],
 "pattern": "^(.*)$"
 },
 "leftOperand": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/leftOperand",
 "type": "string",
 "title": "Refine Assignee by",
 "default": "lum:users",
 "enum": [
 "lum:users"
],
 "examples": [
 "lum:users"
],
 "pattern": "^(.*)$"
 },
 "operator": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/operator",
 "type": "string",
 "title": "Operator",
 "default": "lum:in",
 "enum": [
 "lum:in"
],
 "pattern": "^(.*)$"
 },
 "rightOperand": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/rightOperand",
 "type": "array",
 "title": "Target Identifier(s) *",
 "items": {
 "$id": "#/properties/assignee/properties/refinement/items/properties/rightOperand/items",
 "type": "string",
 "title": "Target Identifier"
 }
 }
 }
 }
 }
 }
 },
 "target": {
 "$id": "#/properties/target",
 "type": "object",
 "title": "Target Asset(s) or Asset Collection(s) ",
 "required": [
 "@type"
],
 "properties": {
 "@type": {
 "$id": "#/properties/target/properties/@type",
 "type": "string",
 "title": "Target",
 "default": "Target",
 "examples": [
 ""
],
 "pattern": "^(.*)$"
 },
 "refinement": {
 "$id": "#/properties/target/items/properties/refinement",
 "type": "array",
 "title": "",
 "items": {
 "$id": "#/properties/target/items/properties/refinement/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "leftOperand",
 "operator",
 "rightOperand"
],
 "properties": {
 "@type": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Constraint",
 "examples": [
 "refinement"
],
 "pattern": "^(.*)$"
 },
 "leftOperand": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/leftOperand",
 "type": "string",
 "title": "Refine Target by",
 "default": "lum:swPersistentId",
 "enum": [
 "lum:swPersistentId",
 "lum:swTagId",
 "lum:swProductName",
 "lum:swCategory",
 "lum:swCatalogId",
 "lum:swCatalogType"
],
 "examples": [
 "lum:swPersistentId"
],
 "pattern": "^(.*)$"
 },
 "operator": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/operator",
 "type": "string",
 "title": "Operator",
 "default": "lum:in",
 "enum": [
 "lum:in"
],
 "examples": [
 "lum:in"
],
 "pattern": "^(.*)$"
 },
 "rightOperand": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/rightOperand",
 "type": "array",
 "title": "Target Identifier(s) *",
 "items": {
 "$id": "#/properties/target/items/properties/refinement/items/properties/rightOperand/items",
 "type": "string",
 "title": "Target Identifier"
 }
 }
 }
 }
 }
 }
 },
 "permission": {
 "$id": "#/properties/permission",
 "type": "array",
 "title": "Permitted Usage",
 "items": {
 "$id": "#/properties/permission/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type"
],
 "properties": {
 "uid": {
 "type": "string",
 "examples": ["acumos://software-licensor/CompanyB/permission/<target-uuid>"
]
 },
 "@type": {
 "$id": "#/properties/permission/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Rule",

 "examples": [
 "Rule"
],
 "pattern": "^(.*)$"
 },
 "action": {
 "$id": "#/properties/permission/items/properties/action",
 "type": "array",
 "title": "Actions",
 "default": [],
 "items": {
 "$id": "#/properties/permission/items/properties/action/items",
 "type": "string",
 "title": "Actions",
 "default": "",
 "enum": [
 "use",
 "transfer",
 "aggregate",
 "acumos:deploy",
 "acumos:download",
 "modelrunner:predict",
 "modelrunner:train"
]
 }
 },
 "constraint": {
 "$id": "#/properties/permission/items/properties/constraint",
 "type": "array",
 "title": "Action(s) Constraints",
 "items": {
 "$id": "#/properties/permission/items/properties/constraint/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "leftOperand",
 "operator",
 "rightOperand"
],
 "properties": {
 "uid": {
 "type": "string",
 "examples": ["acumos://software-licensor/CompanyB/constraint/<target-uuid>"
]
 },
 "@type": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Constraint",
 "examples": [
 "Constraint"
],
 "pattern": "^(.*)$"
 },
 "leftOperand": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/leftOperand",
 "type": "string",
 "title": "Limit use by",
 "default": "count",
 "enum": [
 "count",
 "date"
],
 "examples": [
 "date"
],
 "pattern": "^(.*)$"
 },
 "operator": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/operator",
 "type": "string",
 "title": "Operator",
 "default": "lt",
 "enum": [
 "eq",
 "gt",
 "gteq",
 "lt",
 "lteq",
 "lum:in"
],
 "examples": [
 "lt"
],
 "pattern": "^(.*)$"
 },
 "rightOperand": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/rightOperand",
 "type": "object",
 "title": "Limited to value",
 "required": [
 "@value"
],
 "properties": {
 "@value": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/rightOperand/properties/@value",
 "type": "string",
 "title": "Limited to",
 "default": "",
 "examples": [
 "2019-12-31"
],
 "pattern": "^(.*)$"
 },
 "@type": {
 "$id": "#/properties/permission/items/properties/constraint/items/properties/rightOperand/properties/@type",
 "type": "string",
 "title": "Data format",
 "default": "xsd:integer",
 "enum": [
 "xsd:integer",
 "xsd:date"
],
 "examples": [
 "xsd:date"
],
 "pattern": "^(.*)$"
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "prohibition": {
 "$id": "#/properties/prohibition",
 "type": "array",
 "title": "Prohibited Usage",
 "items": {
 "$id": "#/properties/prohibition/items",
 "type": "object",
 "title": "The Items Schema",
 "required": [
 "@type",
 "action"
],
 "properties": {
 "@type": {
 "$id": "#/properties/prohibition/items/properties/@type",
 "type": "string",
 "title": "The @type Schema",
 "default": "Rule",
 "examples": [
 "Rule"
],
 "pattern": "^(.*)$"
 },
 "action": {
 "$id": "#/properties/prohibition/items/properties/action",
 "type": "array",
 "title": "Prohibited Actions",
 "default": ["transfer"],
 "items": {
 "$id": "#/properties/prohibition/items/properties/action/items",
 "type": "string",
 "title": "Prohibited Actions",
 "default": "transfer",
 "enum": [
 "use",
 "transfer",
 "aggregate",
 "acumos:deploy",
 "acumos:download",
 "modelrunner:predict",
 "modelrunner:train"
]
 }
 }
 }
 }
 }
 }
 }

LicenseProfileEditor

This project was generated with Angular CLI [https://github.com/angular/angular-cli] version 8.1.0.

Setup

Run npm install for installing node modules.

Development server

Run ng serve for a dev server. Navigate to http://localhost:4200/. The app will automatically reload if you change any of the source files.

Code scaffolding

Run ng generate component component-name to generate a new component. You can also use ng generate directive|pipe|service|class|guard|interface|enum|module.

Build

Run ng build to build the project. The build artifacts will be stored in the dist/ directory. Use the --prod flag for a production build.

Running unit tests

Run ng test to execute the unit tests via Karma [https://karma-runner.github.io].

Running end-to-end tests

Run ng e2e to execute the end-to-end tests via Protractor [http://www.protractortest.org/].

Running iframe-license-editor for local testing

	Open Terminal 1 and run npm run start:lite-server - this will start the lite-server on port 3000 and watches the dist/license-profile-editor directory for any changes.

	Open Terminal 2 and run ng build --prod --watch - this will build and copy output under dist folder.

	Once above command is over, Open Terminal 3 and run npm run copy:iframe - this will copy the iframe-license-editor.html to dist\license-profile-editor directory.

	NOTE: you need to re-run copy task, if any changes to iframe-license-editor.html file.

	Open browser and load http://localhost:3000/iframe-license-editor.html document.

Running license-profile-editor as web component for local testing

	Open Terminal 1 and run npm run start:lite-server - this will start the lite-server on port 3000 and watches the dist/license-profile-editor directory for any changes.

	Open Terminal 2 and run npm run build:elements - this will build and copy output under dist folder + copy the web-cmp.html file

	Open browser and load http://localhost:3000/web-cmp.html document.

Further help

To get more help on the Angular CLI use ng help or go check out the Angular CLI README [https://github.com/angular/angular-cli/blob/master/README].

Validation and Security

This component has been deprecrecated, and this repo has been made read-only.
The new security component is located in the security-verification repo.

Validation Security Developer Guide

Scope and Definitions

The Validation Process includes:

	Security Scan - virus scan, vulnerability scan, and threat assessment

	Verification - license compliance and keyword search

The Validation Process may be invoked by publishing a model - a Modeler submits
a request to publish a model from a Private Catalog to a Local or Public one.

Features and Functionality

	Workflow: scan navigation and routing approvals

	Scanner Toolkits: Open Source

	Validation APIs

	Admin GUI Dashboard

	Validation State Management: state assignment to a model and validation
result notification to the requester

Components

The Validation and Security (V&S) is a microservice written in Python and
packaged as Docker images.

Asynchronous REST APIs

The V&S microservice uses the Flask [http://flask.pocoo.org/]
microframework and Flassger [https://github.com/rochacbruno/flasgger] to
implement REST APIs.

validation_client API

The validation_client service listens for communication from the Portal back end.

validation_middleware API

The validation_middleware service sends communications to the Portal back end.

validation_engine API

The validation_engine service is the brains, facilitating the distributed computing of the
business rules. This is where the license checking and keyword search
functionality resides.

Task Management Middleware

Celery [http://www.celeryproject.org/] is used for asynchronous task
management.

Message Queue and Database

Redis [https://redis.io/] is used as the back end for Celery to provide
in-memory data structure storage, caching, and message queue functionality.

Validation Security

	Validation Security Release Notes
	Version 1.26, 30 January 2018

	Validation Security Developer Guide
	Scope and Definitions

	Features and Functionality

	Components

	Validation Security User Guide

	Search Page

Validation Security Release Notes

Version 1.26, 30 January 2018

	Security scan: virus scan, vulnerability scan, threat assessment

	Verification: license compliance, keyword search

Validation Security User Guide

The Validation and Security component is not accessed directly by end users.

Platform Operations, Administration, and Management (OA&M)

Please see the documentation in the “docs” folder.

In the elk-stack folder, there is a JSON file that can be used to import a Dashboard into Kibana.
Please see the [Elastic Stack for Log Analytics] (http://docs.acumos.org/en/latest/submodules/platform-oam/docs/user-guide.html#acumos-elastic-stack-for-log-analytics) guide for how to export/import a Dashboard.

Acumos Logging Library

This repository holds the logging standards for Acumos Boreas Release.
Adopt the MDC Key-Value pair approach and get rid of position specific pipe delimiters.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Platform Operations, Administration, and Management (OA&M) Developer Guide

The OA&M project is for the processes, activities, tools, and standards involved with operating, administering, managing and maintaining the Acumos platform. The project uses Docker, Docker Compose, shell scripts, and third-party tools such as the Kong API and Elastic Stack.

Jira: https://jira.acumos.org project name: platform-oam

Gerrit: git clone https://gerrit.acumos.org/r/platform-oam

Elastic Stack Developer Guide

Acumos ELK stack setup has five main components:

	Elastic Search: Elastic search is a distributed open source search engine based on Apache Lucene. Acumos Elastic search stores all the logs and metrics of Acumos platform host.

	Logstash: Logstash is a data pipeline that helps collect, parse, and analyze a large variety of incoming logs generated across Acumos Platform.

	Kibana: Web interface for searching and visualizing logs.

	Filebeat: Filebeat serves as a log shipping agent, Installed on Acumos platform servers it sends logs to Logstash.

	Metricbeat: Installed on Acumos platform servers. it periodically collects the metrics from the Acumos platform host operating system which includes running components information and ships them to elasticsearch. These metrics are used for monitoring.

ELK-CLient Developer Guide

What is ELK-CLient?

ELASTIC SEARCH

In this Java Project there is one config folder under this folder there is a file elastic search.yml which contains the docker
cluster and other details to run the elastic search component.
There is file in the project directory called as DockerFile in this file we give the configuration information related to
the elastic search is given,like version of the elastic search used.

LOGSTASH

In this Java Project there is one config folder under this folder there is a file logstash.yml which contains the docker
cluster and other details to run the elastic search component.
There is file in the project directory called as DockerFile in this file we give the configuration information related to
the logstah like logstash & maria db version is given.

KIBANA

In this Java Project there is one config folder under this folder there is a file kibana.yml which contains the docker
cluster and other details to run the elastic search component.
There is file in the project directory called as DockerFile in this file we give the configuration information related to
the kibana version command to run the Kibana.yml is given.

METRIC BEAT

In this Java Project there is one config folder under this folder there is a file metricbeat.yml which contains all the
setup related details to run the metric beat components.
There is a file in the project directory called as DockerFile in this file we give the configuration information related to
the elastic search is given,like version of the metric beat used,command to run the metricbeat.yml

ELK-CLient

In this project we have created several Rest API to work on the elastic search.Every API has its own functionality.
Given below Rest API
ElasticSearchServiceController
Apart from the REST API there are the two services files also there SnapshotServiceImpl(Implementation of operation related
to elastic stack snapshot.).Another one is the SnapshotRepositoryServiceImpl(Implementation of operation related to elastic stack repository.)

elk client rest api ,request and responses

ELK Stack Client Back end APIs

	Get all the archive snapshot

	Get all the indices of Elastic stack

	Get all the Elastic search repositories details of Elastic stack

	Get all the Elastic search snapshot

	Archive and Restore elastic stack snapshot

	Create Elastic stack repository

	Create Elastic stack snapshot

	Delete Elastic stack Indices

	Delete Elastic stack repository

	Delete Elastic stack snapshot

	Restore Elastic stack snapshot.

ELK client REST API urls,request and responses

1.Get all the archive snapshot.

We use this rest API method to retrieve all the archived snapshots in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/all/archive

Request Body Example:

 {
 {
"archiveInfo": [
 {
 "date": "string",
 "repositoryName": "string",
 "snapshots": [
 {
 "endTime": "2019-03-28 08-53-41",
 "indices": "metricbeat-6.2.4-2019.04.04",
 "snapShotId": "snapshot-2019-03-28t08-53-41",
 "startTime": "2019-03-28 08-53-41",
 "state": "SUCCESS",
 "status": "Snapshot creation is in progress. Will take some time due size of data' or 'OK"
 }
]
 }
],
"msg": "string",
"status": "string"

	}

	}

Response Body Example:

 {
"archiveInfo": [
 {
 "date": "2019-10-28:22:52:57Z",
 "repositoryName": "28Oct",
 "snapshots": [
 {
 "snapShotId": "28bkup",
 "status": "OK",
 "state": "SUCCESS",
 "startTime": "2019-10-28 22:52:44",
 "endTime": "2019-10-28 22:52:49",
 "indices": [
 "metricbeat-6.2.4-2019.10.26",
 "logstash"
]
 }
]
 },
 {
 "date": "2019-11-01:06:38:47Z",
 "repositoryName": "abc1234",
 "snapshots": [
 {
 "snapShotId": "abc",
 "status": "OK",
 "state": "SUCCESS",
 "startTime": "2019-11-01 06:30:35",
 "endTime": "2019-11-01 06:32:37",
 "indices": [
 "testdb"
]
 },
 {
 "snapShotId": "abc1",
 "status": "OK",
 "state": "SUCCESS",
 "startTime": "2019-11-01 06:38:43",
 "endTime": "2019-11-01 06:38:47",
 "indices": [
 "metricbeat-6.2.4-2019.10.26"
]
 }
]
 }
],
"msg": "Action:INFO done",
"status": "success"

}

2. Get all the indices of Elastic stack.

We use this rest API method to get all the indices of Elastic stack in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/all/indices

Request Body Example:

 {
 {
"indices": [
 "string"
]

	}

	}

Response Body Example:

 {
"indices": [
 "metricbeat-6.2.4-2019.10.27",
 "metricbeat-6.2.4-2019.10.25",
 "metricbeat-6.2.4-2019.10.29",
 "metricbeat-6.2.4-2019.11.05",
 "logstash",
 "metricbeat-6.2.4-2019.11.02",
 "metricbeat-6.2.4-2019.10.31",
 "metricbeat-6.2.4-2019.11.04",
 "metricbeat-6.2.4-2019.11.03",
 "metricbeat-6.2.4-2019.11.06",
 "testdb",
 "metricbeat-6.2.4-2019.10.30",
 "metricbeat-6.2.4-2019.11.01",
 "metricbeat-6.2.4-2019.10.28",
 "metricbeat-6.2.4-2019.10.24",
 "metricbeat-6.2.4-2019.10.26"
]

}

3.Get all the elastic search repositories details of Elastic stack.

We use this rest API method to retrieve all the repositories in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/all/repositories

Request Body Example:

 {
 {
"repositories": [
 {
 "name": "logstash",
 "settings": {
 "additionalProp1": {},
 "additionalProp2": {},
 "additionalProp3": {}
 },
 "type": "fs"
 }
]

	}

	}

Response Body Example:

 {
"repositories": [
 {
 "name": "28Oct",
 "type": "fs",
 "settings": {
 "compress": "true",
 "location": "28Oct"
 }
 },
 {
 "name": "abc1234",
 "type": "fs",
 "settings": {
 "compress": "true",
 "location": "abc1234"
 }
 },
 {
 "name": "logstash",
 "type": "fs",
 "settings": {
 "compress": "true",
 "location": "logstash"
 }
 }
]

}

4.Get all the elastic search snapshot.

We use this rest API method to retrieve all the snapshots from the repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/all/snapshot

Request Body Example:

 {
 {
"elasticsearchSnapshots": [
 {
 "repositoryName": "logstash",
 "snapshots": [
 {
 "endTime": "2019-03-28 08-53-41",
 "indices": "metricbeat-6.2.4-2019.04.04",
 "snapShotId": "snapshot-2019-03-28t08-53-41",
 "startTime": "2019-03-28 08-53-41",
 "state": "SUCCESS",
 "status": "Snapshot creation is in progress. Will take some time due size of data' or 'OK"
 }
]
 }
]

	}

	}

Response Body Example:

 {
"elasticsearchSnapshots": []

}

5.Archive and Restore elastic stack snapshot.

We use this rest API method to Archive and Restore elastic stack snapshot from elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/archive/action

Request Body Example:

 {
 {
"action": "archive/restore/delete",
"repositoryName": [
 "string"
]

	}

	}

Response Body Example:

 {
"archiveInfo": null,
"msg": "",
"status": "fail"
 }

6.Create Elastic stack repository.

We use this rest API method to create a new repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/create/repositories

Request Body Example:

 {
 {
"nodeTimeout": "string",
"repositoryName": "logstash"

	}

	}

Response Body Example:

{
 can't parse JSON. Raw result:

 false | RepositoryName already exist
 }

7.Create elastic stack snapshot.

We use this rest API method to create a new snapshot in a repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/create/snapshot

Request Body Example:

 {
 {
"createSnapshots": [
 {
 "indices": [
 "string"
],
 "repositoryName": "string",
 "snapshotName": "string"
 }
],
"nodeTimeout": 1

	}

	}

Response Body Example:

 {
"timestamp": "2019-11-06T13:28:01.986+0000",
"message": "Elasticsearch exception [type=index_not_found_exception, reason=no such index]",
"details": "uri=/elkclient/create/snapshot"

}

8.Delete elastic stack Indices.

We use this rest API method to delete the indices from a repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/delete/indices

Request Body Example:

 {
 {
"indices": [
 "string"
]

	}

	}

Response Body Example:

 {
"timestamp": "2019-11-06T13:25:38.500+0000",
"message": "Elasticsearch exception [type=index_not_found_exception, reason=no such index]",
"details": "uri=/elkclient/delete/indices"
 }

9.Delete Elastic stack repository.

We use this rest API method to delete the repository from a repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/delete/repositories

Request Body Example:

 {
 {
"nodeTimeout": "string",
"repositoryName": "logstash"

	}

	}

Response Body Example:

 {
"timestamp": "2019-11-06T13:25:06.117+0000",
"message": "failed to parse setting [DeleteRepositoryRequest.masterNodeTimeout] with value [string] as a time value: unit is missing or unrecognized",
"details": "uri=/elkclient/delete/repositories"
 }

10.Delete elastic stack snapshot.

We use this rest API method to delete a snapshot from a repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/delete/snapshot

Request Body Example:

 {
 {
"deleteSnapshots": [
 {
 "repositoryName": "logstash",
 "snapShotId": "snapshot-2019-03-28t08-53-41"
 }
],
"nodeTimeout": 1

	}

	}

Response Body Example:

 {
"timestamp": "2019-11-06T13:24:24.664+0000",
"message": "Elasticsearch exception [type=snapshot_missing_exception, reason=[logstash:snapshot-2019-03-28t08-53-41] is missing]",
"details": "uri=/elkclient/delete/snapshot"
 }

11.Restore elastic stack snapshot.

We use this rest API method to restore the snapshot from a repository in elastic search.

http://cognita-dev1-logcollector.eastus.cloudapp.azure.com:9600/elkclient/swagger-ui.html#/elastic-search-service-controller/restore/snapshot

Request Body Example:

 {
 {
"nodeTimeout": 1,
"repositoryName": "logstash",
"restoreSnapshots": [
 {
 "snapshotName": "string"
 }
]

	}

	}

Response Body Example:

 {
"timestamp": "2019-11-06T13:20:08.023+0000",
"message": "Elasticsearch exception [type=snapshot_restore_exception, reason=[logstash:string] snapshot does not exist]",
"details": "uri=/elkclient/restore/snapshot"
 }

Logging Library Developer Guide

What is Logging Library?

Logging Library has the following given below features :

There are three .java(ACUMOSLogConstants,LoggingConstant.java and LogConfig.java) files.

1.In the ACUMOSLogConstants.java following given below features are there.
Marker
====================
Marker is a spacial class has the given below features.

Java logging frameworks allow you to filter log messages based on the logger name and the message log level.You can tag your
log messages with user-defined markers in order to filter them later on.

Markers are named objects used to enrich log statements. Conforming logging system Implementations of SLF4J determine how
information conveyed by markers are used, if at all. In particular, many conforming logging systems ignore marker data.
For this example, we will be using Logback as logger with SLF4J.Logback was conceived and created as a successor to Log4J.
Logback supports markers for the logging calls. These Markers allow association of tags with log statements.

Marker has following given below attributes as INVOKE,INVOKE_RETURN,INVOKE_SYNCHRONOUS,INVOKE_ASYNCHRONOUS,ENTRY & EXIT
,User can select any of the attribute as per his choice.

MDC

The MDC manages contextual information on a per thread basis. Typically, while starting to service a new client request,
the developer will insert pertinent contextual information, such as the client id, client’s IP address, request parameters
etc. into the MDC.Logback components, if appropriately configured, will automatically include this information in each log
entry.

MDC in Log4j allows us to fill a map-like structure with pieces of information that are accessible to the appender when
the log message is actually written.The MDC structure is internally attached to the executing thread in the same way a
ThreadLocal variable would be.

And so, the high level idea is:to fill the MDC with pieces of information that we want to make available to the appender
then log a message and finally, clear the MDC.

Most server applications need to handle multiple clients simultaneously. Typically, the server application allocates a
separate thread to handle a single client request. In such a system different threads handle different client requests
in parallel and the log messages written by the threads interleave. In order to differentiate log messages from different
threads from each other a diagnostic context comes in handy.Diagnostic context is a map associated with a particular thread.
Each thread maintains its own map. You can store arbitrary key-value pairs in the map and in turn lay out your log messages
to include the values from the map.

MDC has following given below attributes as REQUEST_ID,TARGET_SERVICE_NAME,TARGET_ENTITY,CLIENT_IP_ADDRESS,SERVER_FQDN,
RESPONSE_CODE,RESPONSE_DESCRIPTION,RESPONSE_SEVERITY & STATUS_CODE,User can select any of the attribute as per his choice.

We have two (1- MDC, and 2 - MDCs)
New MDCs are added to serve more better way for ResponseStatusMDC and ResponseSeverityMDC of MDCs.
It will be useful in logging the thread requests/responses.
For more information we have added thread specific ResponseStatusMDC which has three attributes as MDC_COMPLETED, MDC_ERROR
& MDC_INPROGRESS, user can select one of these attributes in logging statements like below:
public enum ResponseStatusMDC {

MDC_COMPLETED,
MDC_ERROR,
MDC_INPROGRESS

}
Also for thread specific MDC had added ResponseSeverityMDC which has six attributes as MDC_INFO, MDC_ERROR, MDC_TRACE,

	MDC_DEBUG, MDC_WARN, MDC_FATAL.user can select one of these attributes in logging statements.

	public enum ResponseSeverityMDC

{ MDC_INFO, MDC_ERROR, MDC_TRACE, MDC_DEBUG, MDC_WARN, MDC_FATAL }

Implementation of MDC

How MDC are called externally from other project through the method setEnteringMDCs in LogConfig.java.
MDC is used for thread specific request so we just call this method setEnteringMDCs().

MDC.put(MDCs.REQUEST_ID, requestId);
MDC.put(MDCs.TARGET_ENTITY, targetEntry);
MDC.put(MDCs.TARGET_SERVICE_NAME, targetService);
MDC.put(MDCs.CLIENT_IP_ADDRESS, ip);
MDC.put(MDCs.SERVER_FQDN, hostname);
MDC.put(MDCs.USER, user);

In this method setEnteringMDCs() we write the given below lines for the specific thread.

Also whatever parameters we pass as responseCode & responseSeverity in
setEnteringMDCs(String targetEntry,String targetService,String user,String responseCode,String responseSeverity) method.

There are conditions according to whatever ResponseStatusMDC & ResponseSeverityMDC you want to implement in logging statements
that will be printed in your logging statements with the help of given below statements as :

For example if you pass responseCode as MDC_COMPLETED then given below lines will be printed in your logging statements.
MDC.put(MDCs.RESPONSE_DESCRIPTION, MDCs.ResponseStatusMDC.MDC_COMPLETED.toString());

And For example if you pass responseSeverity as MDC_INFO then given below lines will be printed in your logging statements.
MDC.put(MDCs.RESPONSE_SEVERITY, MDCs.ResponseSeverityMDC.MDC_INFO.toString());

Header

In this class there is one attribute as REQUEST_ID whose value is X-ACUMOS-RequestID.

ResponseStatus enumeration

In this enumeration there are three types of Response Status as COMPLETED,ERROR,INPROGRESS.The end user can choose any of the
response attribute as per his choice.

ResponseSeverity enumeration:

In this enumeration there are five types of Response Severity is given as :INFO,ERROR,TRACE,DEBUG,WARN,FATAL.The end user can
choose any of the response severity attribute as per his choice.

InvocationMode enumeration

Invocation mode can be SYNCHRONOUS or ASYNCHRONOUS as per the user requirement.

2.Another File is the LogConfig.java

In this file there is a static method as LogConfig.setEnteringMDCs(String targetEntry,String targetService,String user,String responseCode,String responseSeverity)
The user puts the entries in HashMap in the given below format.

MDC.put(MDCs.REQUEST_ID, requestId);
MDC.put(MDCs.TARGET_ENTITY, targetEntry);
MDC.put(MDCs.TARGET_SERVICE_NAME, targetService);
MDC.put(MDCs.CLIENT_IP_ADDRESS, ip);
MDC.put(MDCs.SERVER_FQDN, hostname);
MDC.put(MDCs.USER, user);

Where responseCode & responseSeverity the user will pass whatever thread specific ResponseStatusMDC & ResponseSeverityMDC he wants
to implement in the logging statements.

MDC.put(MDCs.RESPONSE_DESCRIPTION, MDCs.ResponseStatusMDC.MDC_COMPLETED.toString());
MDC.put(MDCs.RESPONSE_SEVERITY, MDCs.ResponseSeverityMDC.MDC_INFO.toString());

Here the targetEntry is the maven project module name for example in maven project elk-client the targetEntry name is
elk-client.

Here the targetEntry is end point url of the rest api method which we want to access.For example to fetch all the indices of
elastic search we define end point url of the reat api as /all/indices in the ElkClientConstants.GET_ALL_INDICES and
define GET_ALL_INDICES whose value is /all/indices in the ElkClientConstants.java file.

Here the user is the who login into the web application and accessing the particular maven project module.

3.Last File is the LoggingConstant.java

All the variables used in the logging-library is kept here as a constant or utility reusable file.

Testing Logging Library Developer Guide

What is Logging Library Testing Rest API?

1.Rest API Test.

We have created logging-rest-library project only for the developers to test the logging-library in local,logging-rest-library will not be deployed on the server.
logging-rest-library is meant only for the developers to test logging-library in their system locally who does not have the access for the dev environment, and need to understand the logging library.
In this project we are importing the logging-library jar so we will import all the functionality & various features of the logging-library project through the logging-library jar.
We have created some Rest API methods in the test project logging-rest-library in that we are implementing the different different
features of the logging-library project.

How to implement the Logging Library jar?

To implement the Logging Library jar,there are some few specific given below guidelines which the developer should use while
implementing the logging-library jar.

	1.In the starting of the implemented REST API method first use the line from the Logging Library jar as

	LogConfig.setEnteringMDCs(String targetEntry, String targetService, String user, String responseCode,String responseSeverity)

Where the targetEntry is your maven module name,targetService is the REST API url of the exposed method,user is who has login
into the system,responseCode is the ResponseStatusMDC and responseSeverity is the ResponseSeverityMDC,you can choose any values
out of the values given in the ResponseStatusMDC & ResponseSeverityMDC.

2.Then use the particular log levels like debug,error,info,fatal,warn etc whatever you want to implement in your logging statements.

3.Suppose you want to enrich the logs with some particular Marker then for this first initialize the MarkerFactory.getIMarkerFactory();
Then use the line as logger.error(MarkerFactory.getMarker(markerInputVal), “This is a serious an User Input Marker error requiring the admin’s attention”,new Exception(“Just testing”));
where markerInputVal is the particular marker which you want to use in your application.

4.In the end of the implemented REST API method use the line LogConfig.clearMDCDetails() to clear all the log MDC details.

Logback.xml

We have defined various appenders while help in creating the log statements.With the help of these appenders we can print
the logs as per user requirement.

Steps to include logging-library.jar in your project.

Logging Library is provided in the form of as a jar,Suppose we want to add this logging-library.jar to a new project then given
below are the steps to in guide this jar and use in your project.

	1.Add the given below entry in dependency section of the pom.xml of your new project.

	
	<dependency>

	<groupId>org.acumos.platform-oam</groupId>
<artifactId>logging-library</artifactId>
<version>4.0.2-SNAPSHOT</version>

</dependency>

2.Publish the logging-library.jar into the maven repository.

3.Now Suppose you want to add logging related statements in your java files then just you need to write the logger.Debug_levels
as per your requirement, like debug,error,fatal,info,warn.

4.Whatever logging functionality you want in your logging statements as per your requirement,you can just import from the
classes files of the jar.

You will import the appropriate,required and use it your project as per the end user requirement.To see how you can use the
logging-library library ,you can refer to the above section Logging Library Developer Guide.

Developer Guide for the Elastic Client Service

This microservice provides Backup & Restore services to ELK components in the
Acumos machine-learning platform. It is built using the Spring-Boot platform.
This document primarily offers guidance for server developers.

Supported Methods and Objects

The microservice endpoints and objects are documented using Swagger. A running
server documents itself at a URL like the following, but consult the server’s
configuration for the exact port number (e.g., “9006”) and context root
(e.g., “elkclient”) to use:

http://localhost:9006/elkclient/swagger-ui.html

Building and Packaging

As of this writing the build (continuous integration) process is fully automated
in the Linux Foundation system using Gerrit and Jenkins. This section describes
how to perform local builds for development and testing.

Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central to download required jars

Use maven to build and package the service into a single “fat” jar using this
command:

mvn clean install

Development and Local Testing

This section provides information for running the server in a
production/development environment, assuming that the application is packaged
into a docker container for deployment.

Prerequisites

	Java version 1.8 in the runtime environment; i.e., installed in the
docker container

	The username/password combination to access the database

	The Nexus username/password combination to access.

Configuring the system

At runtime in production deployments, in addition to using a configuration file,
environment-specific configuration properties should be supplied using a block of
JSON in an environment variable called SPRING_APPLICATION_JSON. This can easily
be done using the deployment templates. The default SV Scanning templates
for use with docker-compose.

Get the platform-oam repository
$ git clone https://gerrit.acumos.org/r/platform-oam
Select the Boreas branch
cd platform-oam
git checkout boreas
See what environment configuration options are supported
cat platform-oam/acumos-elk-env.sh
See the docker-compose deployment template with references to options
cat platform-oam/docker-compose.yml

Launch Instructions

To run the elkclient service in a local docker environment:

	Build an image locally or use an image in the Acumos Nexus repositories.

	Update environment variables as referenced by the template, either
directly or in acumos-elk-env.sh:

	ACUMOS_ELK_HOST: hostname Acumos elasticsearch.

	ELK_CLIENT_CRONSCHEDULE_CREATESNAPSHOT_TIME: Elk client schedule cron job for snapshot creation

	Use the docker-compose process that applies to your environment, e.g.

	for a standalone docker container:

docker-compose up -d elk-client

ELK Client Service Server API

This page provides a static view of the methods in the elkclient server. Please note that a
running ELK Client server provides a more useful version of this information. View the details
at a URL like the following, but check the server configuration for the exact port number
(e.g., “9006”) and context root (e.g., “elkclient”) to use:

http://localhost:9006/elkclient/swagger-ui.html

Backup & Restore

	This section list features provided in this services.

	
	Get all the indices present in elastic search.

	Get all the repositories information present in elastic search.

	Get all the snapshot present in elastic search.

	Create elastic search repository.

	Create elastic search snapshot.

	Delete elastic search Indices.

	Delete elastic search repository.

	Delete elastic search snapshot.

	Restore elastic search snapshot.

ELK Client APIs in Clio Release

This section lists the methods in version 3.0.0.

elastic-search-service-controller

POST /restore/snapshot

Restore elasticstack snapshot.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	elkRestoreSnapshotRequest

	body

	elkRestoreSnapshotRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /create/snapshot

Create elasticstack snapshot.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	createSnapshotRequest

	body

	createSnapshotRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /create/repositories

Create Elasticstack repository.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	elkCreateRepositoriesRequest

	body

	elkCreateRepositoriesRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /all/archive

Ger all the archive snapshot.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /archive/action

Archive and Restore elasticstack snapshot.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	archiveRequest

	body

	archiveRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /all/snapshot

Get all the elasticsearch snapshot.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /delete/indices

Delete elasticstack Indices.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	elasticStackIndices

	body

	elasticStackIndices

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /delete/snapshot

Delete elasticstack snapshot.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	elkDeleteSnapshotRequest

	body

	elkDeleteSnapshotRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /all/repositories

Get all the elasticsearch repositories details of Elasticstack.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /delete/repositories

Delete Elasticstack repository.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	elkDeleteRepositoriesRequest

	body

	elkDeleteRepositoriesRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /all/indices

Get all the indices of Elasticstack.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

Platform Operations, Administration, and Management (OA&M)

Contents:

	Platform Operations, Administration, and Management (OA&M) Release Notes
	Version 4.0.3, 02 June 2020

	Version 4.0.2, 17 March 2020

	Version 4.0.1, 14 February 2020

	Version 3.0.7, 04 February 2020

	Version 3.0.6, 31 January 2020

	Version 3.0.5, 20 December 2019

	Version 3.0.4, 24 September 2019

	Version 3.0.3, 03 September 2019

	Version 3.0.2, 21 August 2019

	Version 3.0.1, 20 August 2019

	Version 2.2.4, 01 August 2019

	Version 2.2.3, 11 July 2019

	Version 2.2.2, 18 April 2019

	Version 2.2.1, 17 April 2019

	Version 2.0.9, 16 April 2019

	Version 2.0.8, 29 March 2019

	Version 2.0.7, 07 February 2019

	Version 2.0.4, 24 January 2019

	Version 2.0.0, 18 December 2018

	Version 1.18.2, 1 October 2018

	Version 1.18.1, 14 September 2018

	Version 1.18.0, 5 September 2018

	Version 1.2.0, 15 August 2018

	Version 1.1.0, 27 June 2018

	Version 1.0.0, 7 May 2018

	Version 0.1, 15 February 2018

	Platform Operations, Administration, and Management (OA&M) Developer Guide

	Elastic Stack Developer Guide

	ELK-CLient Developer Guide
	What is ELK-CLient?

	ELASTIC SEARCH

	LOGSTASH

	KIBANA

	METRIC BEAT

	ELK-CLient

	elk client rest api ,request and responses
	ELK Stack Client Back end APIs

	ELK client REST API urls,request and responses
	1.Get all the archive snapshot.

	2. Get all the indices of Elastic stack.

	3.Get all the elastic search repositories details of Elastic stack.

	4.Get all the elastic search snapshot.

	5.Archive and Restore elastic stack snapshot.

	6.Create Elastic stack repository.

	7.Create elastic stack snapshot.

	8.Delete elastic stack Indices.

	9.Delete Elastic stack repository.

	10.Delete elastic stack snapshot.

	11.Restore elastic stack snapshot.

	Logging Library Developer Guide
	What is Logging Library?

	MDC

	Implementation of MDC

	Header

	ResponseStatus enumeration

	ResponseSeverity enumeration:

	InvocationMode enumeration

	2.Another File is the LogConfig.java

	3.Last File is the LoggingConstant.java

	Testing Logging Library Developer Guide
	What is Logging Library Testing Rest API?

	1.Rest API Test.

	How to implement the Logging Library jar?

	Logback.xml

	Steps to include logging-library.jar in your project.

	Platform Operations, Administration, and Management (OA&M) User Guide
	Acumos Elastic Stack for Log Analytics

	Developer Guide for the Elastic Client Service
	Supported Methods and Objects

	Building and Packaging

	Development and Local Testing

	ELK Client Service Server API
	Backup & Restore

	ELK Client APIs in Clio Release

	Search Page

Platform Operations, Administration, and Management (OA&M) Release Notes

Version 4.0.3, 02 June 2020

	ACUMOS-4128 IST| Filebeat image is not getting Up after deploying the build

	ACUMOS-4058 Upgrade to the ELK stack components to v.7.6.0

	ACUMOS-4059 Upgrade of Kibana to v.6.8.6

	ACUMOS-4060 Upgrade Elastic Search to v.6.8.6

	ACUMOS-4061 Upgrade of Logstash to v.6.8.6

	ACUMOS-3806 ELK stack enhancements

Version 4.0.2, 17 March 2020

	ACUMOS-3983 Upgrade of Kibana to v.6.8.6

	ACUMOS-3984 Upgrade Elastic Search to v.6.8.6

	ACUMOS-3989 Upgrade of Logstash to v.6.8.6

	ACUMOS-3982 Upgrade to the ELK stack components to v.6.8.6

	ACUMOS-3950 <IST2><Portal Marketplace><Maintained Backup Logs>: Appropriate validation message not displayed while creating duplicate backup and repository

Version 4.0.1, 14 February 2020

	ACUMOS-3807 ELK Client enhancements

	ACUMOS-3753 <IST> Need more details on Where archived and restored logs are stored in application

	ACUMOS-3720 <IST2><Marketplace/OA&M><Maintained Backup Logs> After restoring, the records are not disappearing from Archived Logs page

	ACUMOS-3970 Junits for Logging

Version 3.0.7, 04 February 2020

	ACUMOS-3882 remove logback.xml file from logging-demo jar library

	ACUMOS-3890 Remove the “demo” from logging library

	ACUMOS-3585 Rest API to test for logging standard

	ACUMOS-3805 Logging library enhancements

Version 3.0.6, 31 January 2020

	ACUMOS-3918 <IST2><Platform OA&M>Getting 503 error while restoring repository, eventhough the repository is getting restored

Version 3.0.5, 20 December 2019

	Platform OAM - Upgrade to CDS-3.0.5 (ACUMOS-3632 [https://jira.acumos.org/browse/ACUMOS-3632])

	Platform OAM - Upgrade to CDS-3.0.5 (ACUMOS-3564 [https://jira.acumos.org/browse/ACUMOS-3564])

	Platform OAM - Upgrade to CDS-3.0.5 (ACUMOS-3070 [https://jira.acumos.org/browse/ACUMOS-3070])

Version 3.0.4, 24 September 2019

	Platform OAM - Upgrade to CDS-3.0.0 (ACUMOS-3378 [https://jira.acumos.org/browse/ACUMOS-3378])

Version 3.0.3, 03 September 2019

	Repository Name in the GET all archive API (ACUMOS-3378 [https://jira.acumos.org/browse/ACUMOS-3378])

	Delete snapshot API (ACUMOS-3379 [https://jira.acumos.org/browse/ACUMOS-3379])

	OA & M - Java Code Upgrade to Java 11 or 12 (ACUMOS-3325 [https://jira.acumos.org/browse/ACUMOS-3325])

Version 3.0.2, 21 August 2019

	Create Snapshot API (ACUMOS-3347 [https://jira.acumos.org/browse/ACUMOS-3347])

Version 3.0.1, 20 August 2019

	Archival API is required (ACUMOS-3301 [https://jira.acumos.org/browse/ACUMOS-3301])

	Platform maintenance support - archival (ACUMOS-2704 [https://jira.acumos.org/browse/ACUMOS-2704])

	placeholder (ACUMOS-2705 [https://jira.acumos.org/browse/ACUMOS-2705])

	OA&M backlog (ACUMOS-2703 [https://jira.acumos.org/browse/ACUMOS-2703])

Version 2.2.4, 01 August 2019

	Update docs for elk-client (ACUMOS-3308 [https://jira.acumos.org/browse/ACUMOS-3308])

Version 2.2.3, 11 July 2019

	Platform maintenance support - archival (ACUMOS-2704 [https://jira.acumos.org/browse/ACUMOS-2704])

Version 2.2.2, 18 April 2019

	Metricbeat index archival/purging (ACUMOS-2065 [https://jira.acumos.org/browse/ACUMOS-2065])

	Platform maintenance support (ACUMOS-2004 [https://jira.acumos.org/browse/ACUMOS-2004])

	Acumos Platform > Logstash to send model usage logs to “model-usage-logs” index instead of “logstash” index (ACUMOS-2686 [https://jira.acumos.org/browse/ACUMOS-2686])

Version 2.2.1, 17 April 2019

	Update logstash queries for CDS version 2.2.1 (ACUMOS-2765 [https://jira.acumos.org/browse/ACUMOS-2765])

Version 2.0.9, 16 April 2019

	IST- elastic search fails to run (ACUMOS-2747 [https://jira.acumos.org/browse/ACUMOS-2747])

Version 2.0.8, 29 March 2019

	Add implementation for Platform maintenance support (ACUMOS-2343 [https://jira.acumos.org/browse/ACUMOS-2343])

	Add implementation for Platform maintenance support - backend (ACUMOS-2344 [https://jira.acumos.org/browse/ACUMOS-2344])

Version 2.0.7, 07 February 2019

	Add implementation for mandatory MDC default value in logging POC and bump ELK stack version to 2.0.7(ACUMOS-2458 [https://jira.acumos.org/browse/ACUMOS-2458])

Version 2.0.4, 24 January 2019

	Update logstash queries for database version 2.0.4 (ACUMOS-2403 [https://jira.acumos.org/browse/ACUMOS-2403])

Version 2.0.0, 18 December 2018

	kibana dashboard verbose logstash logs are crashing the log server (ACUMOS-2151 [https://jira.acumos.org/browse/ACUMOS-2151])

	Upgrade ELK ,Filebeat, Metricbeat to version 6.x (ACUMOS-1999 [https://jira.acumos.org/browse/ACUMOS-1999])

Version 1.18.2, 1 October 2018

	Updated ELK, filebeat and metricbeat image version to match with CDS 1.18.2 version (ACUMOS-1808).

Version 1.18.1, 14 September 2018

	Updated ELK, filebeat and metricbeat as per standard log specification (ACUMOS-1091).

Version 1.18.0, 5 September 2018

	Updated ELK, filebeat and metricbeat image version to match with database 1.18 version (ACUMOS-1695).

Version 1.2.0, 15 August 2018

	Updated ELK queries to match with database 1.17 version

Version 1.1.0, 27 June 2018

	Increasing the reload interval for metricbeat

Version 1.0.0, 7 May 2018

	Increase the ES,LS memory size and made it configurable (ACUMOS-669)

	Added docker volume to persist acumos elasticsearch data (ACUMOS-669)

	Added Metricbeat setup, it collects metrics of CPU, Memory, docker container information of acumos platform (ACUMOS-669)

	Updated Elastic Stack installation steps

Version 0.1, 15 February 2018

	Elastic Stack installation and documentation

==================================
Logging Library Developer Guide

What is Logging Library?

Logging Library has the following given below features :

There are two .java(ACUMOSLogConstants and LogConfig.java) files and one logback.xml file is there.

1.In the ACUMOSLogConstants.java following given below features are there.
Marker

Marker is a spacial class has the given below features.

Java logging frameworks allow you to filter log messages based on the logger name and the message log level.You can tag your
log messages with user-defined markers in order to filter them later on.

Markers are named objects used to enrich log statements. Conforming logging system Implementations of SLF4J determine how
information conveyed by markers are used, if at all. In particular, many conforming logging systems ignore marker data.
For this example, we will be using Logback as logger with SLF4J.Logback was conceived and created as a successor to Log4J.
Logback supports markers for the logging calls. These Markers allow association of tags with log statements.

Marker has following given below attributes as INVOKE,INVOKE_RETURN,INVOKE_SYNCHRONOUS,INVOKE_ASYNCHRONOUS,ENTRY & EXIT
,User can select any of the attribute as per his choice.

MDC

The MDC manages contextual information on a per thread basis. Typically, while starting to service a new client request,
the developer will insert pertinent contextual information, such as the client id, client’s IP address, request parameters
etc. into the MDC.Logback components, if appropriately configured, will automatically include this information in each log
entry.

MDC in Log4j allows us to fill a map-like structure with pieces of information that are accessible to the appender when
the log message is actually written.The MDC structure is internally attached to the executing thread in the same way a
ThreadLocal variable would be.

And so, the high level idea is:to fill the MDC with pieces of information that we want to make available to the appender
then log a message and finally, clear the MDC.

Most server applications need to handle multiple clients simultaneously. Typically, the server application allocates a
separate thread to handle a single client request. In such a system different threads handle different client requests
in parallel and the log messages written by the threads interleave. In order to differentiate log messages from different
threads from each other a diagnostic context comes in handy.Diagnostic context is a map associated with a particular thread.
Each thread maintains its own map. You can store arbitrary key-value pairs in the map and in turn lay out your log messages
to include the values from the map.

MDC has following given below attributes as REQUEST_ID,TARGET_SERVICE_NAME,TARGET_ENTITY,CLIENT_IP_ADDRESS,SERVER_FQDN,
RESPONSE_CODE,RESPONSE_DESCRIPTION,RESPONSE_SEVERITY & STATUS_CODE,User can select any of the attribute as per his choice.

We have two (1- MDC, and 2 - MDCs)
New MDCs are added to serve more better way for ResponseStatusMDC and ResponseSeverityMDC of MDCs.
It will be useful in logging the thread requests/responses.
For more information we have added thread specific ResponseStatusMDC which has three attributes as MDC_COMPLETED, MDC_ERROR
& MDC_INPROGRESS, user can select one of these attributes in logging statements like below:
public enum ResponseStatusMDC {

 MDC_COMPLETED,
 MDC_ERROR,
 MDC_INPROGRESS

}
Also for thread specific MDC had added ResponseSeverityMDC which has six attributes as MDC_INFO, MDC_ERROR, MDC_TRACE,
MDC_DEBUG, MDC_WARN, MDC_FATAL.user can select one of these attributes in logging statements.
public enum ResponseSeverityMDC
{ MDC_INFO, MDC_ERROR, MDC_TRACE, MDC_DEBUG, MDC_WARN, MDC_FATAL }

Implementation of MDC

How MDC are called externally from other project through the method setEnteringMDCs in LogConfig.java.
MDC is used for thread specific request so we just call this method setEnteringMDCs().

	MDC.put(MDCs.REQUEST_ID, requestId);		
	MDC.put(MDCs.TARGET_ENTITY, targetEntry);
	MDC.put(MDCs.TARGET_SERVICE_NAME, targetService);
	MDC.put(MDCs.CLIENT_IP_ADDRESS, ip);
	MDC.put(MDCs.SERVER_FQDN, hostname);
	MDC.put(MDCs.USER, user);

In this method setEnteringMDCs() we write the given below lines for the specific thread.

Also whatever parameters we pass as responseCode & responseSeverity in
setEnteringMDCs(String targetEntry,String targetService,String user,String responseCode,String responseSeverity) method.

There are conditions according to whatever ResponseStatusMDC & ResponseSeverityMDC you want to implement in logging statements
that will be printed in your logging statements with the help of given below statements as :

For example if you pass responseCode as MDC_COMPLETED then given below lines will be printed in your logging statements.
MDC.put(MDCs.RESPONSE_DESCRIPTION, MDCs.ResponseStatusMDC.MDC_COMPLETED.toString());

And For example if you pass responseSeverity as MDC_INFO then given below lines will be printed in your logging statements.
MDC.put(MDCs.RESPONSE_SEVERITY, MDCs.ResponseSeverityMDC.MDC_INFO.toString());

Header

In this class there is one attribute as REQUEST_ID whose value is X-ACUMOS-RequestID.

ResponseStatus enumeration

In this enumeration there are three types of Response Status as COMPLETED,ERROR,INPROGRESS.The end user can choose any of the
response attribute as per his choice.

ResponseSeverity enumeration:

In this enumeration there are five types of Response Severity is given as :INFO,ERROR,TRACE,DEBUG,WARN,FATAL.The end user can
choose any of the response severity attribute as per his choice.

InvocationMode enumeration

Invocation mode can be SYNCHRONOUS or ASYNCHRONOUS as per the user requirement.

2.Another File is the LogConfig.java

In this file there is a static method as LogConfig.setEnteringMDCs(String targetEntry,String targetService,String user,String responseCode,String responseSeverity)
The user puts the entries in HashMap in the given below format.

	MDC.put(MDCs.REQUEST_ID, requestId);		
	MDC.put(MDCs.TARGET_ENTITY, targetEntry);
	MDC.put(MDCs.TARGET_SERVICE_NAME, targetService);
	MDC.put(MDCs.CLIENT_IP_ADDRESS, ip);
	MDC.put(MDCs.SERVER_FQDN, hostname);
	MDC.put(MDCs.USER, user);

Where responseCode & responseSeverity the user will pass whatever thread specific ResponseStatusMDC	& ResponseSeverityMDC he wants
to implement in the logging statements.	
MDC.put(MDCs.RESPONSE_DESCRIPTION, MDCs.ResponseStatusMDC.MDC_COMPLETED.toString());
MDC.put(MDCs.RESPONSE_SEVERITY, MDCs.ResponseSeverityMDC.MDC_INFO.toString());

Here the targetEntry is the maven project module name for example in maven project elk-client the targetEntry name is
elk-client.

Here the targetEntry is end point url of the rest api method which we want to access.For example to fetch all the indices of
elastic search we define end point url of the reat api as /all/indices in the ElkClientConstants.GET_ALL_INDICES and
define GET_ALL_INDICES whose value is /all/indices in the ElkClientConstants.java file.

Here the user is the who login into the web application and accessing the particular maven project module.

3.Logback.xml

We have defined various appenders while help in creating the log statements.With the help of these appenders we can print
the logs as per user requirement.

==
Testing Logging Library Developer Guide

What is Logging Library Testing Rest API?

1.Rest API Test.

We have created logging-rest-demo project, in this project we are importing the logging-demo jar so we will import all the
functionality & various features of the logging-demo project through the logging-demo jar.
We have created some Rest API methods in the test project logging-rest-demo in that we are implementing the different different
features of the logging-demo project.

How to implement the Logging Library jar?

To implement the Logging Library jar,there are some few specific given below guidelines which the developer should use while
implementing the logging-demo jar.

1.In the starting of the implemented REST API method first use the line from the Logging Library jar as
LogConfig.setEnteringMDCs(String targetEntry, String targetService, String user, String responseCode,String responseSeverity)

Where the targetEntry is your maven module name,targetService is the REST API url of the exposed method,user is who has login
into the system,responseCode is the ResponseStatusMDC and responseSeverity is the ResponseSeverityMDC,you can choose any values
out of the values given in the ResponseStatusMDC & ResponseSeverityMDC.

2.Then use the particular log levels like debug,error,info,fatal,warn etc whatever you want to implement in your logging statements.

3.Suppose you want to enrich the logs with some particular Marker then for this first initialize the MarkerFactory.getIMarkerFactory();
Then use the line as logger.error(MarkerFactory.getMarker(markerInputVal), “This is a serious an User Input Marker error requiring the admin’s attention”,new Exception(“Just testing”));
where markerInputVal is the particular marker which you want to use in your application.

4.In the end of the implemented REST API method use the line LogConfig.clearMDCDetails() to clear all the log MDC details.

Steps to include logging-demo.jar in your project.

Logging Library is provided in the form of as a jar,Suppose we want to add this logging-demo.jar to a new project then given
below are the steps to in guide this jar and use in your project.

1.Add the given below entry in dependency section of the pom.xml of your new project.

org.acumos.platform-oam
logging-demo
3.0.4-SNAPSHOT

2.Publish the logging-demo.jar into the maven repository.

3.Now Suppose you want to add logging related statements in your java files then just you need to write the logger.Debug_levels
as per your requirement, like debug,error,fatal,info,warn.

4.Whatever logging functionality you want in your logging statements as per your requirement,you can just import from the
classes files of the jar.

You will import the appropriate,required and use it your project as per the end user requirement.To see how you can use the
logging-demo library ,you can refer to the above section Logging Library Developer Guide.

Acumos Microservice Generation

The Acumos microservice generation contains ..

Refer to the docs/ folder for details.

Microservice Generation Developer Guide

This is the developers guide to microservice generation.

1.1 What is microservice generation?

Acumos is intended to enable the use of a wide range of tools and
technologies in the development of machine learning models including
support for both open sourced and proprietary toolkits. Models can be
easily onboarded and wrapped into containerized microservices which are
interoperable with many other components.

The goal of microservice generation component is to provide an interface to
create a wrapper microservice for the models onboarded in Acumos and containerize it
along with all the run time dependencies of the model. .

1.2 Target Users

This guide is targeted towards the open source user community that:

	Intends to understand the backend functionality of the microservice generation.

	Intends to contribute code to enhance the functionality of the microservice generation.

1.3 Assumptions

It is assumed that the ML Models contributed by the open source
community:

	Provide the basic request response style of communication.

	Can be converted in Microservices

	Are capable of communicating via Http REST mechanism.

	Are developed in Java, Python 3.0, R and sourced from toolkits such as Scikit, TensorFlow, H2O, and RCloud.

5. Model is successfully onboarded in Acumos and Model artifacts are available in Acumos Nexus repository.
Artifacts include - Model binary, Protobuf definition for model input/output and service, Metadata.json along
with Tosca generator files.

1.4 Microservice generation Design Architecture

[image: image0]

Microservice generation exposes API that accepts solution ID for onboarded model, downloads model artifacts and builds
docker image for the model. Docker image is pushed to Nexus repository along with log for the dockerization of the model microservice.

[image: image1]

1.5 Microservice generation Low Level Design

Modeler/Data scientist creates model using toolkit. Modeler uses
Acumos-client-library to push the model to Acumos platform. The client
library uploads model and metadata file to Acumos onboarding
server.Onboarding server solution, puts model and metadata
artifact to repository. Model solution ID is accepted by Microservice generation API.
Microservice generation downloads model artifacts - Model binary, protobuf file and metadata.json from Nexus.
It parses metdata, creates a docker image and deploys all dependent libraries in docker container. It also deploys model binary in
the container. Once docker image is created successfully it is uploaded to Nexus. It logs steps for dockerization and uploads the log as well to Nexus repository. This log is available for user to download and verify docker container or identify issues if dockerization is unsuccessful.

[image: image2]

1.6 Onboarding Use Case

Below, the data scientist’s model is wrapped to produce a standardized
native model. Depending on the input model, only a subset of
standard model interfaces may be supported.

Acumos can then generate a microservice however it wishes. The
underlying generic server can only interface with the inner model via
the wrapper. This decoupling allows us to iterate upon and improve the
wrapper independently of Acumos.

[image: image3]

1.7 Microservice generartion Model Artifact

Model artifacts must provide sufficient metadata that enables Acumos to
instantiate runtimes, generate microservices, and validate microservice
compositions. The proposed solution is to split the model artifact into
public and private components.

	Public

	Understood by Acumos. Includes metadata on:

	Model methods and signatures

	Runtime information

	Private

	Opaque to Acumos but understood by the wrapper library.

	Includes: Serialized model

	Auxiliary artifacts required by wrapper library

	Auxiliary artifacts required by model

By splitting the artifact into public and private pieces, the wrapper
library has the freedom to independently iterate and improve.

[image: image4]

1.8 Microservice generartion Setup

Steps:

	Clone the code from Gerrit Repo:

Repo URL: https://gerrit.acumos.org

Under the dashboard page we have list of Projects,select Microservice generartion
Project and clone this project by using below clone command:

git clone ssh://<GERRIT_USER_NAME>@gerrit.acumos.org:29418/microservice-generation

	After cloning import this project in your recommended IDE like STS.

	Take the maven update so that you can download all the required
dependencies for the Microservice generartion Project.

	After doing maven update you can run or debug the code by using
Spring Boot App but before that we need to set the Environment
Variables in our IDE tool for local testing and if you want to read
the environment variables once you deployed your code on the dev or
IST server than you need to set all the environment variables in
system-integration Project.

1.9 Microservice generartion Technology & Framework

	Java 1.8

	Spring Boot

	Spring REST

	Docker Java Library

1.10 Microservice generartion – Code Walkthrough & details

In Microservice generartion project we have template folder under resources where we
are putting all the Docker file with some other dependencies for
different Models like h20,java_argus,java_genric,,python,r ,etc.

For example:

For Microservice generartion H20 model we have the h20 Docker file and requirement.txt
file attached below inside h20 folder.

Microservice generartion code understands this Docker file related to particular model
line by line it reads the commands and performs the action accordingly.
It will download all the required dependences accordingly.

Note: Make sure the Docker is installed in the local Machine before try
to Onboard the model in by using our local machine Environment.

1.11 Microservice generartion – Docker Image Creation and details

The Microservice generartion server exposes REST API for creating a docker image for a model onboarded in Acumos.

API accepts solution ID for the model in Acumos. The metadata JSON, Model binary and protobuf definition file are downloaded
from the repository. The model metadata is used to get the runtime version
information, for example python 3.5. This information is used to fetch
the runtime template. The runtime template contains template for
following files.

1.Dockerfile

2.requirements.txt

3.app.py

4.swagger.yaml

Below is the structure:

[image: image5]

The above template files are populated based on metadata JSON uploaded
by user. Microservice generartion server uses docker-java library for model docker
image creation. Once the docker image is created, the image is tagged
and pushed to nexus docker registry.The server uses common data
micro-services API to create solution and store model and metadata to
artifact repository.

1.13 Microservice generartion Backend API

-generateMicroservice:

This API is used for actual Microservice and docker image generartion for models after successful authentication
of token (APIToken or JWTtoken) shared by user.

Microservice Generation

	Microservice Generation Release Notes
	Version 4.7.1, 15 Sept 2020

	Version 4.7.0, 08 May 2020

	Version 4.6.0, 27 April 2020

	Version 4.5.0, 3 April 2020

	Version 4.4.0, 16 March 2020

	Version 4.3.0, 25 Feb 2020

	Version 4.2.0, 31 Jan 2020

	Version 4.1.1, 21 Jan 2020

	Version 3.8.1, 23 Dec 2019

	Version 3.8.0, 13 Dec 2019

	Version 3.6.0, 07 Nov 2019

	Version 3.5.1, 25 Oct 2019

	Version 3.5.0, 16 Oct 2019

	Version 3.4.0, 3 Oct 2019

	Version 3.2.0, 20 Sept 2019

	Version 3.1.0, 04 Sept 2019

	Version 3.0.0, 23 Aug 2019

	Version 2.14.1, 6 August 2019

	Version 2.14.0, 19 July 2019

	Version 2.13.0, 24 June 2019

	Version 2.12.0, 31 May 2019

	Version 2.11.0, 14 May 2019

	Version 2.10.0, 19 April 2019

	Version 2.9.0, 12 April 2019

	Version 2.8.0, 29 March 2019

	Version 2.7.0, 18 March 2019

	Version 2.6.0, 8 March 2019

	Version 2.5.0, 4 March 2019

	Version 2.3.0, 14 February 2019

	Version 2.2.0, 31 January 2019

	Version 2.1.0, 11 January 2019

	Version 2.0.0, 11 December 2018

	Version 1.8.2, 15 October 2018

	Version 1.8.1, 12 October 2018

	Version 1.8.0, 11 October 2018

	Version 1.7.1, 05 October 2018

	Version 1.7.0, 04 October 2018

	Version 1.6.0, 28 September 2018

	Version 1.5.1, 24 September 2018

	Version 1.5.0, 21 September 2018

	Version 1.4.0, 14 September 2018

	Version 1.3.0, 7 September 2018

	Version 1.2.0, 5 September 2018

	Version 1.1.0, 31 August 2018

	Version 1.0.0, 20 August 2018

	Microservice Generation Developer Guide

Microservice Generation Release Notes

These release notes cover the microservice generation project.

Version 4.7.1, 15 Sept 2020

	Common Data Service client at version 3.1.1

	Remove some install from packages.R ACUMOS-4218 [https://jira.acumos.org/browse/ACUMOS-4218]

	Remove tensorFlow in requirements.txt ACUMOS-4229 [https://jira.acumos.org/browse/ACUMOS-4229]

	Fixing Python Version Issue ACUMOS-4260 [https://jira.acumos.org/browse/ACUMOS-4260]

Version 4.7.0, 08 May 2020

	Common Data Service client at version 3.1.1

	<IST>H2O- Java onboarding is failing with latest Java client 4.1.0 ACUMOS-4106 [https://jira.acumos.org/browse/ACUMOS-4106]

Version 4.6.0, 27 April 2020

	Common Data Service client at version 3.1.1

	Use of Jenkins to trigger the micro-service Generation ACUMOS-3841 [https://jira.acumos.org/browse/ACUMOS-3841]

Version 4.5.0, 3 April 2020

	Common Data Service client at version 3.1.1

	onboarding-common version 4.5.0

	TOSCAModelGeneratorClient version 2.0.8

Version 4.4.0, 16 March 2020

	Common Data Service client at version 3.1.1

	H2O Modelrunner nexus url externalization ACUMOS-4057 [https://jira.acumos.org/browse/ACUMOS-4057]

	
	YML Changes –

	“modelrunnerUrl”:{“h2o”:”<NEXUS_REPO_URL>”, “javaSpark”:”<NEXUS_REPO_URL>”},
“jenkins_config”: {“solutionLocation”:”/var/jenkins_home/ms”}

	
	YML Changes in volumes section:

	
	/var/acumos/ms:/var/jenkins_home/ms

Version 4.3.0, 25 Feb 2020

	Common Data Service client at version 3.1.1

	Code changes to trigger docker build using Jenkins ACUMOS-3978 [https://jira.acumos.org/browse/ACUMOS-3978]

	Note: ACUMOS-3978 Disclaimer: In this release, Notifications will not be sent to CDS post the Docker Image is built and pushed to Nexus via Jenkins.

	YML Changes - “microService”: {“createImageViaJenkins”: “<Boolean>”},”jenkins_config”: {“jenkinsUri”: “<jenkinsUri>”,”jenkinsUsername”:”<jenkinsUsername>”,”jenkinsPassword”:”<jenkinsPassword>”}

Version 4.2.0, 31 Jan 2020

	Common Data Service client at version 3.1.1

Version 4.1.1, 21 Jan 2020

	Enrich message response with Docker URI ACUMOS-3771 [https://jira.acumos.org/browse/ACUMOS-3771]

Version 3.8.1, 23 Dec 2019

	Common Data Service client at version 3.1.0

	Security Verification at version 1.2.2

	miss new logging library ACUMOS-3848 <https://jira.acumos.org/browse/ACUMOS-3848>

Version 3.8.0, 13 Dec 2019

	Common Data Service client at version 3.1.0

	Security Verification at version 1.2.1

	License-Manager-Client Library at version 1.4.3

	Not able to on-board R model, fails at dockerized step ACUMOS-3761 [https://jira.acumos.org/browse/ACUMOS-3761]

	Micro services should download model runner from nexus and package into the model docker image for H2O and java models. ACUMOS-3759 [https://jira.acumos.org/browse/ACUMOS-3759]

Version 3.6.0, 07 Nov 2019

	Common Data Service client at version 3.0.0

	YML changes - “security”:{“verificationEnableFlag”:”<Boolean>”}

	IST2 - Onboarding block calling SV with a flag ACUMOS-3676 [https://jira.acumos.org/browse/ACUMOS-3676/]

Version 3.5.1, 25 Oct 2019

	Common Data Service client at version 3.0.0

	<IST>Java spark model failing with error through CLI. : ACUMOS-3569 [https://jira.acumos.org/browse/ACUMOS-3569/]

Version 3.5.0, 16 Oct 2019

	Common Data Service client at version 3.0.0

	YML changes - “security”:{“verificationApiUrl”:”<securityverificationurl>”},”modelrunnerVersion”: {“javaSpark”: “<version>”}

	Common Services - Java Code upgrade to Java 11 or 12 : ACUMOS-3327 [https://jira.acumos.org/browse/ACUMOS-3327/]

	Java spark model failing with error through CLI : ACUMOS-3569 [https://jira.acumos.org/browse/ACUMOS-3569/]

Version 3.4.0, 3 Oct 2019

	Common Data Service client at version 3.0.0

	As a User , I want to see an Enhance on-boarding processes to allow choice of new model vs new revision : ACUMOS-1216 [https://jira.acumos.org/browse/ACUMOS-1216/]

Version 3.2.0, 20 Sept 2019

	Common Data Service client at version 3.0.0

Version 3.1.0, 04 Sept 2019

	Common Data Service client at version 2.2.6

	create micro service for c/c+ model : ACUMOS-3108 <https://jira.acumos.org/browse/ACUMOS-3108/>_

	Additional R packages needed by the model are not added : ACUMOS-3367 <https://jira.acumos.org/browse/ACUMOS-3367/>_

	Errored model is getting onboarded successfully : ACUMOS-3022 <https://jira.acumos.org/browse/ACUMOS-3022/>_

Version 3.0.0, 23 Aug 2019

	Common Data Service client at version 2.2.6

	attach a license profile as JSON during on-boarding with Artifact Type LI : ACUMOS-3171 [https://jira.acumos.org/browse/ACUMOS-3171/]

Version 2.14.1, 6 August 2019

	Common Data Service client at version 2.2.4

	Log files generated in application should display logs as per the log standardization : ACUMOS-3278 [https://jira.acumos.org/browse/ACUMOS-3278/]

Version 2.14.0, 19 July 2019

	Common Data Service client at version 2.2.4

	Log files generated in application should display logs as per the log standardization : ACUMOS-2923 [https://jira.acumos.org/browse/ACUMOS-2923/]

Version 2.13.0, 24 June 2019

	Common Data Service client at version 2.2.4

	error displayed while runnin R model : ACUMOS-1942 <https://jira.acumos.org/browse/ACUMOS-2974>

	Microservice entry is remaining InProgress after completing onboarding process : ACUMOS-3012 [https://jira.acumos.org/browse/ACUMOS-3012/]

	Async MSGen Notification logs not getting generated : ACUMOS-3088 [https://jira.acumos.org/browse/ACUMOS-3088/]

Version 2.12.0, 31 May 2019

	Common Data Service client at version 2.2.4

Version 2.11.0, 14 May 2019

	Common Data Service client at version 2.2.2

	Logs are not displayed as per the standardization : ACUMOS-2779 [https://jira.acumos.org/browse/ACUMOS-2779/]

	Add non configurable parameters to application.properties file : ACUMOS-2872 [https://jira.acumos.org/browse/ACUMOS-2872/]

	microServiceAsyncFlag is available in application.properties with ‘false’ default value. Async microsrvices will also work if flag key-value is removed from yml file.

Version 2.10.0, 19 April 2019

	Common Data Service client at version 2.2.1

	ACUMOS-2326 [https://jira.acumos.org/browse/ACUMOS-2326/]

	ACUMOS-1559 [https://jira.acumos.org/browse/ACUMOS-1559/]

	ACUMOS-2771 [https://jira.acumos.org/browse/ACUMOS-2771/]

Version 2.9.0, 12 April 2019

	Common Data Service client at version 2.1.2

	ACUMOS-2697 [https://jira.acumos.org/browse/ACUMOS-2697/]

Version 2.8.0, 29 March 2019

	Common Data Service client at version 2.1.2

	ACUMOS-2625 [https://jira.acumos.org/browse/ACUMOS-2625/]

	ACUMOS-2626 [https://jira.acumos.org/browse/ACUMOS-2626/]

Version 2.7.0, 18 March 2019

	Common Data Service client at version 2.1.2

	ACUMOS-2620 [https://jira.acumos.org/browse/ACUMOS-2620/]

Version 2.6.0, 8 March 2019

	Common Data Service client at version 2.1.2

	ACUMOS-2611 [https://jira.acumos.org/browse/ACUMOS-2611/]

	ACUMOS-2488 [https://jira.acumos.org/browse/ACUMOS-2488/]

Version 2.5.0, 4 March 2019

	Common Data Service client at version 2.1.1

	ACUMOS-2588 [https://jira.acumos.org/browse/ACUMOS-2588/]

	ACUMOS-2402 [https://jira.acumos.org/browse/ACUMOS-2402/]

	ACUMOS-2566 [https://jira.acumos.org/browse/ACUMOS-2566/]

Version 2.3.0, 14 February 2019

	Pointing to CDS-2.0.7

Version 2.2.0, 31 January 2019

	ACUMOS-2379 [https://jira.acumos.org/browse/ACUMOS-2379/]

Version 2.1.0, 11 January 2019

	ACUMOS-1935 [https://jira.acumos.org/browse/ACUMOS-1935/]

	ACUMOS-1609 [https://jira.acumos.org/browse/ACUMOS-1609/]

Version 2.0.0, 11 December 2018

	ACUMOS-1801 [https://jira.acumos.org/browse/ACUMOS-1801/]

	ACUMOS-2039 [https://jira.acumos.org/browse/ACUMOS-2039/]

Version 1.8.2, 15 October 2018

	ACUMOS-1898 [https://jira.acumos.org/browse/ACUMOS-1898/]

Version 1.8.1, 12 October 2018

	ACUMOS-1896 [https://jira.acumos.org/browse/ACUMOS-1896/]

Version 1.8.0, 11 October 2018

	ACUMOS-1879 [https://jira.acumos.org/browse/ACUMOS-1879/]

	ACUMOS-1830 [https://jira.acumos.org/browse/ACUMOS-1830/]

Version 1.7.1, 05 October 2018

	ACUMOS-1829 [https://jira.acumos.org/browse/ACUMOS-1829/]

Version 1.7.0, 04 October 2018

	Common Data Service client at version 1.18.2

	TOSCA model generator client at version 1.33.1

	There is a change in yml. rimage version changed from 1.0 to 1.0.0

	ACUMOS-1736 [https://jira.acumos.org/browse/ACUMOS-1736/]

	ACUMOS-1639 [https://jira.acumos.org/browse/ACUMOS-1639/]

Version 1.6.0, 28 September 2018

	ACUMOS-1771 [https://jira.acumos.org/browse/ACUMOS-1771/]

	ACUMOS-1786 [https://jira.acumos.org/browse/ACUMOS-1786/]

Version 1.5.1, 24 September 2018

	Pointing to CDS-1.18.1

	TOSCA pointing to 0.0.33

	ACUMOS-622 [https://jira.acumos.org/browse/ACUMOS-622/]

	ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754/]

Version 1.5.0, 21 September 2018

	TOSCA pointing to 0.0.33

	ACUMOS-622 [https://jira.acumos.org/browse/ACUMOS-622/]

	ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754/]

Version 1.4.0, 14 September 2018

	TOSCA pointing to 0.0.31

	ACUMOS-1266 [https://jira.acumos.org/browse/ACUMOS-1266/]

	ACUMOS-1638 [https://jira.acumos.org/browse/ACUMOS-1638/]

	ACUMOS-1628 [https://jira.acumos.org/browse/ACUMOS-1628/]

	ACUMOS-1583 [https://jira.acumos.org/browse/ACUMOS-1583/]

	ACUMOS-1746 [https://jira.acumos.org/browse/ACUMOS-1746/]

Version 1.3.0, 7 September 2018

	Pointing to CDS-1.18.0

	ACUMOS-1628 [https://jira.acumos.org/browse/ACUMOS-1628/]

Version 1.2.0, 5 September 2018

	Patch release to update nexus client version to 2.2.1

	ACUMOS-1678 [https://jira.acumos.org/browse/ACUMOS-1678/]

	ACUMOS-1629 [https://jira.acumos.org/browse/ACUMOS-1629/]

Version 1.1.0, 31 August 2018

	ACUMOS-1638 [https://jira.acumos.org/browse/ACUMOS-1638/]

	ACUMOS-1628 [https://jira.acumos.org/browse/ACUMOS-1628/]

	ACUMOS-1629 [https://jira.acumos.org/browse/ACUMOS-1629/]

Version 1.0.0, 20 August 2018

	Pointing to CDS-1.17.1

	ACUMOS-1070 [https://jira.acumos.org/browse/ACUMOS-1070/]

	ACUMOS-1253 [https://jira.acumos.org/browse/ACUMOS-1253/]

	ACUMOS-1252 [https://jira.acumos.org/browse/ACUMOS-1252/]

	ACUMOS-1245 [https://jira.acumos.org/browse/ACUMOS-1245/]

Acumos Federation

This repository supports Federation between Acumos system instances.

Please see the documentation in the “docs” folder.

Acumos Federation Gateway Client Testing

This sub-project contains classes for testing Federation Gateway clients and applications that use them.

Please see the documentation in the parent project’s “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Acumos Federation Gateway Client Configuration

This sub-project contains classes for configuring Federation Gateway clients.

Please see the documentation in the parent project’s “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Acumos Federation Gateway Client

This sub-project contains client classes for making REST requests to the Acumos Federation Gateway.

Please see the documentation in the parent project’s “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Developer Guide for the Federation Gateway Clients

The acumos-fgw-client library provides clients for using the
public “E5” and private interfaces of the Acumos machine-learning platform’s
Federation Gateway.

This document offers guidance for both client developers and client users
(developers who want to use the clients in their Java projects).

Maven Dependency

The client jar is deployed to these Nexus repositories at the Linux Foundation:

<repository>
 <id>releases</id>
 <url>https://nexus.acumos.org/content/repositories/releases</url>
</repository>

Use this dependency information, ideally with the latest version number shown in the release notes:

<dependency>
 <groupId>org.acumos.federation</groupId>
 <artifactId>acumos-fgw-client</artifactId>
 <version>2.x.x</version>
</dependency>
<dependency>
 <groupId>org.acumos.federation</groupId>
 <artifactId>acumos-fgw-client-config</artifactId>
 <version>2.x.x</version>
</dependency>

Building and Packaging

As of this writing the build (continuous integration) process is fully automated in the Linux Foundation system
using Gerrit and Jenkins. This section describes how to perform local builds for development and testing.

Prerequisites

The build and test machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central to download required jars

Use maven to build and package the client jar using this command:

mvn package

Client Packages

The client consists of several Maven sub-projects each defining one or more
Java packages.

	acumos-fgw-client-config

	
	Dependency::

	
	<dependency>

	<groupId>org.acumos.federation</groupId>
<artifactId>acumos-fgw-client-config</artifactId>
<version>2.x.x-SNAPSHOT</version>

</dependency>

	Packages:

	
	org.acumos.federation.client.config

	This contains pure bean classes for specifying TLS (SSL) and authentication
parameters to be used by a client. These beans use Project Lombok for
automatic generation of code for their setter, getter, constructor,
equals, and hashcode methods. Their code may be found under
src/main/lombok.

	acumos-fgw-client-test

	
	Dependency::

	
	<dependency>

	<groupId>org.acumos.federation</groupId>
<artifactId>acumos-fgw-client-test</artifactId>
<version>2.x.x-SNAPSHOT</version>
<scope>test</scope>

</dependency>

	Packages:

	
	org.acumos.federation.client.test

	This contains classes for mocking out client responses in junit testing
in order to test applications using the clients (such as the Federation
Gateway itself) as well as test key- and trust-store files for using the
clients to test servers supporting the REST APIs. It also contains
convenience routines for generating configuration beans using those
key- and trust-store files and for mapping single quotes to double quotes
for writing JSON strings in Java code with a minimum of backslashes.

	acumos-fgw-client

	
	Dependency::

	
	<dependency>

	<groupId>org.acumos.federation</groupId>
<artifactId>acumos-fgw-client</artifactId>
<version>2.x.x-SNAPSHOT</version>

</dependency>

	Packages:

	
	org.acumos.federation.client.data

	This contains pure bean classes for messages sent between the clients
and the Federation Gateway server that are unique to those APIs.
These beans use Project Lombok for automatic generation of code
for their setter, getter, constructor, equals, and hashcode methods.
Their code may be found under src/main/lombok.

	org.acumos.federation.client

	This contains the actual client code, itself, consisting of a ClientBase
class used as the common superclass for both interfaces, and
FederationClient and GatewayClient for the public “E5” and private
interfaces, respectively.

Client Usage Example

A Java class named “ClientDemo” demonstrates use of the clients.
Please browse for this file in the client project test area using this link:
ClientDemo.java [https://gerrit.acumos.org/r/gitweb?p=federation.git;a=blob;f=acumos-fgw-client/src/test/java/org/acumos/federation/client/ClientDemo.java;hb=refs/heads/master].

Federation Gateway Configuration Guide

The Acumos Federation Gateway Server is configured by setting properties using the
SPRING_APPLICATION_JSON environment variable. See the Spring-Boot documentation
on Externalized Configuration for information on how the
SPRING_APPLICATION_JSON environment variable is parsed and on other methods for
setting configuration property values.

Configuration Properties

	Example (with syntactically valid but completely made up values)::

	
	export SPRING_APPLICATION_JSON=’

	“federation.address”: “externalname.example.com”,
“federation.server.port”: 8443,
“federation.ssl”: {

“key-store”: “/somedirectory/externalname.jks”,
“key-store-password”: “some value 1”

},
“local”: {

“address”: “internalname.example.com”,
“server”: {

“port”: 9443

},
“ssl.key-store”: “classpath:internalname.jks”,
“ssl.key-store-password”: “some value 2”

},
“cdms.client”: {

“url”: “http://cdshost:8080/ccds”,
“username”: “theuser”,
“password”: “some value 3”,

},
“docker”: {

“registry-url”: “myregistry:10443”,
“registry-username”: “myregistryuser”,
“registry-password”: “some value 4”,
“registry-email”: “someuser@somehost”,

},
“nexus”: {

“url”: “https://mynexus:7443/repository/myrepo”,
“username”: “nexususer”,
“password”: “nexuspass”,
“nexus.group-id”: “myorg”

},
“license-manager.url”: “http://licenseserver:8888”,
“verification.url”: “http://securityserver:9999”,
“logstash.url”: “http://logstash:2345”

}’

	Note that::

	{ “a.b”: “x”, “a.c”: “y” }

	and::

	{ “a”: { “b”: “x”, “c”: “y” }}

are equivalent, in SPRING_APPLICATION_JSON.

	federation.address

	Optional. FQDN or IP address.

This specifies which IP interface, on the federation host machine, listens
for incoming requests from peers. Defaults to listening
on all interfaces.

	federation.registration.enabled

	Optional. Default False.

When true, federation will accept registration requests from peers.

	federation.server.port

	Required.

This specifies which TCP/IP port, on the interface(s) specified by
federation.address, listens for incoming requests from peers.

	federation.client-auth

	Optional. Allowed values “NEED”, “WANT”, “NONE”. Default “WANT”.

This specifies whether to request or require 2-way TLS authentication
of incoming connections from peers.

	federation.ssl.key-alias

	Required if key store contains multiple private keys.

This specifies which private key/certificate pair, in the key store
is used, by federation, to authenticate to peers.

	federation.ssl.key-store

	Required.

This specifies the path of the file containing the certificate and
private key used, by federation, to authenticate to peers.

	federation.ssl.key-store-password

	Required.

This specifies the password for decrypting the key store file.

	federation.ssl.key-store-type

	Allowed values: JKS or PKCS12.

This specifies the format of the key store file.

	federation.ssl.trust-store

	This specifies the path of the file containing the certificates of
accepted certificate authorities for authenticating peers.

	federation.ssl.trust-store-password

	Required.

This specifies the password for decrypting the trust store file.

	federation.ssl.trust-store-type

	Allowed values: JKS or PKCS12.

	local.address

	Optional. FQDN or IP address.

This specifies which IP interface, on the federation host machine, listens
for incoming requests from the local Acumos marketplace portal (the portal).
Defaults to listening on all interfaces.

	local.server.port

	Required.

This specifies which TCP/IP port, on the interface(s) specified by
federation.address, listens for incoming requests from the portal.

	local.client-auth

	Optional. Allowed values “NEED”, “WANT”, “NONE”. Default “WANT”.

This specifies whether to request or require 2-way TLS authentication
of incoming connections from the portal.

	local.ssl.key-alias

	Required if key store contains multiple private keys.

This specifies which private key/certificate pair, in the key store
is used, by federation, to authenticate to the portal.

	local.ssl.key-store

	Required.

This specifies the path of the file containing the certificate and
private key used, by federation, to authenticate to the portal.

	local.ssl.key-store-password

	Required.

This specifies the password for decrypting the key store file.

	local.ssl.key-store-type

	Allowed values: JKS or PKCS12.

This specifies the format of the key store file.

	local.ssl.trust-store

	This specifies the path of the file containing the certificates of
accepted certificate authorities for authenticating to the portal.

	local.ssl.trust-store-password

	Required.

This specifies the password for decrypting the trust store file.

	local.ssl.trust-store-type

	Allowed values: JKS or PKCS12.

This specifies the format of the trust store file.

	cdms.client.url

	Required.

Base URL for accessing the common data service.

	cdms.client.username

	Required.

User name for authenticating to the common data service.

	cdms.client.password

	Required.

Password for authenticating to the common data service.

	peer.jobchecker.interval

	Optional. Default 400.

The time, in seconds, between checking for changes to the set of active
subscriptions.

	docker.api-version

	Optional.

The version of the Docker API to use when communicating with the Docker host.
Version values should be of the form X.Y where X is the major version number
and Y is the minor version number of the Docker API protocol. The Docker API
version matrix can be found
here. [https://docs.docker.com/develop/sdk/#api-version-matrix]

	docker.host

	Optional. Default unix:///var/run/docker.sock.

The URL of the unix or IP socket for accessing the local Docker host in
the form tcp://hostname:port or unix://path. The local Docker host is used
to pull and push Docker image artifacts from the Docker repository and to
serialize and deserialize those artifacts for transmission between peers.

	docker.docker-tls-verify

	Optional. Default False.

If True, use TLS encryption when connecting to the local Docker host

	docker.docker-cert-path

	Required when docker.docker-tls-verify is True.

If the connection to the local Docker host is encrypted, using TLS, the path
the directory for the PEM files containing the trust store (ca.pem), private
private key (key.pem), and certificate (cert.pem) used by federation’s Docker
client to connect to the local Docker host.

	docker.docker-config

	Optional. Default $HOME/.docker

Path to the directory containing the user’s Docker configuration file
(config.json).

	docker.registry-url

	Required.

The hostport for accessing the Docker registry in the form hostname:port.
The registry is used to store Docker image artifacts, in response to
“docker pull” and “docker push” requests sent to the Docker host.

	docker.registry-username

	Required.

The username for authenticating to the Docker registry for pushing images.

	docker.registry-password

	Required.

The password for authenticating to the Docker registry for pushing images.

	docker.registry-email

	The email address associated with the username and password for
authenticating to the Docker Registry.

	license-manager.url

	Required.

The URL for the license manager used to register solution revisions.

	nexus.url

	Required.

The URL for the Nexus repository used to store (non-Docker) artifacts and
documents, of the form https://host:port/repository/reponame/.

	nexus.username

	Required.

The user name for authenticating to the nexus server.

	nexus.password

	Required.

The password for authenticating to the nexus server.

	nexus.group-id

	Required.

Per Acumos instance component of the path prefix within the Nexus repository.

	nexus.name-separator

	Optional. Default “.”.

Separator between components of the path prefix within the Nexus repository.
The prefix is of the form groupid separator solutionid separator revisionid.

	verification.url

	Required.

URL for the Acumos security-verification server used to perform security
verification scans on solution revisions.

	logstash.url

	Required.

URL for the Acumos logstash server used to save model data in elastic search.
Required by the /modeldata api.

Federation Gateway Certificate Generation

This document explains the steps required to configure two Acumos
instances to be peers so that they can communicate via their
Federation Gateway components. Gateways use certificates for mutual
SSL authentication.

An overview of the general process is here:
Mutual SSL Authentication [https://www.codeproject.com/Articles/326574/An-Introduction-to-Mutual-SSL-Authentication/]

Assistance with the detailed process is here:
How to setup your own CA with OpenSSL [https://gist.github.com/Soarez/9688998]

Background

The asymmetric encryption technique used here is based on two keys: a
message that gets encrypted with one key can be decrypted with the
other key. We call one the private key and the other the public key,
because when used in two-party communication we keep one (the private
key) and we give one away (the public key). The one we give away needs
to be certified; i.e., others need to be sure the key can be
trusted. For that we send the public key to a certificate authority
(CA) in the form of a certificate signing request (CSR). The CA signs
this (creates some hash) with their private key. Then everyone who has
the CA public key (who trusts the CA) will accept our signed-by-the-CA
public key, and this chain of trust can go on recursively. The result
is that our public key gets packed in a certificate signed by that CA
and now we can use it/share it with others.

Each peer gateway is provisioned with a PKCS12 key store holding a
private key and a certificate, which is the matching public key signed
by a certificate authority. The mutual authentication process
proceeds as follows. A federation peer C (playing the client role in
this example) attempts a connection to peer S (playing the server role
in this example). To establish a secure communication channel, peer S
first sends its certificate. The receipt by C of the S certificate
allows C to verify S’s identity. After this step is successful, peer
S asks peer C for C’s certificate. Peer S then checks the identity of
peer C based on the certificate. If that succeeds, the channel is
secure. After this TLS handshake process has completed, peer S
searches its peer repository (internal configuration) for the fully
qualified host name from C’s certificate, and allows the exchange of
information if a match is found.

Overview

The following tasks are required for configuration of each Acumos host:

	Create a certificate signing request

	Obtain a signed certificate, either by purchasing it or signing the requset with a local authority

	Install the signed certificate in the gateway deployment environment

	Configure the gateway using the Portal administration interface.

Create Certificates

These instructions create appropriate certificates suitable for
development and testing environments ONLY, not for production
environments. To avoid the delay and expense of purchasing a signed
certificate from a well-known certificate authority, this creates a
new certificate authority (CA) and adds the appropriate certificate to
a trust store.

These following instructions use the openssl command-line tool,
which is available on Linux hosts. This scenario was developed using
Ubuntu version 16.04. The instructions use shell-style variables
(e.g., $VAR) to indicate where a value must be supplied and
reused.

Step 1: Determine the fully qualified domain name of the peer (FQDN)
and choose a password (6 characters or more). Store these values in
shell variables ACUMOS_HOST and ACUMOS_PASS for use in the
commands below. For example:

export ACUMOS_HOST="myserver.mymodels.org"
export ACUMOS_PASS="mykey123456"

Step 2: Because a new certificate authorithy (CA) will be created
here, openssl requires a configuration file openssl.cnf. Create
this file using the template below, and in the [alt_names]
section replace the string <acumos-host> with the FQDN you chose
above.

Step 3: Create the Acumos CA private key:

openssl genrsa -des3 -out acumosCA.key -passout pass:$ACUMOS_PASS 4096

Step 4: Create the Acumos CA certificate. You may wish to use
different values (i.e., not “Unspecified”) in this command, just be
consistent in later commands:

openssl req -x509 -new -nodes -key acumosCA.key -sha256 -days 1024 \
 -config openssl.cnf -out acumosCA.crt -passin pass:$ACUMOS_PASS \
 -subj "/C=US/ST=Unspecified/L=Unspecified/O=Acumos/OU=Acumos/CN=$ACUMOS_HOST"

Step 5: Create a JKS-format truststore with the Acumos CA certificate:

keytool -import -file acumosCA.crt -alias acumosCA -keypass $ACUMOS_PASS \
 -keystore acumosTrustStore.jks -storepass $ACUMOS_PASS -noprompt

The recommended practice here is to import the self-signed Acumos CA
certificate into an existing trust store. For example you can extend
the file “cacerts” that is included with a Java Runtime Engine (JRE)
distribution below directory “jre/lib/security” which usually uses the
password “changeit”.

Step 6: Create the server private key:

openssl genrsa -out acumos.key -passout pass:$ACUMOS_PASS 4096

Step 7: Create a certificate signing request (CSR) for your FQDN.
Please note the C, ST, L, O, OU and CN key-value pairs must match what
was used above:

openssl req -new -key acumos.key -passin pass:$ACUMOS_PASS -out acumos.csr \
 -subj "/C=US/ST=Unspecified/L=Unspecified/O=Acumos/OU=Acumos/CN=$ACUMOS_HOST"

Step 8: Sign the CSR with the Acumos CA certificate to yield a server certificate:

openssl ca -config openssl.cnf -passin pass:$ACUMOS_PASS -in acumos.csr -out acumos.crt

Step 9: Copy the server private key and certificate to a plain text
file acumos.txt. The private key should appear first, followed by
the certificate. The finished file should have this structure:

-----BEGIN RSA PRIVATE KEY-----
(Private Key: acumos.key contents)
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
(SSL certificate: acumos.crt contents)
-----END CERTIFICATE-----

Step 10: Create a PKCS12 format keystore with the server key and certificate:

openssl pkcs12 -export -in acumos.txt -passout pass:$ACUMOS_PASS -out acumos.pkcs12

Step 11: Copy the JKS and PKCS12 files to the machine where the
federation component runs and configure them:

	Enter the path to the JKS file in key trust-store

	Enter the password for the JKS file in key trust-store-password

	Enter the path to the PKCS12 file in key key-store

	Enter the password for the PKCS12 file in key key-store-password

	Enter the key store type in key key-store-type with value PKCS12

Final Checklist

These are the prerequisites for Acumos instance A (hostA.name.org)
to pull models from its Acumos peer B (hostB.name.org):

	Federation gateways are running on both instances

	Gateway A has a PKCS12 file containing a certificate for hostA.name.org and signed by authority CA-1

	Gateway A deployment configuration has the path to the PKCS12 file in key federation.ssl.key-store

	Gateway A has a trust store file that includes the signing certificate for authority CA-2

	Gateway A deployment configuration has the path to the trust store file in key federation.ssl.trust-store

	Gateway A is configured with peer B’s FQDN (hostB.name.org) and public gateway URL (https://hostB.name.org:12345)

	Gateway B has with a PCKS12 file containing a certificate for hostB.name.org and signed by authority CA-2

	Gateway B deployment configuration has the path to the PKCS12 file in key federation.ssl.key-store

	Gateway B has a trust store file that includes the signing certificate for authority CA-1

	Gateway B deployment configuration has the path to the trust store file in key federation.ssl.trust-store

	Gateway B is configured with peer A’s FQDN (hostA.name.org) and public gateway URL (https://hostA.name.org:54321)

Please note that a PKCS12 file is a store, i.e. it contains private
key and associated certificates in a binary form (and not just
certificates).

Troubleshooting

Inspect the certificate advertised by your server using this command:

openssl s_client -connect yourserver.yourmodels.org:9084

Look carefully at the “Certificate chain” section. In case of error
you may see a message like this:

Verify return code: 21 (unable to verify the first certificate)

For advanced troubleshooting, use the following steps to extract
certificates and keys to test connections manually.

Extract the CA certificate created above in PEM format:

keytool -export -alias acumos -file acumos-ca.crt -keystore acumosTrustStore.jks
openssl x509 -inform der -in acumos-ca.crt -out acumos-ca.pem

Extract the signed certificate for the client host attempting the
connection in PEM format:

openssl pkcs12 -in acumos.p12 -clcerts -nokeys -out acumos.pem

Look at the signed certificate details, for example the expiration date:

openssl x509 -in acumos.pem -text -noout

Extract the private key for the client host attempting the connection:

openssl pkcs12 -in acumos.p12 -nocerts -out acumos.key

Next run the following command to test the certificates used to
establish a connection to remote peer yourserver.yourmodels.org at
port 9084 from server myserver.mymodels.org. The certificate files
used below were created by the procedure above for host
myserver.mymodels.org:

openssl s_client -connect yourserver.yourmodels.org:9084 -cert acumos.pem -key acumos.key -CAfile acumos-ca.pem

You must enter the key phrase, then the connection attempt can begin.

Finally use the command-line tool curl to test whether the remote
host is ready to accept connections. This command uses the -k
option to allow insecure connections, so the certificate authority is
not required here:

curl -vk --cert acumos.pem:mykey123456 --key acumos.key https://yourserver.yourmodels.org:9084/ping

Template openssl.cnf

This is a customized OpenSSL configuration file. Commented out sections below
are included for testing/clarity for now, and will be removed later once the
specific comments that need to be retained for clarity are determined.
#

This definition stops the following lines choking if HOME isn't
defined.
HOME = .
RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#oid_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:
extensions = v3_req
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.
Add a simple OID like this:
testoid1=1.2.3.4
Or use config file substitution like this:
testoid2=${testoid1}.5.6

Policies used by the TSA examples.
tsa_policy1 = 1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6
tsa_policy3 = 1.2.3.4.5.7

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = . # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of
 # several ctificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/certs/acumos_ca.crt # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number
 # must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/acumos_ca.key # The private key
RANDFILE = $dir/private/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.
name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.
crlnumber must also be commented out to leave a V1 CRL.
crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = default # use public key default MD
preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)
policy = policy_match

For the CA policy
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'
types.
[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

##
[req]
default_bits = 2048
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.
pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).
nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.
WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.
string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = US
countryName_min = 2
countryName_max = 2

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Some-State

localityName = Locality Name (eg, city)

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Internet Widgits Pty Ltd

we can do this but it is not needed normally :-)
#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)
#organizationalUnitName_default =

commonName = Common Name (e.g. server FQDN or YOUR name)
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This is required for TSA certificates.
extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
Included these for openssl x509 -req -extfile
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

[alt_names]

DNS.1 = <acumos-host>
federation-service: for portal-be access to federation local port via expose
DNS.2 = federation-service

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

This is what PKIX recommends but some broken software chokes on critical
extensions.
#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as an test self-signed certificate it is best
left out by default.
keyUsage = cRLSign, keyCertSign

Some might want this also
nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy
Copy issuer details
issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!
obj=DER:02:03
Where 'obj' is a standard or added object
You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always

[proxy_cert_ext]
These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.
subjectAltName=email:copy
An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email:move

Copy subject details
issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl
#nsSslServerName

This really needs to be in place for it to be a proxy certificate.
proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

##
[tsa]

default_tsa = tsa_config1 # the default TSA section

[tsa_config1]

These are used by the TSA reply generation only.
dir = ./demoCA # TSA root directory
serial = $dir/tsaserial # The current serial number (mandatory)
crypto_device = builtin # OpenSSL engine to use for signing
signer_cert = $dir/tsacert.pem # The TSA signing certificate
 # (optional)
certs = $dir/cacert.pem # Certificate chain to include in reply
 # (optional)
signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

default_policy = tsa_policy1 # Policy if request did not specify it
 # (optional)
other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)
digests = md5, sha1 # Acceptable message digests (mandatory)
accuracy = secs:1, millisecs:500, microsecs:100 # (optional)
clock_precision_digits = 0 # number of digits after dot. (optional)
ordering = yes # Is ordering defined for timestamps?
 # (optional, default: no)
tsa_name = yes # Must the TSA name be included in the reply?
 # (optional, default: no)
ess_cert_id_chain = no # Must the ESS cert id chain be included?
 # (optional, default: no

Federation Gateway Server Design Notes

The federation gateway is an optional component of an Acumos system whose role
is to facilitate communication with other Acumos systems (i.e. with their gateways)
or compatible systems (through adapters). Its role is to facilitate the exchange
of models and their related information between Acumos instances.
The federation gateway occupies the borderline of an Acumos system, from a logical
and deployment perspective. From a logical perspective it is the point of control
for the flow of model information in and out of an Acumos instance. From a deployment
perspective (within an enterprise environment), the federation gateway will be deployed
at the edge of the network (DMZ) with communication interfaces towards the enterprise
network (where the rest of the Acumos instance components are deployed) and towards
the outside world (where other Acumos instances are deployed).

We call the external interface (towards the gateways of other Acumos instances) the
federation interface (or public interface) and we call the internal interface (towards
the other components of the same Acumos instance) the local interface (or private interface).
The design of the gateway reflects this duality: the gateway defines/offers a set of
REST APIs on its federation interface for gateway-to-gateway (or gateway-to-adapter)
communication and another set on the local interface for component-to-gateway communication.

The public “E5” interface

The federation (public) interface is also known in the Acumos project as the E5 interface.
This is a public, REST-based API specification: any system that decides to federate needs to implement it.
This interface assumes a pull-based mechanism.
As such, only the ‘server’ side is defined by E5.

The client side is based on a set of subscriptions, where each subscription defines a set of solutions
the client is interested in, through a list of one or more catalogs, and employs periodic polling to detect new material.
This interface defines no shared state, nothing to synchronize; all responsibility resides with the interested party.
Requires a pre-provisioned peer on the server side, and uses both client and server authentication (CA based),
principal to certificate matching.

The private interface

The private (local) interface is system specific, because a localized mapping of information must be done.
In Acumos, this includes interactions with the Common Data Service and Portal components and represents
is a one-to-one mapping of solution information and related artifacts.

Federation concepts

Peer

A federation peer is another system supporting the E5 interface; i.e., another Acumos gateway or an adapter for another system.
Peer information is provisioned in CDS.

Handshake

Establishment of a peer relationship (known as a handshake) is done by out-of-band information exchange
to obtain and share certificates. Site administrators with adequate permissions exchange required information:
the E5 REST endpoint coordinates and the expected principal info. They then proceed with local peer provisioning
through the Acumos Portal federation administration page.

Subscriptions

A federation subscription defines which models an Acumos system is interested in importing from a peer.
The subscription is primarily list of catalogs.
Subscriptions are subject to policies in the peer regarding which models are exposed to whom.
Current options on a subscription include the refresh period.

Federating models

The federation gateway behavior is driven by the peer and subscription information provisioned
in the CDS. Through the local interface API other components can trigger gateway
behavior, i.e. trigger interactions with peers.
The peer information represents all other Acumos systems (or other through adapters) this system
has agreed to communicate/exchange information with. The ‘handshake’ procedure by which two systems
agree to communicate and provision the required information can take place ‘out-of-band’ (email etc.
plus provisioning) or ‘in-band’ (a combination of federation REST API and provisioning actions).

When enabling federation an Acumos system agrees to share its public, validated models (their
revisions) with its peers.
(A discussion on ACL driven/selective sharing control will come here later.)
Establishing a relationship does not in itself imply that any exchange of information takes place.
Information exchange of (models is driven by subscriptions provisioned in the local CDS.
In Acumos every peer is responsible for pulling from its peers the models it is interested in
(such an interaction goes through the peer’s federation gateway which controls/filters access to its local models).
A subscription towards a peer represents a subset of that peer’s model set that this Acumos is interested in.
The subscription information is there to drive the behavior of the federation gateway (which does
the actual peer polling and local provisioning of the retrieved information); no subscription
information is shared between peers. An Acumos instance can have multiple subscriptions towards another
peer.
A subscription further specifies
options such as the frequency with each the federation gateway should check for updates, etc.

It is important to notice that the federation gateway mechanisms for model information exchange
does not impose an overall peer organization/deployment architecture: tree like structures, fully or sparse
connected graphs, etc. are all possible.

Federation mechanisms

Before any interaction with a peer can take place the peer information needs to be provisioned
in the local CDS. A federation gateway has a dual role, as a server when responding to requests
from its peers and as a client when requesting information from them. The federation gateway
uses mutual authentication (https, tls), i.e. when a connection is established between two gateways
both sides need to present their certificates (signed by accepted CAs and so on). The subjectName
entry in a certificate received from a peer serves to identify the peer against the locally (CDS)
provisioned peer collection (the are no passwords or other credentials provisioned/exchanged).

The gateway periodically processes the list of locally provisioned peers; where subscriptions
towards a peer are found they are assigned to tasks who will query the peer with the given
subscription selector. Each resulting model will be compared against locally available
model information (in CDS) and new model/new revisions+artifacts will be fetched and provisioned.

In addition to the model information exchange APIs the federation gateway offers APIs for:

	status information (ping)

	in-band registration

	peer information sharing

Dependencies

At this point the federation gateway relies on only one Acumos component, the Common Data Service.

Federation Gateway Developer Guide

Building and Packaging

Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central (for most jars)

	Connectivity to Linux Foundation Nexus (for CDS jar)

Use below maven command to build and package the gateway service into a single jar:

mvn clean package

Development and Local Testing

This section provides information for developing and testing the federation gateway locally.
We will run two instances of the gateway to depict two instance of Acumos federated to each other.
In below scenario, we are going to run Acumos A and Acumos B for testing locally.

Launching

Start two microservice instances for development and testing as follows, with the appropriate version numbers:

java -Djavax.net.ssl.trustStore=src/test/resources/acumosTrustStore.jks \
 -Djavax.net.ssl.trustStorePassword=acumos \
 -jar target/gateway-1.x.y-SNAPSHOT.jar \
 --spring.profiles.active="default,acumosa"

java -Djavax.net.ssl.trustStore=src/test/resources/acumosTrustStore.jks \
 -Djavax.net.ssl.trustStorePassword=acumos \
 -jar target/gateway-1.x.y-SNAPSHOT.jar \
 --spring.profiles.active="default,acumosb"

REST Interface

The federation interface allows access via the federation gateway to information available in an Acumos system.
The main exposed elements are catalogs, solutions, artifacts, and documents.
The federation gateway allows pre-registered peers to retrieve a list of catalogs they are permitted to view.
The peers can then list solutions and revisions of those solutions published in those catalogs.
They can then retrieve metadata and content of artifacts referenced by those revisions.
For each catalog a solution revision appears in, peers can retrieve a description and document metadata and content

The gateway requires mutual authentication; i.e., the client will be required to present a certificate.
The gateway identifies a client as a pre-registered peer based on the certificates’ subjectName
(which implies that the subjectName must be communicated to the Acumos system administrator when the peer is provisioned).

API

All APIs except the artifact and document content APIs, encode the response in JSON. The artifact and document content APIs return unencoded data.
For other APIs, there is a top level envelope containing error information, and under the entry ‘responseBody’ it contains the actual content.
All identifiers are UUIDs.

Online documentation of the API is available on each interface at
/swagger-ui.html.

The following endpoints are defined on the public “E5” interface:

	/catalogs

List all visible (e.g. public) catalogs.

	/solutions?catalogId={catalogId}

List all solutions published to the specified catalog.

	/solutions/{solutionId}

Retrieve the specified solution, and its revisions.

	/solutions/{solutionId}/revisions

Retrieve the revisions of the specified solution.

	/solutions/{solutionId}/revisions/{revisionId}[?catalogId={catalogId}]

Retrieve details of the specified revision, including its artifacts.
If the optional catalogId query parameter is specified, the description
of the revision and any documents associated with it, from the specified
catalog, will also be included.

	/solutions/{solutionId}/revisions/{revisionId}/artifacts

List all artifacts attached to a particular revision

	/artifacts/{artifactId}/content

Retrieve the content of the specified artifact

	/revision/{revisionId}/documents?catalogId={catalogId}

Retrieve documents associated with the specified revision in the specified
catalog.

	/documents/{documentId}/content

Retrieve the content of the specified document

	/modeldata

Sends model data to supplier of the model.

	/updateparams

Sends parameters to deployed models.

Federation Gateway

	Federation Gateway Overview
	Architecture

	Developer Resources

	Federation Gateway Server Design Notes
	The public “E5” interface

	The private interface

	Federation concepts

	Federation mechanisms

	Dependencies

	Federation Gateway Developer Guide
	Building and Packaging

	Development and Local Testing

	REST Interface

	Selectors and Subscriptions

	Federation Gateway Configuration Guide
	Configuration Properties

	Federation Gateway Certificate Generation
	Background

	Overview

	Create Certificates

	Final Checklist

	Troubleshooting

	Template openssl.cnf

	Developer Guide for the Federation Gateway Clients
	Maven Dependency

	Building and Packaging

	Client Packages

	Client Usage Example

	Federation Gateway Release Notes
	Version 3.2.3, 2020-06-03

	Version 3.2.2, 2020-03-24

	Version 3.2.1, 2020-03-12

	Version 3.2.0, 2020-02-17

	Version 3.1.2, 2020-03-12

	Version 3.1.1, 2020-01-27

	Version 3.1.0, 2019-12-16

	Version 3.0.3, 2020-02-26

	Version 3.0.2, 2019-11-04

	Version 3.0.1, 2019-09-26

	Version 3.0.0, 2019-09-13

	Version 2.3.0, 2019-09-06

	Version 2.2.1, 2019-07-18

	Version 2.2.0, 2019-04-16

	Version 2.1.2, 2019-03-27

	Version 2.1.1, 2019-03-07

	Version 2.1.0, 2019-03-05

	Version 2.0.1, 2019-02-26

	Version 2.0.0, 2019-02-20

	Version 1.18.7, 2018-10-30

	Version 1.18.6, 2018-10-08

	Version 1.18.5, 2018-10-02

	Version 1.18.4, 2018-09-21

	Version 1.18.3, 2018-09-14

	Version 1.18.2, 2018-09-13

	Version 1.18.1, 2018-09-05

	Version 1.18.0, 2018-09-05

	Version 1.17.1, 2018-09-04

	Version 1.17.0, 2018-08-14

	Version 1.16.1, 2018-08-08

	Version 1.16.0, 2018-08-01

	Version 1.15.1, 2018-07-31

	Version 1.1.5, 2018-07-12

	Version 1.1.4.1, 2018-07-11

	Version 1.1.4, 2018-06-20

	Version 1.1.3, 2018-05-10

	Version 1.1.2, 2018-04-19

	Version 1.1.1, 2018-04-13

	Version 1.1.0, 2018-03-09

	Version 1.0.0, 2018-02-12

	Version 0.2.0, 2017-11-28

	Model Data Admin Guide
	Overview

	Example Model Data Parameters

	Example Log stash configuration

Model Data Admin Guide

Overview

The Model data api allows model data such as parameters to flow from a running model in
a subscriber’s instance of Acumos to a supplier’s instance of Acumos. In addition to
the federation gateway /peer/{peerId}/modeldata api we must connect logstash to send
the updated model parameters.

Example Model Data Parameters

{
 "@version": "1",
 "@timestamp": "2020-02-17T21:21:09.338Z",
 "tags": [
 "acumos-model-param-logs",
 "beats_input_raw_event"
],
 "model": {
 "userId": "12345678-abcd-90ab-cdef-1234567890ab",
 "revisionId": "1c0a4ea4-e822-4fb3-bef1-11f92958c315",
 "solutionId": "149ea34c-44fc-4329-8189-52d3ae523a15"
 },
 "value": {
 "B": "121",
 "C": "270",
 "A": "601"
 }
}

Example Log stash configuration

Log stash has 2 important configuration changes

	http output plugin sending logs from model runner to gateway service

output
 ...
 if "acumos-model-param-logs" in [tags] {
 elasticsearch {
 hosts => ["elasticsearch:9200"]
 index => "acumos-model-param-logs"
 }

 http {
 keystore => "/app/certs/acumos-keystore.p12"
 keystore_password => "[KEYSTORE_PASSWORD]"
 keystore_type => "PKCS12"
 truststore => "/app/certs/acumos-truststore.jks"
 truststore_password => "[TRUSTSTORE_PASSWORD]"
 retry_failed => false
 http_method => "post"
 url => "https://[GATEWAY_SERVICE]:[GATEWAY_PORT]/peer/USE_SOLUTION_SOURCE/modeldata"
 }

	http input plugin for accepting log entries from federation service.

input
...
 http {
 port => 5043
 }

Federation Gateway Overview

The Acumos Federation Gateway feature provides a mechanism to exchange models
between two Acumos instances via a secure network channel.
The goal was to have a mechanism that provides great flexibility when designing a deployment.
The Gateway feature does not define how multiple Acumos instances are to be interconnected
or what roles they play.

Like many other system components, the Gateway is implemented as a server that listens
for requests on a REST API. The Gateway provides two interfaces, both using REST:

	Public: towards peers (also known as the “E5” interface)

	Private: changes between gateway and different adapter implementations

The Gateway feature is delivered as a docker image containing the Federation
Gateway server, a Java library containing the client implementations for the
two interfaces, and a Java library containing a unit test tool for simulating
responses to client requests.

Architecture

The following picture shows how the gateway components communicate with each other and with
other Acumos features. All communication is secured by use of client and server certificates.

[image: Federation Gateway Architecture]

Developer Resources

The source is available from the Linux Foundation Gerrit server:

https://gerrit.acumos.org/r/gitweb?p=federation.git;a=summary

The build (CI) jobs are in the Linux Foundation Jenkins server:

https://jenkins.acumos.org/view/federation/

Issues are tracked in the Linux Foundation Jira server:

https://jira.acumos.org/secure/Dashboard.jspa

Project information is available in the Linux Foundation Wiki:

https://wiki.acumos.org/

Federation Gateway Release Notes

This server is available as a Docker image in a Docker registry at the Linux Foundation.
The image name is “federation-gateway” and the tag is a version string as shown below.

Version 3.2.3, 2020-06-03

	Prevent oversize user notifications (ACUMOS-4177 [https://jira.acumos.org/browse/ACUMOS-4177])

Version 3.2.2, 2020-03-24

	Adding support for updating params to deployed model (ACUMOS-3742 [https://jira.acumos.org/browse/ACUMOS-3742])

Version 3.2.1, 2020-03-12

	LicenseAsset support NexusArtifactClient - ACUMOS-3960 [https://jira.acumos.org/browse/ACUMOS-3960]

Version 3.2.0, 2020-02-17

	Adding support for model data sending over federation gateway (ACUMOS-3920 [https://jira.acumos.org/browse/ACUMOS-3920])

	Fix solution sourceId !=null (ACUMOS-4021 [https://jira.acumos.org/browse/ACUMOS-4021])

Version 3.1.2, 2020-03-12

	Update dependency version for the common data service client to 3.1.0 (ACUMOS-3845 [https://jira.acumos.org/browse/ACUMOS-3845])

	Bump version to avoid conflict with work on master branch for demeter

	Part of the Clio maintenance/point release

Version 3.1.1, 2020-01-27

	Update dependency version for the common data service client to 3.1.1 (ACUMOS-3951 [https://jira.acumos.org/browse/ACUMOS-3951])

Version 3.1.0, 2019-12-16

	Update dependency version for the common data service client to 3.1.0 (ACUMOS-3845 [https://jira.acumos.org/browse/ACUMOS-3845])

Version 3.0.3, 2020-02-26

	LicenseAsset support NexusArtifactClient - ACUMOS-3960 [https://jira.acumos.org/browse/ACUMOS-3960]

Version 3.0.2, 2019-11-04

	Don’t re-tag imported docker images unless the tag is different (ACUMOS-3670 [https://jira.acumos.org/browse/ACUMOS-3670])

	Update dependency versions for the security and license profile validation clients (ACUMOS-3669 [https://jira.acumos.org/browse/ACUMOS-3669])

Version 3.0.1, 2019-09-26

	When a model has been federated, register it with the license manager (ACUMOS-3484 [https://jira.acumos.org/browse/ACUMOS-3484])
* This adds a new required configuration value, “license-manager.url” for the

license management service.

Version 3.0.0, 2019-09-13

	Upgrade server to Java 11. Compile client for Java 8 (ACUMOS-3334 [https://jira.acumos.org/browse/ACUMOS-3334])
* Compile and run with Java 11, but keep client library compliance level at Java 8.

	Add “acumos/” prefix to container image name

	Update to CDS 3.0.0

Version 2.3.0, 2019-09-06

	Portal to show details of federation actions (ACUMOS-1778 [https://jira.acumos.org/browse/ACUMOS-1778])

	Run SV license scan when a model has been federated (ACUMOS-3396 [https://jira.acumos.org/browse/ACUMOS-3396])
* This adds a new required configuration value, “verification.url” for the

security verification service.

	Java code upgrade to Java 11 (ACUMOS-3334 [https://jira.acumos.org/browse/ACUMOS-3334])

	Update to CDS 2.2.6

	Fix DI artifact create fail due to Federation use of a stale TCP stream (ACUMOS-3193 [https://jira.acumos.org/browse/ACUMOS-3193])

	Federated model DI name to include model name - same as source peer DI name (ACUMOS-3195 [https://jira.acumos.org/browse/ACUMOS-3195])

	Publish E5 Federation client library (ACUMOS-2760 [https://jira.acumos.org/browse/ACUMOS-2760])

3 new sub-projects are introduced, in addition to the existing “gateway” sub-project.
* “acumos-fgw-client-config” contains bean classes used to specify properties

of a client’s connection to its server, including basic authentication and
TLS (SSL) related properties.

	“acumos-fgw-client-test” contains classes for providing mock responses to
a client for testing applications that make calls to a server, as well as
dummy key store and trust store files to enable a client to be used to
test a server.

	“acumos-fgw-client” contains implementations of clients for both the
external “E5” and private interfaces to the Acumos Federation Gateway
as well as bean classes for the JSON wire formats used by those interfaces.

The existing “gateway” project is modified to use the client subproject when
making requests to a peer Acumos instance, when sending or receiving
artifacts from the Nexus server, and for creating the rest template used
to communicate with CDS.

	Access to the Swagger API is fixed and now gives responses appropriate to
the interface being queried (external “E5” or private).

	Some configuration is simplified.
* The federation.ssl.client-auth configuration parameter is now named

federation.client-auth and defaults to WANT, enabling access to the
Swagger specification on the external “E5” interface without requiring
a client certificate. Attempts to access the REST API endpoints without
providing a client certificate will return a 403 Forbidden error.

	The local.ssl.client-auth configuration parameter is now named
local.client-auth and defaults to WANT, enabling access to the
Swagger specification on the private interface without requiring
a client certificate. Attempts to access the REST API endpoints without
providing a client certificate will return a 403 Forbidden error.

	The federation.registration.enabled configuration parameter is now named
federation.registration-enabled. It still defaults to False.

	The federation.instance configuration parameter no longer needs to be set to
“gateway” and no longer has any effect.

	The value “local” in the spring.profiles.active configuration parameter no
longer has any effect.

	The catalog.catalogs-selector configuration parameter no longer has any effect.

	The various task.* configuration parameters no longer have any effect.

	The cdms.client.page-size configuration parameter no longer has any effect.

	The catalog-local.source, catalog-local.catalogs, codes-local.source,
peers-local.source, and peer-local.interval configuration parameters no
longer have any effect.

	Documentation is updated to reflect these changes.

Version 2.2.1, 2019-07-18

	Fix Boreas branch Jenkins build not working (ACUMOS-3244 [https://jira.acumos.org/browse/ACUMOS-3244])

	Fix DI artifact create fail due to Federation use of a stale TCP stream (ACUMOS-3193 [https://jira.acumos.org/browse/ACUMOS-3193])

	Federated model DI name to include model name - same as source peer DI name (ACUMOS-3195 [https://jira.acumos.org/browse/ACUMOS-3195])

Version 2.2.0, 2019-04-16

	Increase Spring async task timeout value (spring.mvc.async.request-timeout)
to 10 minutes (ACUMOS-2749 [https://jira.acumos.org/browse/ACUMOS-2749])

This prevents timeouts during retrieval of large docker image artifacts.

	Update to CDS 2.2.x with subscription by catalogs (ACUMOS-2732 [https://jira.acumos.org/browse/ACUMOS-2732])

This makes changes to the REST api for accessing Federation on both the
public and private interfaces:

	When listing solutions, the optional selector query parameter is replaced
by a required catalogId query parameter

	When getting revision details an optional catalogId query parameter is
added, used to retrieve descriptions and documents, from that catalog, for
the revision. If not specified, no descriptions or documents are returned.

	When getting artifact and document content, the form of the URI is changed
to eliminate the unused solution and revision IDs.

	When getting documents for a revision, the form of the URI is changed
to eliminate the unused solution ID and a required catalogID query parameter
is added.

Solution revisions in CDS no longer have access type codes, so the (optional)
catalog.default-access-type-code configuration parameter has been removed.

	Eliminate vulnerabilities and many “code smells” identified by SONAR.

Version 2.1.2, 2019-03-27

	Add JUnit test cases to reach 50% or better code coverage (ACUMOS-2584 [https://jira.acumos.org/browse/ACUMOS-2584])

	Add API to list remote catalogs to support subscribing (ACUMOS-2575 [https://jira.acumos.org/browse/ACUMOS-2575])
API to list catalogs is /catalogs

	Refactor code to avoid duplication related to implementing listing remote catalogs.

	Documentation configuration parameters (ACUMOS-2661 [https://jira.acumos.org/browse/ACUMOS-2661])

Version 2.1.1, 2019-03-07

	Solution picture should be copied (ACUMOS-2570 [https://jira.acumos.org/browse/ACUMOS-2570])

Version 2.1.0, 2019-03-05

	Update to CDS 2.1.2

Version 2.0.1, 2019-02-26

	Add catalogId field in solution search selector (ACUMOS-2285 [https://jira.acumos.org/browse/ACUMOS-2285])

	Normalize configured Nexus URL to have exactly one trailing slash (ACUMOS-2554 [https://jira.acumos.org/browse/ACUMOS-2554])

	Allow server to run as unprivileged user (ACUMOS-2551 [https://jira.acumos.org/browse/ACUMOS-2551])

	Various problems found with version 2.0.0 (ACUMOS-2570 [https://jira.acumos.org/browse/ACUMOS-2570])
- List dependency on jersey-hk2 for spring-boot
- Instant rendered as JSON object rather than seconds since epoch
- Seconds since epoch may parse as Integer instead of Long

Version 2.0.0, 2019-02-20

	Use Boreas log pattern; remove EELF (ACUMOS-2329 [https://jira.acumos.org/browse/ACUMOS-2329])

	Fix repeated update of metadata (ACUMOS-2399 [https://jira.acumos.org/browse/ACUMOS-2399])

	Update to CDS 2.0.7

Version 1.18.7, 2018-10-30

	Fix the subscription task early cancellation (ACUMOS-1937 [https://jira.acumos.org/browse/ACUMOS-1937])

	Fix the preemptive authentication (ACUMOS-1952 [https://jira.acumos.org/browse/ACUMOS-1952])

Version 1.18.6, 2018-10-08

	Fix for the handling of mis-represented content uris (ACUMOS-1780 [https://jira.acumos.org/browse/ACUMOS-1780])

	Adds subscription option directing the handling of error in content retrieval with respect to catalog updates

Version 1.18.5, 2018-10-02

	Fix for loss of file name prefix/suffix (ACUMOS-1780 [https://jira.acumos.org/browse/ACUMOS-1780])

	Fix for processing of docker artifacts, push to the local registry (ACUMOS-1781 [https://jira.acumos.org/browse/ACUMOS-1781])

	Add peer ‘isActive’ as controller calls pre-authorization check

	Fix the artifact content processing condition in the gateway

Version 1.18.4, 2018-09-21

	Fix download of large artifacts

	Upgrade Spring-Boot to 1.5.16.RELEASE (ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754])

Version 1.18.3, 2018-09-14

	Increase max heap size

	configuration changes:
new top level docker configuration block:

"docker": {
 "host": "tcp://your_host:port",
 "registryUrl": "your_registry:port",
 "registryUsername": "docker_username",
 "registryPassword": "docker_password",
 "registryEmail": ""
}

Version 1.18.2, 2018-09-13

	Rely on solution detail API for mapping (ACUMOS-1690 [https://jira.acumos.org/browse/ACUMOS-1690])

	Add binary stream to resource http content mapper (ACUMOS-1690 [https://jira.acumos.org/browse/ACUMOS-1690])

	Allow configuration of underlying executor and scheduler

	Do not overwrite user during mapping for local solutions

Version 1.18.1, 2018-09-05

	Simplified catalog solutions lookup

	Fix ‘self’ peer not found (ACUMOS-1694 [https://jira.acumos.org/browse/ACUMOS-1694])

	Fix task scheduler initialization (ACUMOS-1690 [https://jira.acumos.org/browse/ACUMOS-1690])

	Fix solution tag handling

	Move solution and revision updates to service interface

Version 1.18.0, 2018-09-05

	Align with data model changes from CDS 1.18.x

	Fix subscription update processing (ACUMOS-1693 [https://jira.acumos.org/browse/ACUMOS-1693])

Version 1.17.1, 2018-09-04

	Spread the use of configuration beans (ACUMOS-1692 [https://jira.acumos.org/browse/ACUMOS-1692])

Version 1.17.0, 2018-08-14

	Align with data model changes from CDS 1.17.x

	Add revision document federation (ACUMOS-1606 [https://jira.acumos.org/browse/ACUMOS-1606])

	Add tag federation (ACUMOS-1544 [https://jira.acumos.org/browse/ACUMOS-1544])

	Fix authorship federation (ACUMOS-626 [https://jira.acumos.org/browse/ACUMOS-626])

	The federation API for access to artifact and document content access have changed
to /solutions/{solutionId}/revisions/{revisionId}/artifacts/{artifactId}/content
and /solutions/{solutionId}/revisions/{revisionId}/documents/{documentId}/content

Version 1.16.1, 2018-08-08

	Temporary patch for tag handling during federation procedures

Version 1.16.0, 2018-08-01

	Aligns with the data model changes from CDS 1.16.x

	Minor fixes in order to adhere to project coding standards.

Version 1.15.1, 2018-07-31

	Fixes catalog solution lookup strategy due to used criteria moving to other entities (solution -> revision)

	Fixes some Sonar complaints

	Adds more unit tests for CDS based service implementations

	Align version numbers with CDS

Version 1.1.5, 2018-07-12

	Aligns with the data model changes from CDS 1.15 (ACUMOS-1330 [https://jira.acumos.org/browse/ACUMOS-1330])

Version 1.1.4.1, 2018-07-11

	Fix handling of docker images with no tags (ACUMOS-1015 [https://jira.acumos.org/browse/ACUMOS-1015])

Version 1.1.4, 2018-06-20

	Fix result size test when retrieving ‘self’ peer

	Fix handling of null solutions filter in the service. Fix the handling of no such item errors in catalog controller.

Version 1.1.3, 2018-05-10

	Upgrade to CDS 1.14.4

Version 1.1.2, 2018-04-19

	Revise code for Sonar warnings (ACUMOS-672 [https://jira.acumos.org/browse/ACUMOS-672])

Version 1.1.1, 2018-04-13

	Unit tests for local interface

	Separate federation and local service interfaces (ACUMOS-276 [https://jira.acumos.org/browse/ACUMOS-276])

Version 1.1.0, 2018-03-09

	Separate between federation and local interface with respect to network configuration, authorization and available REST API.

	Upgrade to CDS 1.14.0

Version 1.0.0, 2018-02-12

	Use release (not snapshot) versions of acumos-nexus-client and common-dataservice libraries

	Limit JVM memory use via Docker start command

	Revise docker projects to deploy images to nexus3.acumos.org

	Make aspectjweaver part of runtime

	Add dependency copy plugin

Version 0.2.0, 2017-11-28

	Support to CDS 1.9.0

	2-Way SSL Support

	X509 Subject Principal Authentication

Selectors and Subscriptions

The Acumos federation gateway supports polling other Acumos instances for
solutions using a subscription mechanism. This subscription contains a
selector specifying which catalogs should be imported.

The form of the selector value can be:

{ “catalogId”: “some-catalog-id” }

or:

{ “catalogId”: [“first-catalog-id”, “second-catalog-id”, …] }

where a catalog ID is the UUID of the catalog: something like
70c19e97-b37d-4738-b363-2d352b2d0f05.

Acumos Federation Gateway Server

This sub-project contains classes implementing the Acumos Federation Gateway server.

Please see the documentation in the parent project’s “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Generic/H2O Model Runner

In the application.properties file under resources directory, the property, model_type, defines the type of model runner this is. If model_type is defined and the value is G, then this is a generic Java Model Runner, invoking generic models internally; otherwise, this is a H2O Model Runner, running H2O models instead.

The model runner takes a proto string, extracts attributes information from
this proto string, and writes this proto string to dataset.proto file. The model
runner then invokes protoc compiler to compile this dataset.proto file to generate
DatasetProto.java file. After that the model runner invokes javac compiler
and compiles this java file to the corresponding class files.

There are eight end points in the Model Runner, five of them are POST requests - /model/methods/{name}, /transform, /transformDefault, /getBinary and /getBinaryDefault; and the rest are PUT requests - /putProto, /putModel, /putModelConfig.

For /model/methods/{name} API, the request body contains a binary string that the model runner needs to parse before passing it to the predictor. The {name} must match one of the service methods specified in the proto file. To parse, the model runner dynamically load all the relevant DatasetProto$*** classes generated by protoc and javac compiler at run time so that it can use its de-serialization methods. After the binary stream gets de-serialized, the results will be used to construct the row data(for H2O Models) or CSV-like row strings(for Generic Java Model) in the format that the predictor accepts. The Model Runner then re-serialize the results and send it back to the client.

The /transform and /transformDefault APIs allow the users to directly upload a .csv file that contains all the columns of data that match with what’s specified in the default.proto file. All the CSV files must have a header. The fields in the header should match the fields in the proto file. The end point /transform allows users to upload different proto file and model archive(.zip or .jar). The end point /transformDefault uses the default proto file and model.zip/model.jar as specified in the application.properties file. The model runner will build the binary representation of the .csv file using the DatasetProto$* classes which saves the users from having to convert the .csv file to binary stream themselves. Both end points will return the prediction results.

The /getBinary and /getBinaryDefault APIs are utilities allowing users to upload a .csv file and returning its binary representation in array of byte[]. The users can use this returned byte string as input data to the /predict API.

The /putModel, /putProto, /putModelConfig allows users to replace the current model, protofile, and modelConfig.properties file.

Requirements

In order for the Model Runner to be able to dynamically load the plugin jar that contains the proto classes at run time, the plugin jar must be outside the project directories. The application.properties specifies the default plugin root directory, ${plugin_root}, which if not existed, will be created when the Model Runner starts. When the Model Runner receives a POST request, it will put the generated JAVA code under ${plugin_root}/src directory and generated class files under ${plugin_root}/classes directory. Therefore, these two directories, ${plugin_root}/src and ${plugin_root}/classes, must also be present. If not, the model runner will create them.

Supported Methods and Objects

The micro service methods and objects are documented using Swagger. A running server documents itself at a URL like the following, but consult the server’s application.properties file for the exact port number (“8334”) and context root (“modelrunner”) in use:

http://localhost:8334/modelrunner/swagger-ui.html

Build Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central (for most jars)

	protoc compiler for JAVA

	protobuf JAVA Runtime Library 3.4.0

Build and Package

Use maven to build and package the service into a single “fat” jar using this command:

mvn clean install

Launch Prerequisites

	Java version 1.8

	A valid application.properties file.

	protoc compiler for JAVA

	protobuf JAVA Runtime Library 3.4.0

Launch Instructions

Start the microservice for development and testing like this:

mvn clean spring-boot:run

To launch from Eclipse, run the class org.acumos.modelrunner.Application

To launch from the command line with an external configuration file, type like this:

java -jar ./target/modelrunner-2.1.0-SNAPSHOT.jar --spring.config.location=./application.properties

Generic Model Runner Developer Guide

Overview

In the application.properties file under resources directory, the property, model_type, defines the type of model runner this is. If model_type is defined and the value is G, then this is a generic Java Model Runner, invoking generic models internally; otherwise, this is a H2O Model Runner, running H2O models instead.

The model runner takes a proto string, extracts attributes information from
this proto string, and writes this proto string to dataset.proto file. The model
runner then invokes protoc compiler to compile this dataset.proto file to generate
DatasetProto.java file. After that the model runner invokes javac compiler
and compiles this java file to the corresponding class files.

There are following POST end points in the Model Runner - /{operation}, /transformCSV, /transformCSVDefault, /getBinary, /getBinaryDefault, /transformJSON, /transformJSONDefault, /getBinaryJSON and /getBinaryJSONDefault; and three PUT end points - /model, /proto, and /model/configuration.

For /{operation} API, the request body contains a binary string that the model runner needs to parse before passing it to the predictor.
To parse, the model runner dynamically load all the relevant DatasetProto$*** classes generated by protoc and javac compiler at run time so that it can use its de-serialization methods. After the binary strings get de-serialized, the results will be used to construct the row data in the format that the predictor accepts. The Model Runner then re-serialize the results and send it back to the client.

The /transformCSV and /transformCSVDefault APIs allow the users to directly upload a .csv file that contains all the columns of data that match with what’s specified in the default.proto file. The first one, /transform, also allows the users to upload the corresponding XXX.proto file and modelXXX.zip files. The second one, /transformDefault, will use the defaults.proto and model.zip in the directory specified in the application.properties file. The model runner will build the binary representation of the .csv file using the DatasetProto$*** classes which saves the users from having to convert the .csv file to binary string themselves. Both end points will return the prediction results.

The /getBinary and /getBinaryDefault APIs are utilities allowing users to upload a .csv file and returning its binary representation in array of byte[]. The users can use this returned byte string as input data to the /operation/{operation} API.

The users can use the three PUT requests, /model, /model/configuration, and /proto, to replace the existing resources, the current uploaded model, the model configuration file, and the default proto file, respectively.

Requirements

In order for the Model Runner to be able to dynamically load the plugin jar that contains the proto classes at run time, the plugin jar must be outside the project directories. The application.properties specifies the default plugin root directory, ${plugin_root}, which if not existed, will be created when the Model Runner starts. When the Model Runner receives a POST request, it will put the generated JAVA code under ${plugin_root}/src directory and generated class files under ${plugin_root}/classes directory. Therefore, these two directories, ${plugin_root}/src and ${plugin_root}/classes, must also be present. If not, the model runner will create them.

Supported Methods and Objects

The micro service methods and objects are documented using Swagger. A running server documents itself at a URL like the following, but consult the server’s application.properties file for the exact port number (“8334”) and context root (“modelrunner”) in use:

http://localhost:8334/modelrunner/swagger-ui.html

Build Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central (for most jars)

	protoc compiler for JAVA

Build and Package

Use maven to build and package the service into a single “fat” jar using this command:

mvn clean install

Launch Prerequisites

	Java version 1.8

	A valid application.properties file.

	protoc compiler for JAVA

	protobuf JAVA Runtime Library > 3.4.0

Launch Instructions

Start the microservice for development and testing like this:

mvn clean spring-boot:run

To launch from Eclipse, run the class org.acumos.modelrunner.Application

To launch from the command line with an external configuration file, type like this:

java -jar ./target/modelrunner-0.0.1-SNAPSHOT.jar –spring.config.location=./application.properties

Generic Model Runner

Contents:

	Generic Model Runner Release Notes
	Version 2.3.0, 12 May 2019

	Version 2.2.5, 22 April 2019

	Version 2.2.4, 2 February 2019

	Version 2.2.3, 20 August 2018

	Version 2.2.2, 13 August 2018

	Version 2.2.1, 18 July 2018

	Version 2.2.0, 30 April 2018

	Version 2.1.3, 25 April 2018

	Version 2.1.2, 16 April 2018

	Version 2.1.1, 5 April 2018

	Version 2.1.0, 4 April 2018

	Version 2.0.1, 15 March 2018

	Version 2.0.0, 22 February 2018

	Version 1.0.3, 3 January 2018

	Version 1.0.2, 6 December 2017

	Generic Model Runner Developer Guide
	Overview

	Requirements

	Supported Methods and Objects

	Build Prerequisites

	Build and Package

	Launch Prerequisites

	Launch Instructions

Generic Model Runner Release Notes

The server is deployed within a Docker image in the Docker registry.

Version 2.3.0, 12 May 2019

	Rename /{operation} to /model/methods/{name} (ACUMOS-732)

Version 2.2.5, 22 April 2019

	Generic model runner run containerized process as unprivileged user

Version 2.2.4, 2 February 2019

	Tweak command that always downloads the latest protobuf JAVA runtime library

Version 2.2.3, 20 August 2018

	Allow missing data in the last field of CSV input dataset (ACUMOS-1613)

	Remove Java Doc warnings

Version 2.2.2, 13 August 2018

	Auto-generate a header for all generic Java models when the model input is CSV format. The model runner will combine this header with de-serialized data after un-marshaling binary stream and feed it into the model (ACUMOS-1580)

Version 2.2.1, 18 July 2018

	Add /getBinaryJSON (ACUMOS-1164)

	Add /getBinaryJSONDefault (ACUMOS-1164)

	Add /transformJSON (ACUMOS-1164)

	Add /transformJSONDefault (ACUMOS-1164)

Version 2.2.0, 30 April 2018

	Change /operation/{operation} to /{operation} (ACUMOS-769)

	Change /transform to /transformCSV

	Change /transformDefault to /transformCSVDefault

	Change /putProto to /proto

	Change /putModel to /model

	Change /putModelConfig to /model/configuration

Version 2.1.3, 25 April 2018

	Add conditional check to make sure empty rowData will not be fed into the H2O model (ACUMOS-728)

	Force all the numeric input fields of H2O models to double/String (ACUMOS-716)

Version 2.1.2, 16 April 2018

	Remove the use of getVersion.sh which gets the latest version of protobuf runtime library and implement corresponding steps using ProcessBuilder Java class (ACUMOS-673)

Version 2.1.1, 5 April 2018

	Support non-scalar ENUM data type in the proto file for all POST end points (ACUMOS-631)

	The ENUM can be standalone or embedded in a message (ACUMOS-631)

Version 2.1.0, 4 April 2018

	Support embedded messages - messages defined inside another messages (ACUMOS-632)

Version 2.0.1, 15 March 2018

	Enhance end points /transform, /transformDefault, /getBinary, /getBinaryDefault to accept nested message proto files with no naming restriction

	Add /putModelConfig to allow uploading new modelConfig.properties

	Modify /putProto to allow replacing current default protofile

	Modify /putModel to allow replacing current model.

	Add JUnit test cases for all above end points.

Version 2.0.0, 22 February 2018

	Add /operation/{operation} end point

	Only proto3 syntax is supported.

	Please note that required fields are not allowed in proto3.

	Please also note that explicit ‘optional’ labels are disallowed in the Proto3 syntax. To define ‘optional’ fields in Proto3, simply remove the ‘optional’ label, as fields are ‘optional’ by default.

	Remove all restrictions on the naming and number of input and output messages.

	The service structure must be present. Model Runner based on this structure to find operation name, input messages, and output messages.

	Support 15 scalar data types in all defined messages.

Version 1.0.3, 3 January 2018

	Add /putModel end point and add /putProto end point

Version 1.0.2, 6 December 2017

	Support /predict, /transform, /transformDefault, /getBinary, /getBinaryDefault end points

	The first line of the proto file must specify proto3 syntax

	The proto file must define three messages: DataFrameRow, DataFrame, and Prediction

	The input message is always DataFrame which contains only one field as “repeated DataFrameRow rows = 1;”

	The output message is always Prediction which contains only one field as “repeated string prediction = 1;”

	Support 15 scalar data types in the DataFrameRow message as defined in https://developers.google.com/protocol-buffers/docs/proto3#generating

	The service structure is not required in this release.

Generic Model Runner Tutorial

This is a tutorial about the generic model runner.
(TODO)

Acumos On-Boarding

The Acumos On-Boarding project contains the On-Boarding application.

Refer to the docs/ folder for details.

Acumos On-Boarding Base Images

This directory holds docker files to build images used when creating a micro service.
These images require many Linux packages and the apt-get steps sometimes fail randomly.
Staging base images reduces the time of image creation and the chance of random failure.

Application Programming Interfaces

It exists four API used by the Model On-Boarding project. Two to authenticate users before on-boarding an
two others to push models bundle and models under ONNX or PFA format in Acumos.

Regarding authentication you can use one or the other to authenticate yourself.

Regarding the push API, one is dedicated to models built with R, python or Java, and the other one is
dedicated to ONNX and PFA model.

API Group 1

Validate API-Token API : This API provide an API Token (available in the user settings) that can be
used to onboard a model.

	Portal will expose validateApiToken

	URL=http://{HOST}/auth/validateApiToken

	input:apiToken , Username

	output:ResponseDetail – “Valid Token” for success / “Validation Failed” for failure

	ResponseBody: UserId for success only

Portal Webonboarding will pass access_token = username:apitoken in the header “Authorization”
Request to Onboarding Onboarding will use the Header Info to get the Username + apitoken

Authentication API : This API provides a JWT token that can be used to onboard a model

	URL=http://hostname:ACUMOS_ONBOARDING_PORT/onboarding-app/v2/auth

	Method = GET.

	input : User_Name, Password.

	output : authentication token.

	hostname : the hostname of the machine in which Acumos have been installed.

	ACUMOS_ONBOARDING_PORT : You can retrieve the value of this variable in the acumos-env.sh file.

	Description : Checks User Name & password to provide an authentication token.

API Group 2

Push model bundle API : This API is used to on-board the model bundle in Acumos for R, Python or Java models by WEB or CLI on-boarding

	URL=http://hostname:ACUMOS_ONBOARDING_PORT/onboarding-app/v2/models

	Method = POST

	data Params :

	model (Required - file for model bundle model.zip to onboard, Parameter Type - formdata)

	metadata (Required - model.protobuf file for model to onboard, Parameter Type - formdata)

	schema (Required - metadata.json file for model, Parameter Type - formdata)

	license (optional parameter - license.json associated with model, Parameter Type - formdata)

	Authorization(Optional - jwt token or username:apitoken, Parameter Type - header)

	isCreateMicroservice (Optional - boolean value to trigger microservice generation, default=true, Parameter Type - header)

	tracking_id (Optional - UUID for tracking E2E transaction from Portal to onboarding to microservice generation, Parameter Type - header)

	provider (Optional - for portal authentication, Parameter Type - header)

	shareUserName (Optional - User Name for sharing the model as co-owner, Parameter Type - header)

	modName (Optional - Model Name to be used as display name else Model name from metadata is used, Parameter Type - header)

	deployment_env (Optional - Identify deployment environment for model as DCAE or non-DCAE, default is non-DCAE, Parameter Type - header)

	Request-ID (Optional - UUID received from Portal else generated for tracking transaction in CDS, Parameter Type - header)

	hostname : the hostname of the machine in which Acumos have been installed.

	ACUMOS_ONBOARDING_PORT : You can retrieve the value of this variable in the acumos-env.sh file.

	Description : Upload the model bundle on the on-boarding server.

Push model API : This API is used by web onboarding only to upload ONNX or PFA models in Acumos

	URL=http://hostname:ACUMOS_ONBOARDING_PORT/onboarding-app/v2/advancedModel

	Method = POST

	data params :

	model (Optional - file for model to onboard - ONNX/PFA file, Parameter Type - formdata)

	license (optional parameter - license.json associated with model, Parameter Type - formdata)

	modelname (Required - Model Name to be used as display name, Parameter Type - header)

	Authorization (jwt token or username:apitoken, Parameter Type - header)

	isCreateMicroservice (boolean value to trigger microservice generation, default=false, Parameter Type - header)

	dockerfileURL (Optional - if docker URL is given then file is not necessary, Parameter Type - header)

	provider (optional parameter - for portal authentication, Parameter Type - header)

	tracking_id (optional parameter - UUID for tracking E2E transaction from Portal to onboarding to microservice generation, Parameter Type - header)

	Request-ID (optional parameter - UUID received from Portal else generated for tracking transaction in CDS, Parameter Type - header)

	shareUserName (optional parameter - User Name for sharing the model as co-owner, Parameter Type - header)

	hostname : the hostname of the machine in which Acumos have been installed.

	ACUMOS_ONBOARDING_PORT : You can retrieve the value of this variable in the acumos-env.sh file

Swagger

You can also access to a swagger to test the API independantly of the onboarding client. This swagger is located at : https://namespace/onboarding-app/swagger-ui.html

“namespace” is the value of namespace variable you put in global_value.yaml file

On-Boarding Developer Guide

This is the developers guide to Onboarding.

1: Target Users

This guide is targeted towards the open source user community that:

	Intends to understand the backend functionality of the Onboarding.

	Intends to contribute code to enhance the functionality of the Onboarding.

2: Assumptions

It is assumed that the ML Models contributed by the open source community an created under Java 8 or
9, Python>=3.5, <3.7 or R>=3.4.4 :

	Provide the basic request response style of communication.

	Can be converted in Microservices.

	Are capable of communicating via Http REST mechanism.

3: Onboarding High level Design Architecture

Below is high-level flow of model onboarding

[image: image1]

For models developed in Java, Python and R the data scientist will use the Acumos client library to
create some artifacts embeded them in a model bundle. This model bundle can be pushed to the platform
by using WEB on-boarding or command line (CLI) thanks to REST interface exposed by the Acumos
onboarding server.

[image: image1bis]

For model in a model interchange format like ONNX and PFA only web interface is useable to upload
them in the platform. For the moment micro-service generation cannot be triggered for ONNX and PFA
models.

[image: image1ter]

For model Dockerized and stored in repo outside Acumos (like for example Docker hub) you can save the
model URI in Acumos. You can also dockerize your models by yourself and on-board them in Acumos.

4: Onboarding Low Level Design for R, Java, Python, ONNX and PFA models

For models created with R, Java or Python, Data scientists must use Acumos-client-library specific
to the toolkit type to push the model to Acumos platform. The client library creates first the model
bundle composed of model binary, metadata file and protobuf definition for model input/output. Then
data scientists can choose to onboard the model bundle by WEB on-boarding or CLI on-boarding
(Common Line Interface). The onboarding server invokes TOSCA generator to generate TOSCA files for the
model and uploads these to Nexus. Onboarding server authenticates incoming request and then pushes
model artifacts to nexus docker registry. By default micro-service is created but modelers have the
possibility to skip this step and do it later . When Onboarding server invokes microservice generation
API to generate docker image for the model, the microservice generation component creates docker image
and uploads it in Nexus docker repository.

For models in a model interchange format like ONNX or PFA, only web onboarding can be used as there
is no specific Acumos-client-library for these kinds of models. In that case, modeller has to use the
web onboarding interface to upload their model. Onboarding server authenticates incoming request and
then pushes the model to nexus.

You can on-board your model with a license. Whatever the case, CLI or WEB on-boarding, if the license
file extension is not ‘json’ the license on-boarding will not be possible and if the name is not
‘license’ Acumos will rename your license file as license.json and you will see your license file as
“license-1.json” in the artifacts table. If you upload a new version of your license through the portal,
the license number revision will be increased by one like that “license-2.json”. To help user create
the license file expected by Acumos a license user guide is available here :
License user guide

	Architecture diagramm for R, Java, Python, ONNX and PFA models

[image: image0]

	On-boarding use case

Below, the data scientist’s model is wrapped to produce a standardized native model. Depending on
the input model, only a subset of standard model interfaces may be supported.

Acumos can then generate a microservice however it wishes. The underlying generic server can only
interface with the inner model via the wrapper. This decoupling allows us to iterate upon and
improve the wrapper independently of Acumos.

[image: image3]

	On-boarding Model Artefact

Model artifacts must provide sufficient metadata that enables Acumos to instantiate runtimes,
generate microservices, and validate microservice compositions. The proposed solution is to split
the model artifact into public and private components.

Public :

	Understood by Acumos. Includes metadata on:

	Model methods and signatures

	Runtime information

Private :

	Opaque to Acumos but understood by the wrapper library.

	Includes: Serialized model

	Auxiliary artifacts required by wrapper library

	Auxiliary artifacts required by model

	By splitting the artifact into public and private pieces, the wrapper library has the freedom to

	independently iterate and improve.

[image: image4]

5: Onboarding Low Level Design for Dockerized model and Dockerized model URI

Data scientist can also create models in the language of their choice then dockerized their models
themselves and onboard these dockerized models or dockerized model URI. Of course for these kinds of
models the microservice generation process is not triggered. Below is the low level design for these
models.

Data scientists can on-board a license, in the same way as previously explained, only with the Dockerized
model URI as we assume that for Dockerized model the license has been embeded in the Docker image.

	Architecture diagramm for Dockerized model and Dockerized model URI

[image: image0bis]

On-boarding with license is only possible for Dockerized model URI, with the same rules explained above,
as we assume that modelers will embed their licence in their Docker image for the Dockerized model.

Whatever the kinds of models :

	New solution is created in common database for a new model.

	Existing solution is updated with, a new revision. Revision is updated with artefact details and

those artefacts are uploaded to nexus maven repository.

6: Onboarding Low Level Design for C++ model

C++ model can also be onboarded in Acumos, the main difference with other models coming from R, python or
java language is that there is no model runner for C++ model, so Acumos user must write a short C++ program
that attaches the trained model with the generated gRPC stub in order to build an executable that contains
the gRPC webserver as well as the trained model. This executable will then be started in the docker container.

	Architecture diagramm for C++ model

[image: image6]

6: Onboarding Setup

Steps:

1: Clone the code from Gerrit Repo: https://gerrit.acumos.org

Browse the repositories to find on-boarding project then use the HTTPS, HTTP or SSH git clone commande line.

2: After cloning import this project in your recommended IDE like STS.

3: Take the maven update so that you can download all the required dependencies for the Onboarding Project.

After doing maven update you can run or debug the code by using Spring Boot App but before that
we need to set the Environment Variables in our IDE tool for local testing and if you want to read
the environment variables once you deployed your code on the dev or IST server than you need to set
all the environment variables in system-integration Project.

7: Onboarding Technology & Framework

	Java 1.8

	Spring Boot

	Spring REST

	Docker Java Library

8: Onboarding Backend API

Please consult the following file : On-boarding Application Programming Interface

On-Boarding

	On-Boarding Release Notes

	On-Boarding Developer Guide

	On-Boarding User Guide

	Application Programming Interfaces

	On-Boarding ONNX Model user guide

	On-Boarding docker image model or docker URI model user guide

On-Boarding ONNX Model user guide

1: What is ONNX ?

ONNX : (Open Neural Network eXchange) is a library available in some Deep Learning Framework that
allows to import and export Deep Learning models from different AI framework. If you export a model
under the ONNX format you will be able to import and use it in many others Deep Learning framework.
Please have a look at https://github.com/onnx/tutorials to know more.

2: How to onboard ONNX model ?

To Onboard an ONNX model you must use the acumos4onnx python library. This library is available on
Pypi [https://pypi.org/project/onnx4acumos/]. Thanks to this library you can onboard your model by CLI
or by WEB and you can also test & run your ONNX model before on-boarding. Please follow the tutorial on Pypi.

On-Boarding docker image model or docker URI model user guide

1: How to onboard a docker image model ?

Acumos allows users to onboard their docker image models. Each model dockerised outside acumos by
modelers can be onboarded in Acumos. You just have to use the “Onboard dockerised model” panel in
the “on-boarding model” page of the Acumos portal. In this panel just type the name of the model and
you will received the Acumos image reference to be used to push your docker image model in Acumos.
This Acumos image reference looks like :

<acumos_domain>:<docker_proxy_port>/modelname_soultion_id:tag

Then users have to follow the three steps depicted here :

1 : Authenticate in the Acumos docker registry

docker login https://<acumos_domain>:<docker_proxy_port> -u <acumos_userid> -p <acumos_password>

2 : Tag the docker image model with the Acumos image reference

docker tag my_image_model <acumos_domain>:<docker_proxy_port>/modelname_solution_id:tag

3 : Push the model in Acumos

docker push <acumos_domain>:<docker_proxy_port>/modelname_solution_id:tag

The process of on-boarding a docker image model in Acumos is reduced to create a solution Id and
upload the model. There are no micro-service, nor tosca file, nor metadata file, nor protobuf file
created. Acumos doesn’t request a license file during the on-boarding, if needed modelers can add a
license file in their docker image model before the on-boarding.

2 : How to onboard a docker URI model ?

Acumos allows users to save all their docker image model URI that have been previously stored by
modelers in docker repo like Docker Hub for example.

Modelers can on-board their docker image model URI by Web or by CLI.

Onboarding by Web :

Modelers have just to use the “Onboard dockerised model URI” panel in the “on-boarding model” page of
the Acumos portal. In this panel, type the name of the model and the Host on which the docker image is stored.
Optionally you can fill the port an the tag.

It is also possible to Drag and Drop or browse a protobuf file or a license file alongside the docker image
model URI

Onboarding by CLI :

Modelers have just to use the following script “CLI_docker_image_uri_script.py” located in
“on-boarding/docs/script” repository.

This python script will prompt users to enter their Acumos username and password. Then it will ask users
to give a model name, the docker image URI and the host name of their own Acumos platform.

	Users have also the possibility to onboard their docker model URI with licence file and/or protobuf file

	by putting these files in the same folder than the python script and say “yes” to the two last questions.

To help user create the license profile file expected by Acumos
a license profile editor user guide is available here :
License profile editor user guide

3 : Common to Dockerized Model URI and Dockerized Model

Whatever the case you can on-board a protobuf file and/or a license file associated with your model by browsing or drag and drop (These two files are optional). The protobuf file will allow you to use your model in Design Studio.

On-Boarding Release Notes

These release notes cover the on-boarding common library and the on-boarding application
for public use, which are released together.

Version 4.6.4, 10 Sept 2020

	Common Data Service client at version 3.1.1

	Write script to on-board model URI by CLI ACUMOS-4213 [https://jira.acumos.org/browse/ACUMOS-4213]

	Modelname and URI fixes for “CLI dockerized model URI” ACUMOS-4266 [https://jira.acumos.org/browse/ACUMOS-4266]

	Modifying on-boarding base-r image to speed up the creation of R model microservice ACUMOS-4218 [https://jira.acumos.org/browse/ACUMOS-4218]

Version 4.6.3, 29 May 2020

	Common Data Service client at version 3.1.1

	Add acumos dependancies in base-r-image ACUMOS-3861 [https://jira.acumos.org/browse/ACUMOS-3861]

Version 4.6.2, 20 May 2020

	Common Data Service client at version 3.1.1

	Wrong docker proxy port ACUMOS-4146 [https://jira.acumos.org/browse/ACUMOS-4146]

Version 4.6.1, 15 May 2020

	Common Data Service client at version 3.1.1

	Update onboarding-base-r tag https://gerrit.acumos.org/r/c/on-boarding/+/7930

Version 4.6.0, 08 May 2020

	Common Data Service client at version 3.1.1

	<IST><Onboarding>Error displayed while executing R model ACUMOS-3861 [https://jira.acumos.org/browse/ACUMOS-3861]

	Create Tosca files (TOSCA, TOSCAPROTOBUF) based on protobuf file, for pre-dockerized model ACUMOS-4045 [https://jira.acumos.org/browse/ACUMOS-4045]

Version 4.5.0, 3 April 2020

	Common Data Service client at version 3.1.1

	TOSCAModelGeneratorClient version 2.0.8

	Create Tosca files (TOSCA, TOSCAPROTOBUF) based on protobuf file, for pre-dockerized model ACUMOS-4045 [https://jira.acumos.org/browse/ACUMOS-4045]

	Create Tosca files (TOSCA, TOSCAPROTOBUF) based on protobuf file, for dockerized model URI ACUMOS-4046 [https://jira.acumos.org/browse/ACUMOS-4046]

Version 4.4.0, 16 March 2020

	Common Data Service client at version 3.1.1

	While on-boarding error model, the error label is not visible in model description page ACUMOS-3855 [https://jira.acumos.org/browse/ACUMOS-3855]

Version 4.3.0, 20 Feb 2020

	Common Data Service client at version 3.1.1

	Take into account code artifact in on-boarding process ACUMOS-3777 [https://jira.acumos.org/browse/ACUMOS-3777]

	Enrich pre-dockerized models ACUMOS-3144 [https://jira.acumos.org/browse/ACUMOS-3144]

Version 4.2.0, 31 Jan 2020

	Common Data Service client at version 3.1.1

	Null pointer fixes when onboarding using CLI https://gerrit.acumos.org/r/c/on-boarding/+/6308

	Sonar code coverage for Obdr ACUMOS-3954 [https://jira.acumos.org/browse/ACUMOS-3954]

Version 4.1.0, 21 Jan 2020

	Enrich message response with Docker URI ACUMOS-3771 [https://jira.acumos.org/browse/ACUMOS-3771]

Version 3.8.1, 23 Dec 2019

	Common Data Service client at version 3.1.0

	Security Verification at version 1.2.2

	miss new logging library ACUMOS-3847 [https://jira.acumos.org/browse/ACUMOS-3847]

Version 3.8.0, 13 Dec 2019

	Common Data Service client at version 3.1.0

	Security Verification at version 1.2.1

	License-Manager-Client Library at version 1.4.3

	Onboarding should download model runner from nexus and package into the model docker image for H2O and java models. ACUMOS-3758 [https://jira.acumos.org/browse/ACUMOS-3758]

Version 3.6.0, 7 Nov 2019

	Common Data Service client at version 3.0.0

	YML changes - “security”:{“verificationEnableFlag”:”<Boolean>”}

	Update LMCL to 1.4.1 and Update SV Client to 1.2.0 ACUMOS-3668 [https://jira.acumos.org/browse/ACUMOS-3668/]

	IST2 - Onboarding block calling SV with a flag ACUMOS-3676 [https://jira.acumos.org/browse/ACUMOS-3676/]

	<IST><Portal Marketplace> Version display format is not consistent ACUMOS-3656 [https://jira.acumos.org/browse/ACUMOS-3656/]

	correcting typo mistake ACUMOS-3675 [https://jira.acumos.org/browse/ACUMOS-3675/]

Version 3.5.0, 11 Oct 2019

	Common Data Service client at version 3.0.0

	YML changes - “security”:{“verificationApiUrl”:”<securityverificationurl>”}

	Onboarding - Add calls to LicenseProfile.validate api : ACUMOS-3337 [https://jira.acumos.org/browse/ACUMOS-3337/]

	Ability to run SV license scan at completion of onboarding : ACUMOS-3394 [https://jira.acumos.org/browse/ACUMOS-3394/]

	Fix the Revision Version of Components : ACUMOS-3529 [https://jira.acumos.org/browse/ACUMOS-3529/]

	On-boarding - Java Code upgrade to Java 11 or 12 : ACUMOS-3328 [https://jira.acumos.org/browse/ACUMOS-3328/]

Version 3.4.0, 3 Oct 2019

	Common Data Service client at version 3.0.0

	As a User , I want to see an Enhance on-boarding processes to allow choice of new model vs new revision : ACUMOS-1216 [https://jira.acumos.org/browse/ACUMOS-1216/]

Version 3.2.0, 19 Sept 2019

	Common Data Service client at version 3.0.0

Version 3.1.0, 30 Aug 2019

	Common Data Service client at version 2.2.6

	Take into account c/c++ model in on-boarding process : ACUMOS-3107 [https://jira.acumos.org/browse/ACUMOS-3107/]

	Take into account java model from Spark in on-boarding process : ACUMOS-3130 [https://jira.acumos.org/browse/ACUMOS-3130/]

	<Asynchronous Microservice> Errored model is getting onboarded successfully : ACUMOS-3022 [https://jira.acumos.org/browse/ACUMOS-3022/]

Version 3.0.0, 21 Aug 2019

	Common Data Service client at version 2.2.6

	attach a license profile as JSON during on-boarding with Artifact Type LI : ACUMOS-3171 [https://jira.acumos.org/browse/ACUMOS-3171/]

Version 2.16.0, 18 July 2019

	Common Data Service client at version 2.2.4

	Log files generated in application should display logs as per the log standardization : ACUMOS-2923 [https://jira.acumos.org/browse/ACUMOS-2923/]

	code coverage : ACUMOS-3224 [https://jira.acumos.org/browse/ACUMOS-3224/]

Version 2.15.0, 20 June 2019

	Common Data Service client at version 2.2.4

	Microservice entry is remaining InProgress after completing onboarding process : ACUMOS-3012 [https://jira.acumos.org/browse/ACUMOS-3012/]

	Async MSGen Notification logs not getting generated : ACUMOS-3088 [https://jira.acumos.org/browse/ACUMOS-3088/]

Version 2.14.0, 30 May 2019

	Common Data Service client at version 2.2.4

	Test on licence file name : ACUMOS-2955 [https://jira.acumos.org/browse/ACUMOS-2955/]

Version 2.13.0, 8 May 2019

	Common Data Service client at version 2.2.2

	Logs are not displayed as per the standardization : ACUMOS-2779 [https://jira.acumos.org/browse/ACUMOS-2779/]

	Add non configurable parameters to application.properties file : ACUMOS-2872 [https://jira.acumos.org/browse/ACUMOS-2872/]

Version 2.12.0, 19 April 2019

	Common Data Service client at version 2.2.1

	Modify documentation in accordance with EPIC 762 : ACUMOS-2276 [https://jira.acumos.org/browse/ACUMOS-2276/]

	Model image creator should use new Python model runner : ACUMOS-1559 [https://jira.acumos.org/browse/ACUMOS-1559/]

	Onboarding app run containerized process as unprivileged user : ACUMOS-2772 [https://jira.acumos.org/browse/ACUMOS-2772/]

Version 2.11.0, 12 April 2019

	API and on-boarding process for pre-dockerised model : ACUMOS-2436 [https://jira.acumos.org/browse/ACUMOS-2436/]

	Logging Standardization - Onboarding : ACUMOS-2324 [https://jira.acumos.org/browse/ACUMOS-2324/]

Version 2.10.0, 29 March 2019

	Common Data Service client at version 2.1.2

	Aynchrounous Microservice generation response handling in Onboarding : ACUMOS-2625 [https://jira.acumos.org/browse/ACUMOS-2625/]

	Microservices code refactoring for asynchronous processing : ACUMOS-2626 [https://jira.acumos.org/browse/ACUMOS-2626/]

Version 2.9.0, 22 March 2019

	Common Data Service client at version 2.1.2

	onnx onboarding issues : ACUMOS-2635 [https://jira.acumos.org/browse/ACUMOS-2635/]

Version 2.8.0, 18 March 2019

	Common Data Service client at version 2.1.2

	check license.json file name and correct spelling of license : ACUMOS-2616 [https://jira.acumos.org/browse/ACUMOS-2616/]

	On-boarding fails to create TOSCA artifacts but declares success anyhow : ACUMOS-2619 [https://jira.acumos.org/browse/ACUMOS-2619/]

	On-boarding task Status is not getting updated : ACUMOS-2620 [https://jira.acumos.org/browse/ACUMOS-2620/]

	On-boarding task SolutionId and RevisionId are showing as null : ACUMOS-2622 [https://jira.acumos.org/browse/ACUMOS-2622/]

Version 2.7.0, 8 March 2019

	Common Data Service client at version 2.1.2

	Onboarding to check license file name : ACUMOS-2586 [https://jira.acumos.org/browse/ACUMOS-2586/]

	Show “jwtToken” and “Upload Artifact” in output log file : ACUMOS-2488 [https://jira.acumos.org/browse/ACUMOS-2488/]

Version 2.6.0, 4 March 2019

	Common Data Service client at version 2.1.1

	Fix the c_step result and c_task logic from onboarding : ACUMOS-2588 [https://jira.acumos.org/browse/ACUMOS-2588/]

	MOB revise calls to CDS to publish Onboarding History : ACUMOS-2402 [https://jira.acumos.org/browse/ACUMOS-2402/]

Version 2.4.0, 13 February 2019

	Common Data Service client at version 2.0.7

	APIs modification in accodance with EPIC 762 : ACUMOS-2275 [https://jira.acumos.org/browse/ACUMOS-2275/]

	Modify Onboarding legacy API in accordance with EPIC 2107 : ACUMOS-2262 [https://jira.acumos.org/browse/ACUMOS-2262/]

Version 2.3.0, 31 January 2019

	On-boarding fails when using CDS 2.0, need version 2.0.4 : ACUMOS-2415 [https://jira.acumos.org/browse/ACUMOS-2415/]

	API for ONNX, PFA models : ACUMOS-2242 [https://jira.acumos.org/browse/ACUMOS-2242/]

	Create new on-boarding process for ONNX, PFA : ACUMOS-2247 [https://jira.acumos.org/browse/ACUMOS-2247/]

	MOB update for CDS 2.0.4 data and toolkit related changes : ACUMOS-2379 [https://jira.acumos.org/browse/ACUMOS-2379/]

Version 2.2.0, 9 January 2019

	There’s no version controlled Swagger API spec for the onboarding server, and existing docs are inconsistent : ACUMOS-522 [https://jira.acumos.org/browse/ACUMOS-522/]

	Show onboarding component version in output log file : ACUMOS-1934 [https://jira.acumos.org/browse/ACUMOS-1934/]

Version 2.1.0, 21 December 2018

	Incorrect Protobuf.json and TGIF.json generated for nested messages : ACUMOS-2272 [https://jira.acumos.org/browse/ACUMOS-2272/]

Version 2.0.0, 11 December 2018

	CDS clients pass request ID from front-end thru in client calls : ACUMOS-1801 [https://jira.acumos.org/browse/ACUMOS-1801/]

	Onboarding doesn’t detect failure to validate user via API token : ACUMOS-2039 [https://jira.acumos.org/browse/ACUMOS-2039/]

Version 1.39.0, 11 October 2018

	provide logs to the user with onboarding result fails for onboarding failure scenario : ACUMOS-1830 [https://jira.acumos.org/browse/ACUMOS-1830/]

	TOSCA m.g.c. generates extra UUID in Nexus repository path : ACUMOS-1845 [https://jira.acumos.org/browse/ACUMOS-1845/]

	Onboarding log file indicates failures on successfull onboarding and different model : ACUMOS-1879 [https://jira.acumos.org/browse/ACUMOS-1879/]

	Spelling mistake in onboarding logs : ACUMOS-1839 [https://jira.acumos.org/browse/ACUMOS-1839/]

Version 1.38.0, 04 October 2018

	Common Data Service client at version 1.18.2

	TOSCA model generator client at version 1.33.1

	Artifacts from Onboarding contain ID and suffix strings in their names (they should not) : ACUMOS-1736 [https://jira.acumos.org/browse/ACUMOS-1736/]

	Model not onboarding through Build For ONAP feature : ACUMOS-1639 [https://jira.acumos.org/browse/ACUMOS-1639/]

	Provide logs to the user with onboarding results : ACUMOS-956 [https://jira.acumos.org/browse/ACUMOS-956/]

Version 1.37.0, 27 September 2018

	API Token authentication is not working : ACUMOS-1771 [https://jira.acumos.org/browse/ACUMOS-1771/]

	GenericJava model on-boarding via web is getting fails at dockerize : ACUMOS-1786 [https://jira.acumos.org/browse/ACUMOS-1786/]

Version 1.36.1, 21 September 2018

	Common Data Service client at version 1.18.1

	TOSCA model generator client at version 0.0.33

	Need log standardization and consistency on-boarding : ACUMOS-622 [https://jira.acumos.org/browse/ACUMOS-622/]

	Upgrade Java server components to Spring-Boot 1.5.16.RELEASE : ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754/]

Version 1.36.0, 21 September 2018

	TOSCA model generator client at version 0.0.33

	Need log standardization and consistency on-boarding : ACUMOS-622 [https://jira.acumos.org/browse/ACUMOS-622/]

	on-boarding: Fix RST compile warnings : ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754/]

Version 1.35.0, 14 September 2018

	TOSCA poinitng to 0.0.31

	Cleaning code : ACUMOS-1266 [https://jira.acumos.org/browse/ACUMOS-1266/]

	on-boarding Fix RST compile warnings :ACUMOS-1317 [https://jira.acumos.org/browse/ACUMOS-1317/]

	Model onboarding fails for R and python : ACUMOS-1638 [https://jira.acumos.org/browse/ACUMOS-1638/]

	MS logs and docker artifact file is 0kb size : ACUMOS-1628 [https://jira.acumos.org/browse/ACUMOS-1628/]

	IST2: Contact Icon is not displaying at the time of user selection on shared my model screen : ACUMOS-1583 [https://jira.acumos.org/browse/ACUMOS-1583/]

Version 1.34.0, 7 September 2018

	Pointing to CDS-1.18.0

	MS logs and docker artifact file is 0kb size : ACUMOS-1628 [https://jira.acumos.org/browse/ACUMOS-1628/]

Version 1.33.1, 1 September 2018

	Patch release to update nexus client version to 2.2.1

	Update nexus client : ACUMOS-1678 [https://jira.acumos.org/browse/ACUMOS-1678/]

Version 1.33.0, 31 August 2018

	Model onboarding fails for R and python : ACUMOS-1638 [https://jira.acumos.org/browse/ACUMOS-1638/]

	MS logs and docker artifact file is 0kb size : ACUMOS-1628 [https://jira.acumos.org/browse/ACUMOS-1628/]

	Onboarding fails for H20 : ACUMOS-1629 [https://jira.acumos.org/browse/ACUMOS-1629/]

Version 1.32.0, 27 August 2018

	Pointing to CDS-1.17.1

	Invoke Microservice API at the end of obdr process : ACUMOS-1537 [https://jira.acumos.org/browse/ACUMOS-1537/]

	Python model runner must use -u flag when start microservice script : ACUMOS-1416 [https://jira.acumos.org/browse/ACUMOS-1416/]

	Factor MS generation out of onbaording-app : ACUMOS-1070 [https://jira.acumos.org/browse/ACUMOS-1070/]

	Remove dockerization related methods : ACUMOS-1300 [https://jira.acumos.org/browse/ACUMOS-1300/]

	Remove Add Artifact with URI : ACUMOS-1299 [https://jira.acumos.org/browse/ACUMOS-1299/]

	Refactor Onboarding Controller : ACUMOS-1250 [https://jira.acumos.org/browse/ACUMOS-1250/]

	Fix Developper level bugs : ACUMOS-1244 [https://jira.acumos.org/browse/ACUMOS-1244/]

	Refactoring on-boarding code : ACUMOS-1243 [https://jira.acumos.org/browse/ACUMOS-1243/]

	create separate branches - whithout Dockerisation and Dockerisation : ACUMOS-1237 [https://jira.acumos.org/browse/ACUMOS-1237/]

	Refactor without Dockerisation : ACUMOS-1238 [https://jira.acumos.org/browse/ACUMOS-1238/]

	Refactor Dockerisation : ACUMOS-1239 [https://jira.acumos.org/browse/ACUMOS-1239/]

	Add/Modify Unit tests : ACUMOS-1241 [https://jira.acumos.org/browse/ACUMOS-1241/]

	E2E Validation of Refactored code : ACUMOS-1242 [https://jira.acumos.org/browse/ACUMOS-1242/]

	Refactor commonOnBoarding : ACUMOS-1248 [https://jira.acumos.org/browse/ACUMOS-1248/]

	Factor microservice generation out of onboarding-app : ACUMOS-1394 [https://jira.acumos.org/browse/ACUMOS-1394/]

Version 1.30.0, 17 August 2018

	Pointing to CDS-1.17.1

	Invoke Microservice API at the end of obdr process : ACUMOS-1537 [https://jira.acumos.org/browse/ACUMOS-1537/]

	Python model runner must use -u flag when start microservice script : ACUMOS-1416 [https://jira.acumos.org/browse/ACUMOS-1416/]

	Factor microservice generation out of onboarding app : ACUMOS-1070 [https://jira.acumos.org/browse/ACUMOS-1070/]

	Remove dockeriation related methods : ACUMOS-1300 [https://jira.acumos.org/browse/ACUMOS-1300/]

	Remove Add Artifact with URI : ACUMOS-1299 [https://jira.acumos.org/browse/ACUMOS-1299/]

	Refactor Onboarding Controller : ACUMOS-1250 [https://jira.acumos.org/browse/ACUMOS-1250/]

	Fix Developper level bugs : ACUMOS-1244 [https://jira.acumos.org/browse/ACUMOS-1244/]

	Refactoring on-boarding code : ACUMOS-1243 [https://jira.acumos.org/browse/ACUMOS-1243/]

Version 1.29.0, 12 July 2018

	Dockerfile for Python DCAE model runner has outdated lines(ACUMOS-1263)

	R models no longer run properly as microservices when downloading(ACUMOS-1279)

Version 1.28.0, 6 July 2018

	CDS pointing to 1.15.3

	Dockerfile for Python DCAE model runner has outdated lines(ACUMOS-1263)

	R models no longer run properly as microservices when downloading(ACUMOS-1279)

	My Models: Failed model name is not displayed as it is given at the time of web onboarding(ACUMOS-1157)

	<ONAP> <Onboarding> Artifacts are not getting created properly for ONAP build(ACUMOS-709)

Version 1.27.0, 13 June 2018

	R-model initial configuration missing (ACUMOS-667)

	Several onboarding unit tests do not appear to be testing correctly (ACUMOS-562)

	<IST><Onboarding> “Successful” miss-spelled in onboarding logs (ACUMOS-1100)

	This build has yml changes, needs to provide rbase image name and nexus user name and password for current environment as below. “base_image”: { “rimage”: “nexus3.acumos.org:10004/onboarding-base-r:1.0”,”dockerusername”: “*”,”dockerpassword”: “*”}

Version 1.26.0, 31 May 2018

	Onboarding server gives mysterious error when using “/” character in model name (ACUMOS-952)

	Set https_proxy ENV variable as well as http_proxy in Dockerfile (ACUMOS-965)

Version 1.25.4, 31 May 2018

	Set https_proxy ENV variable as well as http_proxy in Dockerfile (ACUMOS-965)

Version 1.25.3, 31 May 2018

	Onboarding server gives mysterious error when using “/” character in model name (ACUMOS-952)

Version 1.25.0, 29 May 2018

	Remove sensitive information from the onboarding log that is pushed to nexus (ACUMOS-948)

Version 1.24.0, 22 May 2018

	Capture Onboarding log as a new artifact (ACUMOS-751)

	Clean windows-specific code that constructs file paths (ACUMOS-818)

	TOSCA version updated to 0.0.27

Version 1.23.2, 14 May 2018

	Capture Onboarding log as a new artifact (ACUMOS-751)

Version 1.23.0, 10 May 2018

	Build for IST

	Fixes for ACUMOS-398, ACUMOS-737

	CDS pointing to 1.14.4

Version 1.22.0, 4 May 2018

	Build for IST

	Fixes for ACUMOS-753, ACUMOS-780, ACUMOS-782, ACUMOS-667

Version 1.21.0, 26 Apr 2018

	Build for IST

	Revert to acumos-nexus-client v2.0.0 (ACUMOS-665)

Version 1.20.3, 25 Apr 2018

	Changes for revertback process (ACUMOS-723)

	Simplify dockerfile commands (ACUMOS-667)

Version 1.20.2, 25 Apr 2018

	Changes for revertback process (ACUMOS-723)

	Use repaired acumos-nexus-client (ACUMOS-665)

Version 1.20.1, 20 Apr 2018

	removed cognita-specific code (ACUMOS-692)

Version 1.20.0, 19 Apr 2018

	Build for IST

	CDS pointing to 1.14.3 (ACUMOS-684)

Version 1.19.3, 19 Apr 2018

	Fix for model name size issue (ACUMOS-684)

	Removed onboarding-app folder (ACUMOS-701)

Version 1.19.2, 19 Apr 2018

	Fix for model name size issue (ACUMOS-684)

Version 1.19.1, 18 Apr 2018

	Fix for model name size issue (ACUMOS-684)

Version 1.19.0, 16 Apr 2018

	build for IST (ACUMOS-336)

Version 1.18.3, 16 Apr 2018

	Jvm space issue fix (ACUMOS-336)

Version 1.18.2, 13 Apr 2018

	Jvm space issue fix (ACUMOS-336)

Version 1.18.1, 10 Apr 2018

	Fix for uploadArtifact (ACUMOS-650)

Version 1.18.0, 5 Apr 2018

	Concurrent Onboarding (ACUMOS-616)

Version 1.17.2, 2 Apr 2018

	Concurrent Onboarding (ACUMOS-616)

Version 1.17.1, 28 Mar 2018

	Limit JVM memory use (ACUMOS-336)

Version 1.17.0, 26 Mar 2018

	dcae release (ACUMOS-548)

Version 1.16.1, 26 Mar 2018

	dcae refactoring (ACUMOS-548)

	Updated runner.py with new version

	Move user guide to doc repo (ACUMOS-493)

	Dcae dockerfile change (ACUMOS-417)

Version 1.16.0, 22 Mar 2018

	Changes done for Docker File (ACUMOS-417)

Version 1.15.4, 22 Mar 2018

	Docker file (ACUMOS-417)

Version 1.15.3, 22 Mar 2018

	Dcae artifacts (ACUMOS-417)

Version 1.15.2, 22 Mar 2018

	Docker file (ACUMOS-417)

Version 1.15.1, 22 Mar 2018

	model sharing (ACUMOS-403)

Version 1.15.0, 19 Mar 2018

	IST Releas 1.15.0 (ACUMOS-417)

Version 1.14.1, 19 Mar 2018

	Changes done for logger (ACUMOS-417)

Version 1.14.0, 16 Mar 2018

	changes for ist release (CD-1816)

Version 1.13.5, 16 Mar 2018

	DCEA changes (CD-1816)

Version 1.13.4, 15 Mar 2018

	Document changes (ACUMOS-405)

Version 1.13.3, 15 Mar 2018

	DCEA changes (CD-1816)

Version 1.13.2, 15 Mar 2018

	Logger changes (CD-1816)

Version 1.13.1, 14 Mar 2018

	Logger added (CD-1816)

	DCAE Python model (ACUMOS-186)

Version 1.13.0, 9 Mar 2018

	DCAE Python model (ACUMOS-186)

Version 1.12.3, 9 Mar 2018

	DCAE Python model (ACUMOS-186)

Version 1.12.2, 9 Mar 2018

	DCAE Python Models (ACUMOS-233)

Version 1.12.1, 7 Mar 2018

	Web onboarding (ACUMOS-233)

Version 1.12.0, 7 Mar 2018

	Refactor into common and application sub-projects

	Logging standards (ACUMOS-211)

Version 1.10.8, 23 Feb 2018

	ACUMOS-11, 13,53,213,212,203,9

Version 1.10.7, 16 Feb 2018

	Use case (ACUMOS-114)

Version 1.8.3, 11 Dec 2017

	changed on-boarding version to 1.8.3-SNAPSHOT

Version 1.7.9, 13 Dec 2017

	onboarding-app-1.7.9 compatible with CDS 1.10.1

Version 1.0.0, Dec 2017

	Initial release

On-Boarding User Guide

This is the users guide to Onboarding.

1: introduction - What is Onboarding?

Acumos is intended to enable the use of a wide range of tools and technologies in the development
of machine learning models including support for both open sourced and proprietary toolkits.

The goal of Onboarding is to provide an ingestion interface, by web or CLI(command line interface)
for various types of models and to create required artifacts and identifiers to enter the Acumos
platform.

	Legacy models

You can on-board models developped in Java 8 or 9, Python>=3.6, <3.7, R>=3.4.4 and sourced from toolkits
such as Scikit, TensorFlow, H2O, and R. You can choose to create or not the microservice at the end
of the on-boarding process. If user choose to not create the microservice at the end of on-boarding he
can create it later.

In short, our goals for these kinds of models are to generate or provide all the necessary materials
required to use these kinds of models with the others components of Acumos like:

	Tosca file for Design studio

	Represent model I/O such for microservice generation

	SolutionID for CDS

	Licence file for licensing management

	Since Boreas, we are able to on-board news kinds of model like :

	model in onnx format : model.onnx

	model in pfa format : model.pfa

	Dockerized model : model dockerised by Data scientist himself

	Docker model URI : URI of Dockerized model stored in external repo like Docker-Hub for example

For this new kinds of model, Micro service generation and Design studio capabilities are not available.

	Acumos capabilities by models type

This table sum-up all the Acumos capabilities available for each kinds of model

	Model

	Micro-service generation

	Design studio

	Market place

	on-board with license

	onboarding

	R model

	Available

	Available

	Available

	Available

	WEB and CLI

	Pyhton model

	Available

	Available

	Available

	Available

	WEB and CLI

	Java model

	Available

	Available

	Available

	Available

	WEB and CLI

	ONNX model

	Not available

	Not available

	Available

	Available

	WEB only

	PFA model

	Not available

	Not available

	Available

	Available

	WEB only

	Dockerized model

	Not applicable

	Not available

	Available

	Not available

	WEB only

	URI model

	Not applicable

	Not applicable

	Available

	Available

	WEB only

	C++ model

	Available

	Not applicable

	Available

	Available

	WEB only

3: Onboarding models built in R, Java or python language

For these three different languages it exists three on-boarding acumos clients to use. The client will build a model bundle
composed of differents files requested by Acumos. Once the model bundle is created you can choose to on-board it by CLI
or WEB. By CLI on-boarding you will have to use a push() function that belongs to the Acumos on-boardign client, if you choose
Web on-boarding you have to use the “ON-BOARDING MODEL” panel of you own Acumos instance. Whatever the kind of on-boarding, by
WEB or by CLI, you can choose to trigger or not the launch of the micro-service generation at the end of the on-boarding process.

Whatever the acumos client you used, you will be prompted to provide your credentials in this way : “your_acumos_login”:”your_api_token”.
Your api token can be retrieved in your own acumos instance, after authentication, in your acumos settings. After a successful CLI
onboarding with Micro-service creation, the message response will display the acumos Docker URI that can be used to load the
Acumos docker image model in your local Docker registry.

Please refer to the following user guide :

Acumos R client user guide

Acumos Python client user guide [https://pypi.org/project/acumos/]

Acumos Java client user guide

Acumos C++ client user guide

4: Onboarding ONNX and PFA models

Onboard ONNX and PFA model consists only of an upload of the model as there is no micro-service creation for the moment.

Please refer to the following user guide

On-Boarding ONNX and PFA Model user guide

5: On-Boarding docker image model or docker URI model

You can create models in the language of your choice then dockerize your models yourelves and onboard these dockerized models
or dockerized model URIs. Of course for these kinds of models the microservice generation process is never used.

Please refer to the following user-guide

On-Boarding docker image model or docker URI model user guide

5: On-Boarding model with a license file

You can on-board your model with a license (Except for dockerized models as we assume that modelers will embed their licence
in their Docker image). During Web on-boarding you can choose “Upload” a license file, “Select licence Profil” or “Create New”,
please refer to licensing documentation for the details. With CLI on-boarding only the “Upload” of a license file is possible
alongside the model model bundle.

Whatever the case, CLI or WEB on-boarding :

	If the license file extension is not ‘json’ the license on-boarding will not be possible.

	During the on-boarding, your license file will be renamed and you will see your license file as “license-1.0.0.json” in the artifact table.

	If you on-board a new version of your model through the portal, the license number revision will be increased like that “license-1.0.1.json” to follow the model number revision.

Whatever the kinds of models :

	New solution is created in common database for a new model.

	Existing solution is updated with, a new revision. Revision is updated with artefact details and those artefacts are uploaded to nexus maven repository.

Tutorial

Tutorial coming soon.

Acumos Java Client

[image: docs/images/Acumos_logo_white.png]Acumoslogo

This repository holds the Acumos Java Client(https://gerrit.acumos.org/r/acumos-java-client) which helps provide a way to use H2o.ai and Generic Java in the Acumos Platform.
It has to be used in conjunction with the Model Runner (https://gerrit.acumos.org/r/generic-model-runner).

Please see the documentation in the “docs” folder.

Acumos Java Client Developer Guide

Overview

	The Acumos Java client is part of the Acumos Tools for H2o.ai, Generic Java and Java Spark models.

	The Acumos Java client is a command line utility that Data Scientist runs on his local machine or wherever he has the model to onboard it into Acumos.

	Both of them, model and Acumos Java cient together, provide a way to use H2o.ai, Generic Java and Java Spark in the Acumos Platform.

Architecture and Design

Java Client Library:

Allows the H2o/Generic Java/Java Spark model and other artifacts to become available in the onboarding server for the H2o Model runner to be able to use them.

	The Data Scientist creates his model in H2o and exports it in the MOJO model format (.zip file) using any interface (eg.Python, Flow, R) provided by H2o

	For Generic Java and Java Spark the Data scientist creates his model and exports it in the .jar format.

	Data scientist runs the JavaClient jar (Available in Nexus https://nexus.acumos.org/#nexus-search;quick~java_client), which creates a Protobuf (default.proto) file for the Model, creates the required metadata.json file and an artifact called modelpackage.zip.

	Data scientist can manually upload these generated artifacts to the Acumos Marketplace via its Web interface, this is WEB on-boarding.

	Or Data scientist can use the Acumos java client to onboard model onto the on-boarding server by providing the on-boarding server URL, this is CLI on-boarding.

Model Runner:

Allows the on-boarded Model to be run as containerized microservice and allows other external applications to use the on-boarded Model for predictions.

	Essentially, provides a wrapper around the ML model, packages it as a containerized microservice and exposes a predict method as a rest endpoint.

	When the model is on-boarded and deployed, this method (REST endpoint) can then be called by other external applications to request model’s predictions.

	generic-model-runner is used to onboard H2O.ai and Generic Java models.

	spark-model-runner is used to onboard Java Spark models.

Technology and Frameworks

	Language : Java

	Other Technologies: Google Protocol buffers, H2o.ai

	Framework : Junit

Project Resources

	Gerrit repo :

acumos-java-client [https://gerrit.acumos.org/r/#/admin/projects/acumos-java-client]

generic-model-runner [https://gerrit.acumos.org/r/q/project:generic-model-runner]

spark-model-runner [https://gerrit.acumos.org/r/spark-model-runner]

	Jira : Link to Acumos Jira [https://jira.acumos.org]

Development Setup

To run the client project,you will need the following installed on your machine.

	Java (jdk) 8 or 9

	Protoc compiler 3.4.0

	Maven

	Protobuf Java runtime 3.4.0

Data scientist can download the latest version of the Java Client jar from Nexus : https://nexus.acumos.org/#nexus-search;quick~java-client

Data scientist can download the latest version of the h2o-genericjava-modelrunner jar from Nexus : https://nexus.acumos.org/#nexus-search;quick~runner

Data scientist can download the latest version of the spark-modelrunner jar from Nexus : https://nexus.acumos.org/#nexus-search;quick~spark-modelrunner

To clone the client library project: use the http, https or ssh command available at https://gerrit.acumos.org/r/admin/repos/acumos-java-client

To clone the h2o-genericjava model runner project : use the http, https or ssh command available at https://gerrit.acumos.org/r/q/project:generic-model-runner

To clone the Spark model runner project : use the http, https or ssh command available at https://gerrit.acumos.org/r/spark-model-runner

To build the project, you can use :

mvn clean install

To build the model runner project, refer to instructions provided in generic-model-runner folder This will give you the same h2o-genericjava-model runner mentioned earlier.

It is a Maven Project. You can clean, install, test as with any Maven project.

Acumos Java Client

	Acumos Java Client Release Notes

	Acumos Java Client Developer Guide

	Acumos Java Client User Guide

	Acumos Java Client Installation and Maintenance Guide

Acumos Java Client Installation and Maintenance Guide

Prerequisites

	Java 8 or Java 9

	Download the following Released components:

	Java Client [https://nexus.acumos.org/content/repositories/releases/org/acumos/acumos-java-client/java_client/] download the latest version of the JavaClient jar

	Generic Model Runner [https://nexus.acumos.org/content/repositories/releases/org/acumos/generic-model-runner/h2o-genericjava-modelrunner/] download the latest version of the h20-genericjava-modelrunner

Preparing to On-Board your H2o or a Generic Java Model

	Place the Java Client jar in one folder locally. This is the folder from which you intend to run the jar. After the jar runs, the created artifacts will also be available in this folder. You will use some of these artifacts if you are doing Web-based onboarding. We will see this later.

	Prepare a supporting folder with the following contents. This folder will contain items that will be used as input for the java client jar.

	Models - In case of H2o, your model will be a MOJO zip file. In case of Generic Java, the model will be a jar file.

	Model runner or Service jar - For H2O rename h2o-genericjava-modelrunner-2.2.3.jar (previously downloaded) to H2OModelService.jar for H20 or to GenericModelService.jar for Java model and Place it in the supporting folder.

	CSV file used for training the model - Place the csv file (with header having the same column names used for training but without the quotes (“ ”)) you used for training the model here. This is used for autogenerating the .proto file. If you don’t have the .proto file, you will have to supply the .proto file yourself in the supporting folder. Make sure you name it default.proto.

	default.proto - This is only needed If you don’t have sample csv data for training, then you will have to provide the proto file yourself. In this case, Java Client cannot autogenerate the .proto file. You will have to supply the .proto file yourself in the supporting folder. Make sure you name it default.proto Also make sure, the default.proto file for the model is in the following format. You need to appropriately replace the data and datatypes under DataFrameRow and Prediction according to your model.

syntax = "proto3";
option java_package = "com.google.protobuf";
option java_outer_classname = "DatasetProto";

message DataFrameRow {
string sepal_len = 1;
string sepal_wid = 2;
string petal_len = 3;
string petal_wid = 4;
}
message DataFrame {
 repeated DataFrameRow rows = 1;
}
message Prediction {
 repeated string prediction= 1;
}

service Model {
rpc transform (DataFrame) returns (Prediction);
}

	application.properties file - Mention the port number on which the service exposed by the model will finally run on. The push_url and auth_url are used only by CLI on-boarding and depend of your own Acumos installation, you can retrieve them on your Acumos portal in the ON-BOARDING MODEL page.

###
===============LICENSE_START===
Acumos
===
Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
===
This Acumos software file is distributed by AT&T and Tech Mahindra
under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
This file is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
===============LICENSE_END===
###

server.contextPath=/modelrunner
server.port=8336

spring.http.multipart.max-file-size=100MB
spring.http.multipart.max-request-size=100MB

Linux version

#default_model=/models/model.jar
default_model=/models/Generic15.jar
default_protofile=/models/default.proto

logging.file = ./logs/modelrunner.log

The value of model_type can be H or G
if model_type is H, then the /predict method will use H2O model; otherwise, it will use generic Model
if model_type is not present, then the default is H

model_type=H
model_config=/models/modelConfig.properties
isMicroservice=true

push_url = http://cognita-dev1-vm01-core.eastus.cloudapp.azure.com:8090/onboarding-app/v2/models
auth_url = http://cognita-dev1-vm01-core.eastus.cloudapp.azure.com:8090/onboarding-app/v2/auth
token_type = jwttoken
#token_file = D:/js00353493/ATT/Cognita/model/H2O/model/tokenfile.txt
token_file = D:/Cognita/model/JavaGeneric/supporting
dump_path = D:/Cognita/model/JavaGeneric/dump
isMicroservice = true
h2oModelMethod = predict,classify,transform

Linux some properties are specific to java generic models

The plugin_root path has to be outside of ModelRunner root or the code won't work
Default proto java file, classes and jar
DatasetProto.java will be in $plugin_root\src
DatasetProto$*.classes will be in $plugin_root\classes
pbuff.jar will be in $plugin_root\classes

plugin_root=/tmp/plugins

	modelConfig.properties - Add this file only in case of Generic Java model onboarding. This file contains the modelMethod and modelClassName of the model. Modeler can pass more thqan one model merhod in modelMethod field.

modelClassName=org.acumos.ml.XModel
modelMethod=predict,classify,transform

	License Profile File - If you have a license profile associated with your model, Add it in the supporting folder in the following form : license.json. If the license profile file extension is not ‘json’ the license on-boarding will not be possible and if the name is not ‘license’ Acumos will rename your license profile file as license.json and you will see your license profile file named as license.json in the artifacts table. If you upload a new version of your license profile after on-boarding, a number revision will be added to the name of your license profile file like : “license-2.json”. To help user create the license profile file expected by Acumos a license user guide is available here : License Profile Editor user guide

Acumos Java Client User Guide

The Acumos Java Client Library command line utility is used to on-board H2o.ai and Generic Java models.
This library creates artifacts from an H2o or Generic Java model and pushes the artifacts to the
on-boarding server for the H2o Model runner to be able to use them.

High-Level Flow

	The Modeler creates a model in H2o and exports it in the MOJO model format (.zip file). For Generic Java and Spark the Modeler creates a model and exports it in the .jar format.

	The Modeler runs the JavaClient jar, which creates a Protobuf (default.proto) file for the Model, creates the required metadata.json file and an artifact called modelpackage.zip.

	Depending on the choice of the Modeler, he can manually upload these generated artifacts to the Acumos Marketplace via its Web interface. This is Web-based on-boarding. We will see how to do this in this article.

	Or the Java client library itself, on-boards the model onto the on-boarding server if the modeler provides the on-boarding server URL. This is CLI-based on-boarding.

The Model Runner provides a wrapper around the ML model, packages it as a containerized microservice and
exposes a predict method as a REST endpoint. When the model is onboarded and deployed, this method (REST
endpoint) can then be called by other external applications to request predictions off of the model.

Please refer to the Acumos Java Client Installation and Maintenance Guide prior to the followings.

Create your modeldump.zip file & use CLI on-boarding

It exists two ways to onboard a model, by CLI (command Line Interface) and by Web (drag and drop directly
on the Acumos portal Web onboarding page). If you used CLI you need to be authenticated, currently it
exists two ways to be authenticated : authentication by jwt token or authentication by api token. The jwt
token is provided by the auth_url API while the api token is available on the acumos portal in the user
setings. In Case of ApiToken modeler needs to pass the apitonen in a token file under supporting foler.
We strongly recommend to use api token as the jwt token method will be disable.

Changes in application.properties file

	Pass the model file name

	Model Type - H/G/S (H for H2O model, G for Generic java model, S for Java Spark)

	push_url – respective url on which user wants to onboard the model

	auth_url – auth url for jwt token authentication

	token_type – apitoken (for api based token authentication),jwttoken(for jwt token based authentication)

	token_file – Path where token file is present

	dump_path – path where modeldump needs to be save

	isMicroservice - True/False based on user’s choice to generate microservice

	h2oModelMethod = predict,classify (modeler can pass mulptiple method methods for H2O model)

For push_url and auth_url, please refer to on-boarding API user guide

Pass the following argument as an input to run the JavaClient.jar file (Note: There has been a change in the arguments
list. No need to pass the argument <modeType> now. It is taken from application.properties file in SupportingFolderPath.)

java -jar java_client-2.0.0.jar <SupportingFolderPath> <ModelName> <inputCSVFile> <OnboardingType>

	SupportingFolderPath – pass the path where modelrunner, model file, application.properties, license.json and data file are present

	ModelName – The name of model file

	inputCSVFile – name of the data file present in supporting folder, optional in case if you have .proto file(OR moderler can generate

proto file for Java Generic and Java Spark models by inspecting the model)

	OnboardingType - pass “WebOnboard” if needed modeldump for webbased onboarding. For onboarding through client keep it blank(Optional)

If you used CLI-based onboarding, you don’t need to perform the steps outlined just below. The Java client has
done it for you. You will see a message on the terminal that states the model onboarded successfully. This message will give you Acumos docker
URI of your model, that you can use to load the Acumos docker image in your own docker registry.

Onboarding to the Acumos Portal : Web On-boarding

If you have set the “OnboardingType” parameter to “WebOnboard”, you must complete the following steps:

	After you run the client, you will see a modeldump.zip file generated in the same folder where we ran the Java Client for.

	Upload this file in the Web based interface (drap and drop).

	You will be able to see a success message in the Web interface. you will be able to see a success method in the Web interface.

The needed TOSCA artifacts and docker images are produced when the model is onboarded to the Portal.
You can now see, rate, review, comment, collaborate on your model in the Acumos marketplace. When
requested and deployed by a user, your model runs as a dockerized microservice on the infrastructure
of your choice and exposes a predict method as a REST endpoint. This method can be called by other
external applications to request predictions of your model.

Acumos Java Client Release Notes

Version 4.2.0 08 May 2020

	<IST>H2O- Java onboarding is failing with latest Java client 4.1.0 ACUMOS-4106 [https://jira.acumos.org/browse/ACUMOS-4106]

Version 4.1.0 21 Jan 2020

	Acumos java client should give image tag URL : ACUMOS-3898 <https://jira.acumos.org/browse/ACUMOS-3898/>

Version 3.3.0 16-Dec 2019

	Acumos java client should remove accepting modelrunner(h2o/java model service) as a parameter : ACUMOS-3760 [https://jira.acumos.org/browse/ACUMOS-3760/]

	Externalizing H2O model service jar -1 : ACUMOS-1965 [https://jira.acumos.org/browse/ACUMOS-1965/]

Version 3.1.0 20-Sept 2019

	user credentials are not needed in case of webonboarding : ACUMOS-3464 [https://jira.acumos.org/browse/ACUMOS-3464/]

Version 3.0.0 9-Sept 2019

	Modify or create new java client for MLlib : ACUMOS-3129 [https://jira.acumos.org/browse/ACUMOS-3129/]

Version 2.2.0 11-June 2019

	H2O Model dump is not getting created with latest deployed JavaClient : ACUMOS-2998 [https://jira.acumos.org/browse/ACUMOS-2998/]

Version 2.1.0 23-May 2019

	Java Client needs to use the modeler’s default.proto to onboad generic java model : ACUMOS-1881 [https://jira.acumos.org/browse/ACUMOS-1881/]

	Support multiple java methods other than one single predict method : ACUMOS-1543 [https://jira.acumos.org/browse/ACUMOS-1543/]

Version 2.0.0 04-April 2019

	Modify acumos-java-client in accordance with task 2262 (create microcervice parameter) : ACUMOS-2264 [https://jira.acumos.org/browse/ACUMOS-2264/]

Version 1.14.0 15-March 2019

	Modify acumos-java-client in accordance with task 2262 (create microcervice parameter) : ACUMOS-2264 [https://jira.acumos.org/browse/ACUMOS-2264/]

	Modify acumos-java-client to take into account license file : ACUMOS-2277 [https://jira.acumos.org/browse/ACUMOS-2277/]

Version 1.11.1 20-November 2018

	API token authentication not working for java model when onboarded through CLI : ACUMOS-1916 [https://jira.acumos.org/browse/ACUMOS-1916/]

Version 1.11.0 28-September 2018

	add licenses to code and docs : ACUMOS-1337 [https://jira.acumos.org/browse/ACUMOS-1337/]

	Fix RST compile warnings : ACUMOS-1312 [https://jira.acumos.org/browse/ACUMOS-1312/]

Version 1.10.0 5-June 2018

	Move protobuf library version to config out of code : ACUMOS-909 [https://jira.acumos.org/browse/ACUMOS-909/]

	Password displayed at command line while onboarding H2O model : ACUMOS-954 [https://jira.acumos.org/browse/ACUMOS-954/]

Version 1.0.9 22-May 2018

	Clean windows-specific code that constructs file paths ACUMOS-818 [https://jira.acumos.org/browse/ACUMOS-818/]

Version 1.0.8 March 2018

	Generates the correct output datatype for output message based on model inspection (More datatypes will be supported in the future)

Version 1.0.7 March 2018

	Bug fix in Web based onboarding. Wrong arguments were being read.

Version 1.0.6 March 2018

	More test cases added

Version 1.0.5 March 2018

	Fix : Now authentication url needed for web based onboarding

Version 1.0.4 March 2018

	Fix for building fat jar and rename packages

Version 1.0.3 March 2018

	Protobuf autogeneration implemented for H2o

Version 1.0.2 March 2018

	Accepts csv file for protobuf generation for Generic java models

Version 1.0.1 January 2018

	Hardening

	Integration with Onboarding

Version 1.0.0 December 2017

	Initial Release

Acumos Java Client Tutorial

	Tutorial 1

Tutorial 1

For Generic Java models:
If modeler wants to change the name of the model.

	Change the name of the model.zip file

	Change the model name in the application.properties file at below place

Linux version
rel_model_zip=/models/ModelName

	Change the model name at service message in default.proto file service ModelName { rpc transform (DataFrame) returns (Prediction);}

	And pass the model name as 4th argument in the command

Workbench

This repository holds projects that together comprise the Workbench User interface along with backend microservices.

Build Prerequisites

	JDK 1.8

	Spring STS 3.8.x (https://spring.io/tools/sts/all)

	Git Shell (https://git-for-windows.github.io/) or SourceTree (https://www.sourcetreeapp.com/) for Cloning & pushing the code changes.

	Maven 3.x

	Proxy setup to download dependencies from open source repositories

	Open Source or GitShell Command Line Interface

	Node JS v10.15.1

	Angular CLI v7.0.3

	Polymer CLI v1.9.6

Checkout Instructions

Browse to your preferred directory and run below command:

git clone https://<userId>@gerrit.acumos.org/workbench.git

Framework details

	This repository contains one Angular application named as ‘home-webcomponent’ which need to be build and deployed as Angular application. Instructions are provided below for same.

	There are several polymer components present in this repository such as ‘dashboard-webcomponent’, ‘project-webcomponent’, ‘project-catalog-webcomponent’ etc. which need to be build and deployed as Polymer application. Instructions are provided below for same.

	This repository contains 3 microservices named as ‘project-service’, ‘notebook-service’ and ‘pipeline-service’ which are based on Spring Boot based framework and need to be deployed as a Java application.

Special Note

	Part of Boreas release, Node Express server is being implemented in the Angular/Polymer components for reverse proxy and sharing environment properties to the UI components. This implementation will be revisit in next release to seek other best approach.

Build and deploy Instructions for Angular and Polymer Components

A. Build Polymer application

	Navigate to Each polymer component root directory and install all npm dependencies via below command:

npm install –prod

	Build each polymer component with below command

npm run build:component

B. Build Angular application

	Navigate to Angular Application root directory and install all npm dependencies via below command:

npm install

	Build angular application with below command

npm run build:component

C. Run/Deploy Polymer/Angular application with below command. [[Application will be running and accessible to the port as defined in server.js file present in API folder]

npm run run:api

http://localhost:<port_num>/

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

ML Workbench Model Service Engine

This project provide back-end support to ML Workbench Model Service UI, by providing API for :

Coming Soon

Please see the documentation in the “docs” folder.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

ML Workbench DataSource Service

This project provide back-end support to ML Workbench DataSource Service UI, by providing API for :

Coming Soon

Please see the documentation in the “docs” folder.

License

Copyright (C) 2020 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

Project catalog

Running the api

	yarn to install dependencies

	Copy .env.template to .env

	Set the correct configuration in the .env file

	Run the api using yarn start

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

ML Workbench Notebook Service Engine

This project provide back-end support to ML Workbench Notebook UI, by providing API for :
1. CRUD operation
2. List Notebooks
3. Launch Notebook
4. Archive Notebook

Please see the documentation in the “docs” folder.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

ML Workbench Common library module

This project is to support ML Workbench business Micro services, by providing common code and functionality.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

ML Workbench Predictor Service Engine

This project is to support ML Workbench Predictor service UI, by providing the required API.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

Design Studio Acumos Authenticator

This project is to support Design Studio UI, by providing the required authentication to access Jupyter Notebook.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

ML Workbench Project Service Engine

This project is to support ML Workbench Project service UI, by providing the required API to render the required details on UI.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

ML Workbench Dashboard Web Component

Version 3.0.0 8th May 2020

	ML Workbench UI - Datasource integration with Dashboard Webcomponent (ACUMOS-4076)

Version 2.0.9 31st January 2020

	Updated the Minor version for build release

Version 2.0.8 7th November 2019

	IST | MLWB | Deletion of Data pipeline giving error (ACUMOS-3624)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

Version 2.0.5 25th October 2019

	MLW Dashboard UI update (ACUMOS-3604)

Version 2.0.3 18th October 2019

	MLW - update Dashboard Page from polymer to Vue components (ACUMOS-3541)

Version 2.0.0 3rd October 2019

	integrate project collaboration UI with project service (ACUMOS-3473)

Version 1.0.5 31st May 2019

	ML Workbench facing compatibility issues with Mozilla Firefox (ACUMOS-2866)

Version 1.0.3 3rd May 2019

	Update Error messages (ACUMOS-2852)

Version 1.0.2 26th April 2019

	Commit Initial skeleton UI code to workbench Repo (ACUMOS-2615)

	ML Workbench UI - Deliver Workbench UI code for Boreas release (ACUMOS-2623)

	ML Workbench UI - Dashboard Component with integration with back end mS (ACUMOS-2753)

	Integrate MLWorkbench with portal backend for models (ACUMOS-2743)

ML Workbench Datasource-Catalog Web Component

Version 3.0.1 31st July 2020

	IST | Design Studio | MLWB | Data Source | Learn More icon is not clickable on data source catalog screen. (ACUMOS-4183)

	IST | Design Studio | MLWB | Data Source | wiki page not showing details for project, notebook and pipeline on click on ‘learn more’ icon. (ACUMOS-4184)

	IST | Design Studio | MLWB | Data Source | Error message is not appropriate field if filled with wrong data. (ACUMOS-4186)

	IST | Design Studio | MLWB | Data Source | Name of data set needs to change data source on landing data source screen. (ACUMOS-4187)

	IST | Design Studio | Acu-Compose |Model with larger no of input and output fields in signature not able to connect. (ACUMOS-4189)

Version 3.0.0 8th May 2020

	ML Workbench UI - Datasource catalog Component with integration with Datasource service (ACUMOS-4076)

ML Workbench DataSource Service Application Programming Interfaces

API

1.Get DataSource List

	Request Method

	GET

	Operation Name

	getDataSourcesList

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}

	Trigger

	This API is called when the login user wants to get the list of dataSources.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,

category : category,

namespace : datasource namespace,

textSearch : textSearch

}

	Response

	
	{

	List<DataSource>: List of DataSource

}

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	DataSource service must validate the input parameters such as category, namespace, textSearch fields. If the category is not in the specified DataSource category list such as [file, cassandra, mongo, jdbc, hive, hive batch, hdfs, hdfs batch, mysql, Spark Standalone, Spark on Yarn] then need to throw the appropriate exception which includes error description “DataSource has invalid category validate. Please send the correct value.” and along with the error code 4xx.

	If the user wants to get the DataSources details with textSearch only, query to couch db with parameters like textSearch, userId then get the results accordingly, if no results are these then return empty response.

	If the user wants to get the DataSources details with input parameters like userId, namespace, category then add the necessary parameters in Couch query with isActive status as true, then get the results in JSON format, if no results are these then return empty response.

	While fetching the DataSources details if any database exception occurs then throw the DataSourceException with appropriate error description and error code as 4xx as per the existing implementation.

	The Json formatted List<DataSource> objects should get in the body of the response with HTTP Status code 200 OK.

2.Get DataSource

	Request Method

	GET

	Operation Name

	getDataSource

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/datasources/{datasourceKey}

	Trigger

	This API is called when the login user search for a particular datasourceKey to get the DataSource Details.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,

dataSourceKey : DataSource Key,

}

	Response

	
	{

	DataSource: DataSource

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	DataSource service must validate the input parameters such as Authenticated UserId, dataSourceKey. Then query to couch db by using userId and dataSourceKey then get the records in json formatted object (DataSourceModel). If no records are available then throw the appropriate exception such as DataSourceException with error description “DataSource is not available for the given DataSourceKey : cac684accjb ” with error code 4xx.

	While fetching the DataSources details if any database exception occurs then throw the DataSourceException with appropriate error description and error code as 4xx as per the existing implementation.

	The Json formatted DataSource object should get in the body of the response with HTTP Status code 200 OK.

3. Create New DataSource

	Request Method

	POST

	Operation Name

	createDataSource

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}

	Trigger

	This API is called when the login user wants to creare the new datasource.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,

DataSource : DataSource object,

}

	Response

	
	{

	DataSource: DataSource object

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields exists or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	DataSource service must check the input request(@RequestBody DataSource dataSource) has the valid json structure and correctly formatted or not. if not throw the error message accordingly.

	Check the dataSource request body has mandatory fields like category, namespace, datasourceName, readWriteDescriptor are there or not, if not there then throw the InvalidInputJSONException with error description as “Incorrectly formatted input Invalid JSON.” with error code 4xx.

	DataSource service must validate the dataSource request body input parameter such as category field. If the category is not in the specified DataSource category list which is there in CategoryTypeEnum such as [file, cassandra, mongo, jdbc, hive, hive batch, hdfs, hdfs batch, mysql, Spark Standalone, Spark on Yarn] then need to throw the appropriate exception which includes error description “DataSource has invalid category value. Please send the correct value.” and along with the error code 4xx.

	DataSource service must validate the dataSource request body input parameter such as readWriteDescriptor value contains as per the enum values in ReadWriteTypeEnum(read,write). If not there then need to throw the appropriate exception which includes error description “DataSource has invalid readWriteDescriptor value. Please send the correct value.” and along with the error code 4xx.

	DataSource service must check the dataSourceModel request body input connection parameters such as CommonDetailsInfo, DBDetailsInfo which includes serverName, portNumber, environment, databaseName, dbServerUsername, dbServerPassword, jdbcURL, dbQuery. If one of them are missing then throw the DataSourceException with error description “Datasource Model has missing mandatory information. Please send all the required information.” with error code 4xx.

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	Check for the DataSource category connection status such as for Couch/MySql/Mongo,.. connectivity is there or not, by using userId, DataSource’s CommonDetailsInfo and DBDetailsInfo establish the connection and run the query and set the required appropriate data in dataSource object. if the connection is success then return response as “success” else throw the exception with error description “Couldn’t establish the connection for Couch/MySql/Mongo services” and error code 4xx.

	If the connection status is success then encrypt the DbServerUsername, DbServerPassword which is there in DBDetailsInfo and set encrypted user name and password in DataSource object and store it in Couch DB.

	While saving the DataSources details in couch db if any database exception occurs then throw the DataSourceException with appropriate error description and error code as 4xx as per the existing implementation.

	The Json formatted DataSource object should get in the body of the response with HTTP Status code 200 OK.

4. Update DataSource Details

	Request Method

	PUT

	Operation Name

	updateDataSourceDetail

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/datasources/{datasourceKey}

	Trigger

	This API is called when the login user want to update the registered dataSource details for a particular dataSourceKey.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,

dataSourceKey : DataSource Key (DataSource Id),

DataSource : DataSource object,

}

	Response

	
	{

	dataSource: DataSource

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields exists or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	DataSource service must check the input request(@RequestBody DataSource dataSource) has the valid json structure and correctly formatted or not. if not throw the error message accordingly.

	Check the dataSource input request body has mandatory fields like category, namespace, datasourceName, readWriteDescriptor are there or not, if not there then throw the InvalidInputJSONException with error description as “Incorrectly formatted input Invalid JSON.” with error code 4xx.

	DataSource service must validate the dataSource request body input parameter such as category field exists or not. If the category is not in the specified DataSource category list which is there in CategoryTypeEnum such as [file, cassandra, mongo, jdbc, hive, hive batch, hdfs, hdfs batch, mysql, Spark Standalone, Spark on Yarn] then need to throw the appropriate exception which includes error description “DataSource has invalid category value. Please send the correct value.” and along with the error code 4xx.

	DataSource service must validate the datasource input request body input parameter such as readWriteDescriptor value contains as per the enum values in ReadWriteTypeEnum(read,write). If not there then need to throw the appropriate exception which includes error description “DataSource has invalid readWriteDescriptor value. Please send the correct value.” and along with the error code 4xx.

	DataSource service must check the dataSource request body input connection parameters such as CommonDetailsInfo, DBDetailsInfo which includes serverName, portNumber, environment, databaseName, dbServerUsername, dbServerPassword, jdbcURL, dbQuery. If any one of them are missing then throw the DataSourceException with error description “Datasource input request has missing mandatory information. Please send all the required information.” with error code 4xx.

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	DataSource Service must check in the DataBase, for the given dataSourceKey is exists or not. If exists then return the record, else throw the exception as DataSourceException with error description “DataSource for the specified DataSourceKey : ” + dataSourceKey + ” Not Available” with error code 4xx.

	DataSource must check the login user has the access for the DataSource, query to data base by using dataSourceKey and userId. If the records are available then return it, otherwise throw the exception as DataSourceException with error description as “please check dataset key provided and user permission for this operation”, with error code 4xx.

	Check for the DataSource category connection status such as for Couch/MySql/Mongo,.. connectivity is there or not, by using userId, DataSource’s CommonDetailsInfo and DBDetailsInfo establish the connection and run the query and set the required appropriate data in datasource object. if the connection is success then return response as “success” else throw the exception with error description “Couldn’t establish the connection for Couch/MySql/Mongo services” and error code 4xx.

	While updating the DataSource details, the user need to send the encrypted DbServerUsername and DbServerPassword otherwise user will get the exception while decrypting, then DataSource service must decrypt the DbServerUsername and DbServerPassword and it will check for the connection establishment status as true/false.

	If the connection status is success then encrypt the DbServerUsername, DbServerPassword which is there in the updated DBDetailsInfo and set the encrypted user name and password in DataSource object and store it in DataBase.

	While saving the DataSources details in DataBase if any database exception occurs then throw the DataSourceException with appropriate error description and error code as 4xx as per the existing implementation.

	The Json formatted updated DataSource object should get in the body of the response with HTTP Status code 200 OK.

5. Delete DataSource Details

	Request Method

	DELETE

	Operation Name

	deleteDataSource

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/datasources/{datasourceKey}

	Trigger

	This API is called when the login user want to delete the registered dataSource details for a particular dataSourceKey in database.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,

dataSourceKey : DataSource Key,

}

	Response

	
	{

	Service Status : Service Status object

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	DataSource Service must check in DataBase for the given dataSourceKey is exists or not. If exists then return the record, else throw the exception as DataSourceException with error description “DataSource for DataSourceKey : ” + dataSourceKey + ” Not Available” with error code 4xx.

	DataSource service must check the login user has the access for the DataSource, query to data base by using dataSourceKey and userId. If the records are available then return it, otherwise throw the exception as DataSourceException with error description as “please check datasource key provided and user permission for this operation”, with error code 4xx.

	After successful checks if the record is available in database then delete the record by querying to DataBase by using dataSourceKey. If deleted successfully then return the result.

	While deleting the DataSources details in couch database if any database exception occurs then throw the DataSourceException with appropriate error description and error code as 4xx as per the existing implementation.

	The Json formatted Service Status object should get in the body of the response with HTTP Status code 200 OK.

6. Associate the DataSource to the Project

	Request Method

	POST

	Operation Name

	associateDataSourcetoProject

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/projects/{projectId}/datasource/{datasourceKey}

	Trigger

	This API is called when the login user want to associate the datasource to a particular project.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id,

projectId : Project Id,

datasourceKey : DataSource Key,

DataSource : DataSource object

}

	Response

	
	{

	DataSourceAssociationModel : DataSource Association Model Object

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	The DataSource Service must check the given projectId is valid or not, by connecting to project service and get the Project object, else if the project is not available then throw the ProjectNotFoundException with error description “Project doesn’t exists”. If the Project is archived then throw the ArchivedException saying “Update Not Allowed, Specified Project : ” + projectId + ” is archived”, else return the project object and also need to check the user has the permission to access the given projectId or not if not then throw the exception sayig NotProjectOwnerException.

	While associating the datasource to the project, datasource service need to check the combination of datasourceKey and userId, the DataSource exists or not in the DataBase. if the DataSource not found then throw the CouchDBException saying “DataSource is not available for the given DataSourceKey : ” + dataSourceKey” with error code 4xx. If the datasource is available but its not accessible to login user then throw the appropriate exception like NotOwnerException with message “Permission Denied”.

	DataSource service must check the given dataSourceKey is exists in the database or not, if not exists then throw the exception saying DataSourceNotFoundException with error description “DataSource is not available for the given DataSourceKey : ” + dataSourceKey” with error status code 4xx. If the dataSource available in database then return the same.

	While creating the new association, dataSource service need to verify that the association already exists or not. If the association already exists then throw the AssociationException with error description “Association already exists in Couch DB”. If any failure occurs while connecting to the database then throw the exception saying CouchDBException with error message “Exception occured while finding the documents in couchDB”.

	After doing all the successful validations, DataSource service must create the DataSourceAssociationModel object in the database, then return the json formatted object with HTTP Status code 200 OK.

7. Update the Association Details of DataSourceProject

	Request Method

	PUT

	Operation Name

	updateDataSourceProjectAssociationDetails

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/projects/{projectId}/datasource/{datasourceKey}/association/{associationId}

	Trigger

	This API is called when the login user want to Update the Association Details of DataSourceProject.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id,

projectId : Project Id,

datasourceKey : DataSource Key,

associationId : Association Id,

DataSource : datasource

}

	Response

	
	{

	DataSourceAssociationModel : DataSource Association Model Object

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	The DataSource Service must check the given projectId is valid or not, by connecting to project service and get the Project object, else if the project is not available then throw the ProjectNotFoundException with error description “Project doesn’t exists”. If the Project is archived then throw the ArchivedException saying “Update Not Allowed, Specified Project : ” + projectId + ” is archived”, else return the project object and also need to check the user has the permission to access the given projectId or not if not then throw the exception sayig NotProjectOwnerException.

	Before updating the association details, get the DataSourceAssociationModel object from database by using associationId, if the record not found then throw the exception saying AssociationNotFoundException with error message “No DataSourceProject Association available for Association Id : ” + associationId”, else if the record found then return the same with updated details like timestamp and the version.

	While updating the DataSourceAssociationModel details, update the old DataSourceAssociationModel object to new DataSourceAssociationModel details and update in database then return the same json formatted DataSourceAssociationModel object with HTTP status code 200 OK. If any exception occurs while connecting to the database server then throw the CouchDBException with appropriate error message.

8. Get the list of DataSources which are associated to a project

	Request Method

	GET

	Operation Name

	dataSourceListAssociatedtoProject

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/projects/{projectId}

	Trigger

	This API is called when the login user want to get the list of Datasources which are associated to a Project.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id,

projectId : Project Id,

}

	Response

	
	{

	List<DataSourceAssociationModel> : List of DataSource Association Model Object

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	The DataSource Service must check the given projectId is valid or not, by connecting to project service and get the Project object, else if the project is not available then throw the ProjectNotFoundException with error description “Project doesn’t exists”. If the Project is archived then throw the ArchivedException saying “Update Not Allowed, Specified Project : ” + projectId + ” is archived”, else return the project object and also need to check the user has the permission to access the given projectId or not if not then throw the exception sayig NotProjectOwnerException.

	Get the Association details of DataSource and a Project for a particular projectId then query to the database and return the JSON formatted List of DataSourceAssociationModel with HTTP response code 200 OK. While fetching the Association details of a project and DataSource if the association not found then throw the exception like AssociationNotFoundException with error message “No DataSource is Associated for the Project : ” + projectId” with error HTTP Status code 4xx.

9. Delete the Association Details of DataSourceProject

	Request Method

	DELETE

	Operation Name

	deleteDataSourceProjectAssocaition

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/projects/{projectId}/datasource/{datasourceKey}/association/{associationId}

	Trigger

	This API is called when the login user want to Delete the Association Details of DataSourceProject.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id,

projectId : Project Id,

datasourceKey : Data Source key,

associationId : Association Id

}

	Response

	
	{

	Service Status : Service Status object

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	The DataSource Service must check the given projectId is valid or not, by connecting to project service and get the Project object, else if the project is not available then throw the ProjectNotFoundException with error description “Project doesn’t exists”. If the Project is archived then throw the ArchivedException saying “Update Not Allowed, Specified Project : ” + projectId + ” is archived”, else return the project object and also need to check the user has the permission to access the given projectId or not if not then throw the exception sayig NotProjectOwnerException.

	While deleting the Association details, make sure that the associationId is exists or not in database, If the Association details are available for a particular associationId then return the same, else throw the exception like AssociationNotFoundException with error message “No DataSourceProject Association available for Association Id : ” + associationId”.

6) After fetching the Association Details, get the associationId and revisionId from the DataSourceAssociationModel, then query to database and remove the DataSourceAssociationModel object from the Database. While deleting the Association details from the Database any exception occurs then throw the exception as CouchDBException with error description “Exception occured while Deleting the Association Details for AssociationId : ”
+ associationId + “and DocumentRevisionId : ” + _rev”. After succesful deletion of the Association return the response as JSON formatted Service Status object with HTTP Status code 200 OK.

10. Share Data Source to a Collaborator

	Request Method

	POST

	Operation Name

	shareDataSource

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/datasource/{dataSourceKey}

	Trigger

	This API is called when the login user want to Share Data Source to a Collaborator.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id,

datasourceKey : Data Source key,

Users : collaborators

}

	Response

	
	{

	DataSource : datasource

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	Before sharing the DataSource to the collaborator make sure that the login user is the owner of the DataSource or not and also check the datasource is exists in the database or not for a particular datasourceKey. If the dataSource is not available then throw the exception saying DataSourceNotFoundException with error desciption “DataSource is not available for the given DataSourceKey : ” + dataSourceKey” with exception status code 4xx, else return the datasource details.

	Make sure that the given input collaborator details are already exists or not, if already exists then throw the exception saying CollaboratorExistsException with error description “Collaborator already Exists”.

	While sharing the datasource to a collaborator fetch the DataSourceCollaboratorModel details for a particular datasourceKey and update the requiured details of a DataSourceCollaboratorModel and fileter out the permissions and save the DataSourceCollaboratorModel object in database and return the same.

	Now convert the DataSourceCollaboratorModel object to Users object and set the updated collaborator details into DataSource object and return the same with HTTP Status code 200 OK.

11. Get the Shared DataSources for a User

	Request Method

	GET

	Operation Name

	getSharedDataSources

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/datasources/shared

	Trigger

	This API is called when the login user want to get the shared datasources for a user.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id

}

	Response

	
	{

	DataSource : datasource

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	While fetching the datasources, get the user details, if the user not found the throw the exception as UserNotFoundException else get the MLPUser details. After getting the user details then get the shared datasources then make filter out then return the list of DataSources.

	After fetching the list of DataSource objects then return the JSON formatted response with HTTP status code 200 OK.

12. Remove the User from Collaborator List

	Request Method

	DELETE

	Operation Name

	removeDataSourceCollaborator

	Context Path

	/mlWorkbench/v1/datasource/users/{authenticatedUserId}/datasource/{dataSourceKey}/collaborators

	Trigger

	This API is called when the login user want to Remove the User from Collaborator List.

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : Acumos User login Id,

datasourceKey : Data Source key,

Users : collaborators

}

	Response

	
	{

	DataSource : datasource

}

HTTPStatus : 201

Behavior

	DataSource service must check the input request has all the mandatory fields or not. If not throw the error message accordingly with error details as below

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?Missing Mandatory Field : UserId?

c.Send the response to client with Http response code ? 4xx

	Get the JWT authToken from HttpServletRequest request as per the existing implementation.

	Check the login user exists in DataBase (MariaDB by calling CDS) or not, if not throw the error message like below as a Json response

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= ?techmdev User not found?

c.Send the response to client with Http response code ? 4xx

	DataSource Service must check in DataBase for the given dataSourceKey is exists or not. If exists then return the record, else throw the exception as DataSourceException with error description “DataSource for DataSourceKey : ” + dataSourceKey + ” Not Available” with error code 4xx.

	DataSource must check the login user has the access for the DataSource, query to data base by using dataSourceKey and userId. If the records are available then return it, otherwise throw the exception as DataSourceException with error description as “please check dataset key provided and user permission for this operation”, with error code 4xx.

	Check whether the given user is active or not by calling CDS API, if the user is not active then throw the exception saying UserNotFoundException with error message “User is not ACTIVE”. Also check the user has the role or not, if not have any role then throw the exception like EntityNotFoundException with error desciption “Roles not defined”.

	Check the given user is collaborator or not for the given datasourceKey by fetching DataSourceCollaboratorModel object and get the collaborators details and filter out the user details and cehck if the user is exists as collaborator or not. If the user is not a collaborator then throw the exception like CollaboratorExistsException with error message “User is not a collaborator”.

	While removing the collaborator for the given dataSourceKey get the DataSourceCollaboratorModel object and get the collaborator details from it then filter the collaborator details from the input request Users object. If both the users are same then remove the collaborator details from the DataSourceCollaboratorModel object and update the required fields along with the collaborator details and update the same object in couch database and return the same.

	After auccessful updation of the DataSourceCollaboratorModel object then get the users object from it, then set the users object into DataSource object. Then return the JSON formatted object with HTTP Status code 200 OK.

ML(Machine Learning) Workbench DataSource Service Developer Guide

1. Overview

This is the developers guide to ML Workbench DataSource Service.

1.1. What is ML Workbench DataSource Service?

ML Workbench DataSource Service expose API to allow to perform CRUD operation on DataSource in ML Workbench.

2. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 2.1.8.RELEASE

	Java 11

	Maven 4.0.0

	lightcouch 0.2.0

	JUnit 4.12

3. Project Resources

	Gerrit repo: workbench/datasource-service [https://gerrit.acumos.org/r/#/admin/projects/workbench]

	Jira [https://jira.acumos.org/browse/ACUMOS-4074] Datasource support in Acumos

	Jira [https://jira.acumos.org/browse/ACUMOS-4075] Create new MS : Datasource

4. Development Setup

	Clone or download code from “Gerrit repo” mentioned above.

	Import datasource-service Project in IDE (viz., Eclipse or STC)

	Once successfully imported, set the required properties in application.properties file.

	Run as Springboot application.

	Access using Swagger UI : http://localhost:9097/mlWorkbench/v1/datasource/swagger-ui.html#

	
	Once you get the Swagger UI, click Authorize button and provide JWT token as below :

	Bearer <JWT token for Acumos User>

Note: JWT token value can be obtained after successful login in Acumos.

	After successfully setting Authorize value, API are available to access. Following are the sample inputs :

1.Get DataSource List

	{

	authenticatedUserId : User login Id,

category : category,

namespace : datasource namespace,

textSearch : textSearch

}

2.Get DataSource

	{

	authenticatedUserId : User login Id,

dataSourceKey : DataSource Key

}

3.Create New DataSource

	{

	authenticatedUserId : User login Id,

DataSource : DataSource Object

}

4.Update DataSource Details

	{

	authenticatedUserId : User login Id,

dataSourceKey : DataSource Key (DataSource Id),

DataSource : DataSource Object

}

5.Delete DataSource Details

	{

	authenticatedUserId : User login Id,

dataSourceKey : DataSource Key (DataSource Id)

}

6.Associate the DataSource to the project

	{

	authenticatedUserId : User login Id,

projectId : Project Id,

dataSourceKey : DataSource Key (DataSource Id),

DataSource : DataSource object

}

7.Update the Association Details of DataSourceProject

	{

	authenticatedUserId : User login Id,

projectId : Project Id,

dataSourceKey : DataSource Key (DataSource Id),

associationId : Association Id,

DataSource : dataSource object

}

8.Get the list of DataSources which are associated to a project

	{

	authenticatedUserId : User login Id,

projectId : Project Id

}

9.Delete the Association Details of DataSourceProject

	{

	authenticatedUserId : User login Id,

projectId : Project Id,

datasourceKey : Data Source key,

associationId : Association Id

}

10.Share Data Source to a Collaborator

	{

	authenticatedUserId : User login Id,

datasourceKey : Data Source key,

Users : collaborators

}

11.Get the Shared DataSources for a User

	{

	authenticatedUserId : User login Id

}

12.Remove the User from Collaborator List

	{

	authenticatedUserId : User login Id,

datasourceKey : Data Source key,

Users : collaborators

}

DataSource Service Release Notes

Version 1.0.0, 2020-05-29

	Added prefix to docker name : acumos/

	Updated the workbench-common depndency to 2.0.4

Version 0.0.1, 2020-04-13

	ACUMOS-3887 : API definition for datasource

	ACUMOS-3886 : Analyze existing code to make sure that capabilities are there and can be used

	ACUMOS-4074 : Datasource support in Acumos

	ACUMOS-4075 : Create new MS : Datasource

ML Workbench Datasource Web Component

Version 3.0.1 31st July 2020

	IST | Design Studio | MLWB | Data Source | On data source details screen drop down icons missing for data connector and Read write descriptor. (ACUMOS-4185)

Version 3.0.0 8th May 2020

	ML Workbench UI - Datasource Component with integration with Datasource service (ACUMOS-4076)

ML Workbench Home Web Component

Version 3.0.0 8th May 2020

	ML Workbench UI - Datasource integration with Home component (ACUMOS-4076)

Version 2.0.9 31st January 2020

	Updated the Minor version for build release

Version 2.0.8 7th November 2019

	IST | MLWB | Deletion of Data pipeline giving error (ACUMOS-3624)

Version 2.0.5 25th October 2019

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	IST | MLWB | Archival of the project navigating user to edit screen (ACUMOS-3618)

Version 2.0.3 18th October 2019

	MLW - update Dashboard Page from polymer to Vue components (ACUMOS-3541)

	MLW - update Notebook details from polymer to Vue components (ACUMOS-3544)

	MLW - update Pipeline details from polymer to Vue components (ACUMOS-3542)

	MLW - update Project catalog from ploymer to Vue components (ACUMOS-3540)

Version 2.0.1 14th October 2019

	MLWB - Model/Project mapping UI known issues (ACUMOS-3424)

Version 1.0.6 9th September 2019

	Develop and integrate Project Service UI to allow user to facilitate User to get Models associated to a Project (ACUMOS-3217)

Version 1.0.5 31st May 2019

	ML Workbench facing compatibility issues with Mozilla Firefox (ACUMOS-2866)

Version 1.0.4 3rd May 2019

	Update Error messages (ACUMOS-2852)

	Implement Dynamic sidebar in the workbench (ACUMOS-2851)

Version 1.0.2 26th April 2019

	ML Workbench UI - Develop ML Workbench master/shell application in Angular 7 framework (ACUMOS-2754)

	ML Workbench UI - Deliver Workbench UI code for Boreas release (ACUMOS-2623)

	cookie implementation in workbench to integrate with portal fe. (ACUMOS-2744)

	changes for design studio tab for ML workbench (ACUMOS-2745)

ML Workbench

Contents:

	ML Workbench Dashboard Web Component
	Version 3.0.0 8th May 2020

	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 2.0.0 3rd October 2019

	Version 1.0.5 31st May 2019

	Version 1.0.3 3rd May 2019

	Version 1.0.2 26th April 2019

	ML Workbench Datasource-Catalog Web Component
	Version 3.0.1 31st July 2020

	Version 3.0.0 8th May 2020

	ML Workbench Datasource Web Component
	Version 3.0.1 31st July 2020

	Version 3.0.0 8th May 2020

	ML Workbench Home Web Component
	Version 3.0.0 8th May 2020

	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 2.0.1 14th October 2019

	Version 1.0.6 9th September 2019

	Version 1.0.5 31st May 2019

	Version 1.0.4 3rd May 2019

	Version 1.0.2 26th April 2019

	ML Workbench NoteBook-Catalog Web Component
	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.7 6th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 1.0.6 9th September 2019

	Version 1.0.5 31st May 2019

	Version 1.0.3 3rd May 2019

	Version 1.0.2 26th April 2019

	ML Workbench NoteBook Web Component
	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 1.0.6 9th September 2019

	Version 1.0.5 31st May 2019

	Version 1.0.3 3rd May 2019

	Version 1.0.2 26th April 2019

	ML Workbench Pipeline Catalog Web Component
	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.7 6th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 1.0.6 9th September 2019

	ML Workbench Pipeline Web Component
	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 1.0.6 9th September 2019

	ML Workbench Project-Catalog Web Component
	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.7 6th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 2.0.0 3rd October 2019

	Version 1.0.6 9th September 2019

	Version 1.0.5 31st May 2019

	Version 1.0.3 3rd May 2019

	Version 1.0.2 26th April 2019

	ML Workbench Project Web Component
	Version 3.0.0 21st April 2020

	Version 2.0.9 31st January 2020

	Version 2.0.8 7th November 2019

	Version 2.0.6 1st November 2019

	Version 2.0.5 25th October 2019

	Version 2.0.3 18th October 2019

	Version 2.0.2 14th October 2019

	Version 2.0.0 3rd October 2019

	Version 1.0.6 9th September 2019

	Version 1.0.5 31st May 2019

	Version 1.0.3 3rd May 2019

	Version 1.0.2 26th April 2019

	Notebook Service Release Notes
	Version 2.0.5, 2020-05-29

	Version 2.0.4, 2020-01-29

	Version 2.0.3, 2019-12-16

	Version 2.0.2, 2019-12-10

	Version 2.0.1, 2019-10-25

	Version 2.0.0, 2019-10-01

	Version 1.0.3, 2019-09-25

	Version 1.0.2, 2019-09-09

	Version 1.0.1, 2019-05-30

	Version 1.0.0, 2019-04-27

	ML Workbench Notebook Service Engine Application Programming Interfaces
	API

	ML Workbench Notebook Service Developer Guide
	1. Overview

	2. Technology and Frameworks

	3. Project Resources

	4. Development Setup

	Pipeline Service Release Notes
	Version 2.0.5, 2020-05-29

	Version 2.0.4, 2019-12-16

	Version 2.0.3, 2019-12-10

	Version 2.0.2, 2019-10-31

	Version 2.0.1, 2019-10-25

	Version 2.0.0, 2019-10-01

	Version 1.0.3, 2019-09-25

	Version 1.0.2, 2019-09-09

	Version 1.0.1, 2019-05-30

	Version 0.0.1, 2019-04-27

	ML Workbench Pipeline Service Engine Application Programming Interfaces
	API

	ML Workbench Pipeline Service Developer Guide
	1. Overview

	2. Technology and Frameworks

	3. Project Resources

	4. Development Setup

	Project Service Release Notes
	Version 2.0.5, 2020-05-29

	Version 2.0.4, 2019-12-16

	Version 2.0.3, 2019-12-10

	Version 2.0.2, 2019-10-31

	Version 2.0.1, 2019-10-09

	Version 2.0.0, 2019-10-01

	Version 1.0.3, 2019-09-25

	Version 1.0.2, 2019-09-09

	Version 1.0.1, 2019-05-30

	Version 1.0.0, 2019-04-27

	ML Workbench Project Service Engine Application Programming Interfaces
	API

	ML(Machine Learning) Workbench Project Service Developer Guide
	1.Overview

	2. Technology and Frameworks

	3.Project Resources

	4. Development Setup

	Model Service Release Notes
	Version 2.0.4, 2020-01-29

	Version 2.0.3, 2019-12-16

	Version 2.0.2, 2019-12-10

	Version 2.0.1, 2019-11-13

	Version 2.0.0, 2019-10-01

	Version 1.0.1, 2019-09-25

	Version 1.0.0, 2019-09-09

	ML Workbench Model Service Engine Application Programming Interfaces
	API

	ML(Machine Learning) Workbench Model Service Developer Guide
	1. Overview

	2. Technology and Frameworks

	3. Project Resources

	4. Development Setup

	Predictor Service Release Notes
	Version 1.0.5, 2020-05-29

	Version 1.0.4, 2020-01-29

	Version 1.0.3, 2019-12-16

	Version 1.0.2, 2019-12-10

	Version 1.0.0, 2019-10-01

	ML Workbench Predictor Service Engine Application Programming Interfaces
	API

	ML(Machine Learning) Workbench Predictor Service Developer Guide
	1. Overview

	2. Technology and Frameworks

	3. Project Resources

	4. Development Setup

	DataSource Service Release Notes
	Version 1.0.0, 2020-05-29

	Version 0.0.1, 2020-04-13

	ML Workbench DataSource Service Application Programming Interfaces
	API

	ML(Machine Learning) Workbench DataSource Service Developer Guide
	1. Overview

	2. Technology and Frameworks

	3. Project Resources

	4. Development Setup

	Workbench Common Release Notes
	version 2.0.4, 2020-05-26

	Version 2.0.3, 2020-01-29

	Version 2.0.2, 2019-12-16

	Version 2.0.1, 2019-12-10

	Version 2.0.0, 2019-10-01

	Version 1.0.5, 2019-09-25

	Version 1.0.4, 2019-06-24

	Version 1.0.3, 2019-05-29

	Version 1.0.2, 2019-04-02

	Version 1.0.1, 2019-04-02

	Version 1.0.0, 2019-04-02

	ML Workbench Common library Developer Guide

	ML Workbench
	Dashboard User Guide

	DataSource User Guide

	Home User Guide

	Notebook User Guide

	Pipeline User Guide

	Project User Guide

ML Workbench Model Service Engine Application Programming Interfaces

API

1. List(Get)Models

	Operation Name

	listModels

	Trigger

	This API is called when the user:

	When the user clicks on the “My Models” catalog under a particular project.

	When the user clicks on the “My Models” catalog (with out project)

	Request

	
	{

	user:User;

}

	Response

	
	{

	modelList:Models;

}

Behavior

	The Model Service must check if the json structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Model Service must retrieve the authenticatedUserId from the context of REST call (the REST header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”

	Send response to client with Http response code – 4xx (404)

	Check if the user is authorized to request this operation

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Permissions denied”

	Send response to client with Http response code – 4xx (404)

	Check if the projectId exists

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Project Id does not exists”

	Send response to client with Http response code – 4xx (404)

	Retrieve all the models associated with a given user and project to do this Model Service must

	Retrieve the list of models associated to a project (to perform this operation need to call the CocuhDB API), owner as input user and status is not “deleted”

	For each model association in above list : Check if the model version is not deleted in the Acumos. If the Model version is deleted, then update the model association in DB(CouchDB) as “Invalid” (call to CouchDB API to update project model association status) and also update the same in the above model association list.

	The Model Service must return the following to the UI layer:

	The list of JSON formatted Model objects in the body of the response.

	Http Response code - 200 OK

2. Associate Model to Project

	Operation Name

	associateModeltoProject

	Trigger

	This API is called when the user:

	Request to associate the model(s) to an existing project in his project catalog in ML Workbench workspace

	Request

	
	{

	model:Model;

}

	Response

	
	{

	model:Model;

}

Behavior

	The Model Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Model Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”

	Send response to client with Http response code – 4xx

	Check the requestor permissions: The Model Service must call CDS to check if the requestor (i.e authenticatedUserId) is the owner of the model (or in later releases must check the permissions table if the requestor is allowed to perform this operation). If not it just return :

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Permission Denied”

	Send response to client with Http response code – 4xx

	Check if the Project and Version already exists : The Model Service must call Project Service to make sure that project and version provided in the request already exists, otherwise it must return :

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Project and version does not exists”

	Send response to client with Http response code – 4xx

	Check if the project is archived : The Model Service must call Project Service to check if the project is archived, and if so it should return :

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Update not allowed – project is archived”

	Send response to client with Http response code – 4xx

	Check if the SolutionId(s) and Version(s) already exists : The Model Service must call Common Data Service to make sure that the SolutionId(s) and Version(s) provided in the request already exists, otherwise it should return :

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Solution and Version does not exists”

	Insert Project Model Association : The Model Service must insert new entry in project model association table, only if project model association for the input model and project does not exists and but if it exists then it should be in “Deleted” state (call CouchDB API to create new entry in Project Model Association Table).

	The Project Service must return :

	JSON formatted Project Object as body of the response

	Http Response code - 200 OK

3. Update Model Association with Project

	Operation Name

	updateModelAssociationWithProject

	Trigger

	This API is called when the user :

	Request to update the model association with Project in ML Workbench workspace.

	Request

	
	{

	model:Model;

}

	Response

	
	{

	model:Model;

}

Behavior

	The Model Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Model Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Acumos User Id missing”

	Send the response to client with Http response code – 4xx

	Check if the requestor is the owner of the project workbench or is authorized to update the Project Model Association : The Model Service must call CDS to check if the requestor (i.e authenticatedUserId) is the owner of the project (in later must check the permissions table if the requestor is allowed to perform this action). If not it just return :

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Permission denied”

	Send the response to client with Http response code – 4xx

	Check if the requestor is the owner of the Model and is authorized to update the Project Model Association : The Model Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the Model (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return :

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Permission denied”

	Send the response to client with Http response code – 4xx

	Update the association (link) between the project and model : The Model Service must call the CDS to update the project model association for pojectId and SolutionId/version (call Couch DB API to update project model association)

	Construct the JSON formatted ServiceState object with serviceStatus.status=COMPLETED

	The Model Service must return :

	JSON formatted Model object as the body of the response

	Http response code 200.

4. Delete Model Association with Project

	Operation Name

	deleteModelAssociationWithProject

	Trigger

	This API is called when the user:

	Request the deletion of model association with project in MLWorkbench workspace. The Project Model Association can only be deleted (i.e purged) if it is an ARCHIVED state.

	Request

	
	{

	model:Model;

}

	Response

	
	{

	serviceState:ServiceState;

}

Behavior

	The Model Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Model Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Acumos User Id missing”

	Send the response to client with Http response code – 4xx

	Check if the requestor is the owner of the project Workbench or is authorized to delete the Project Model Association: The Model Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Permission denied”

	Send the response to client with Http response code – 4xx

	Check if the requestor is the owner of the Model and is authorized to delete the Project Model Association: The Model Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the Model (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Permission denied”

	Send the response to client with Http response code – 4xx

	Delete the association (link) between the project and model: The Model Service must call the CDS to delete the project model association for pojectId and SolutionId/version (call CouchDB API to delete the Project Model Association)

	Construct the JSON formatted ServiceState object with serviceStatus.status=COMPLETED.

	The Model Service must return:

	JSON formatted project object as the body of the response

	
	Http response code 200.

ML(Machine Learning) Workbench Model Service Developer Guide

1. Overview

This is the developers guide to ML Workbench Model Service.

1.1. What is ML Workbench Model Service?

ML Workbench Model Service expose API to allow to perform CRUD operation on Associated Models in ML Workbench.

2. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 2.1.7.RELEASE

	Java 11

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

	LightCouch 0.2.0

3. Project Resources

	Gerrit repo: workbench/model-service [https://gerrit.acumos.org/r/#/admin/projects/workbench]

	Jira [https://jira.acumos.org/browse/ACUMOS-3177] ML Workbench Model Mapping Service

4. Development Setup

	Clone or download code from “Gerrit repo” mentioned above.

	Import model-service Project in IDE (viz., Eclipse or STC)

	Once successfully imported, set the required properties in application.properties file.

	Run as Springboot application.

	Access using Swagger UI : http://localhost:9091/mlWorkbench/v1/modelservice/swagger-ui.html#/

	
	Once you get the Swagger UI, click Authorize button and provide JWT token as below :

	Bearer <JWT token for Acumos User>

Note: JWT token value can be obtained after successful login in Acumos.

	After successfully setting Authorize value, API are available to access. Following are the sample inputs :

	List out all the Models that belongs to user

“authenticatedUserId” : <Acumos User login Id>

	List out all the Models that belongs to User under the Project

“authenticatedUserId” : <Acumos User login Id>

“projectId” : <Project UUID>

	Associate’s the Model to the Project

“authenticatedUserId” : <Acumos User login Id>

“projectId” : <Project UUID>

“modelId” : <Model UUID>

	“model” :{

	
	“modelId”: {

	
	“versionId”: {

	“label”: “1”

},

	“metrics”: {

	

	“kv”: [

	

	{

	“key”: “MODEL_TYPE_CODE”,

“value”: “<XYZ>”

},

	{

	“key”: “MODEL_PUBLISH_STATUS”,

“value”: “true”

},

	{

	“key”: “CATALOG_NAMES”,

“value”: “xyz”

}

]

}

}

}

	Update the Model Association with Project

“authenticatedUserId” : <Acumos User login Id>

“projectId” : <Project UUID>

“modelId” : <Model UUID>

	“model” :{

	
	“modelId”: {

	
	“versionId”: {

	“label”: “1”

},

	“metrics”: {

	

	“kv”: [

	

	{

	“key”: “MODEL_TYPE_CODE”,

“value”: “<XYZ>”

},

	{

	“key”: “MODEL_PUBLISH_STATUS”,

“value”: “true”

},

	{

	“key”: “CATALOG_NAMES”,

“value”: “xyz”

},

	{

	“key”: “ASSOCIATION_ID”,

“value”: “<UUID>”

}

]

}

}

}

	Delete the Model Association with Project in ML Workbench

“authenticatedUserId” : <Acumos User login Id>

“projectId” : <Project UUID>

“modelId” : <Model UUID>

	“model” :{

	
	“modelId”: {

	
	“versionId”: {

	“label”: “1”

},

	“metrics”: {

	

	“kv”: [

	

	{

	“key”: “MODEL_TYPE_CODE”,

“value”: “<XYZ>”

},

	{

	“key”: “MODEL_PUBLISH_STATUS”,

“value”: “true”

},

	{

	“key”: “CATALOG_NAMES”,

“value”: “xyz”

},

	{

	“key”: “ASSOCIATION_ID”,

“value”: “<UUID>”

}

]

}

}

}

Model Service Release Notes

Version 2.0.4, 2020-01-29

	Updated Model Service CDS version to 3.1.1

Version 2.0.3, 2019-12-16

	Added Logger dependencies

Version 2.0.2, 2019-12-10

	Updated Model Service CDS version to 3.1.0

Version 2.0.1, 2019-11-13

	ACUMOS-3713 : IST | MLWB | Model Association | Edit association allowing same version for association

Version 2.0.0, 2019-10-01

	ACUMOS-3454 : Update all MLWB MS to use Java 11

Version 1.0.1, 2019-09-25

	ACUMOS-3450 : Update MLWB MS to point to CDS 3.0.0

Version 1.0.0, 2019-09-09

	ACUMOS-3177 : ML Workbench Model Mapping Service

	ACUMOS-3215 : Develop and Integrate Project Service UI to allow user to associate Model(s) to a Project

	ACUMOS-3217 : Develop and integrate Project Service UI to allow user to facilitate User to get Models associated to a Project

	ACUMOS-3274 : Create new MS module : Model Service

	ACUMOS-3289 : Model Service to expose API to Create, List, Update and Delete the Project Model Association

	ACUMOS-3291 Model Service MS should expose API to list the models associated to a Project or only to User

	ACUMOS-3292 Model Service MS should expose API to update the Project Model association

	ACUMOS-3293 Model Service MS should expose API to delete the Project Model association

	ACUMOS-3290 Model Service MS should expose API to create Project Model association

ML Workbench NoteBook-Catalog Web Component

Version 2.0.9 31st January 2020

	Combine multiple options as dropdown (ACUMOS-3788)

	Bug fixes | deploy to K8s UI (ACUMOS-3852, ACUMOS-3854)

	Project details: combine multiple buttons to single drop-down list (ACUMOS-3877)

	Validation: combine multiple buttons to single drop-down list (ACUMOS-3926)

Version 2.0.8 7th November 2019

	IST | MLWB | Unable to delete the notebook (ACUMOS-3688)

Version 2.0.7 6th November 2019

	IST | MLWB | Unable to delete the notebook (ACUMOS-3688)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

Version 2.0.5 25th October 2019

	IST | MLWB | Project, Notebook , Data Pipeline | Creation of Project, Notebook and Data pipeline giving error if the description fields filled with all the capacity (ACUMOS-3617)

	IST | Pipeline and Notebook | Font size for for the pop is not proper (ACUMOS-3616)

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	IST | MLWB | Notebook | Archival of notebook navigating user to edit screen. (ACUMOS-3619)

	IST | MLWB | After archival of Data pipeline and notebook tooltip’s in action item showing incorrect information about the icons (ACUMOS-3621)

Version 2.0.3 18th October 2019

	MLW - update Notebook details from polymer to Vue components (ACUMOS-3544)

	IST | MLWB | Creation and Modified date is not showing for notebook while editing the notebook (ACUMOS-3456)

	IST2 | MLWB | Max count for description filed is missing for Creation of project and notebook (ACUMOS-2981)

Version 1.0.6 9th September 2019

	Notebook UI Web Component to defile property at application level configuration to allow user to enter URL (ACUMOS-3412)

	User should be able to enter enterprise notebook url while creating new Notebook (ACUMOS-3413)

	MLWB UI Changes for displaying details for Notebook (ACUMOS-3283)

Version 1.0.5 31st May 2019

	ML Workbench facing compatibility issues with Mozilla Firefox (ACUMOS-2866)

	IST2 | MLWB | Validation message showing some garbage values in pop-up for creation of notebook and projects (ACUMOS-2983)

Version 1.0.3 3rd May 2019

	Update Error messages (ACUMOS-2852)

Version 1.0.2 26th April 2019

	Commit Initial skeleton UI code to workbench Repo (ACUMOS-2615)

	ML Workbench UI - Deliver Workbench UI code for Boreas release (ACUMOS-2623)

	ML Workbench UI - Notebook catalog Component with integration with Notebook service (ACUMOS-2740)

ML Workbench Notebook Service Engine Application Programming Interfaces

API

1. Create Notebook

	Operation Name

	createNotebook

	Trigger

	This API is called when the user:

	Clicks on the “Create Notebook” icon under the Notebook folder under the user’s Project space in ML Workbench, or,

	Clicks on the “Create Notebook” icon under the Notebook folder in the user’s ML Workbench space (outside the project)

	Request

	
	{

	notebook:Notebook;//mandatory

}

	Response

	
	{

	notebook:Notebook;

}

Behavior

	The Notebook Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Notebook Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx

	The Notebook Service must check that notebook name is provided in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Notebook Name missing” or “Invalid Notebook name” or “Invalid Notebook version”

	Send response to client with Http response code – 4xx

Validation:

	Notebook name may contain alphanumeric characters and “_” character – no other any other characters are allowed. The name must start with an alpha character.

	Notebook version is optional. It is a string which can contain alphanumeric characters, zero or more “_” character, and zero or more period character. The version must start with a numeric character. Other characters are not allowed.

	Check notebook type is provided in the request: The Notebook Service must check that notebook type is provided in the request and it is one of the pre-defined types (defined below) otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Missing mandatory field – notebook type” or “Invalid notebook type provided”

	Send response to client with Http response code – 4xx

Note: The following notebook types are supported:

	Jupyter

	Zeppelin

	Check if project exists: If projectId.uuid is included in the request, then the Notebook Service must call Common Data Service (CDS) to make sure that the projectId.uuid exists in the Project Table, otherwise it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “ProjectId does not exist.

	Send response to client with Http response code – 4xx

	Check if Notebook name and version already exists in the user’s notebook space: The Notebook Service must call Common Data Service (CDS) to make sure that the combination of the notebook name and version provided in the request does not already exist in the User Table for the specified authenticatedUserId requesting the notebook creation, otherwise it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Notebook name and version already exists for this user”.

	Send response to client with Http response code – 4xx

CDS Dependency:

	CDS REST API that returns a Boolean if the specified notebook name and version already exists (I.e. associated with the user in)

	Add the user (i.e., authenticatedUserId) in the (Workbench) User Table: The Notebook service must add this user requesting the creation of notebook to the Workbench User Table if the user is not already populated in the table.

	Check if the authenticatedUserId is present in the Workbench User Table (the project owner should be in the Boreas User Table but if the user requesting the creation of the notebook is not the project owner rather is a project collaborator then his authenticatedUserId may not be in the Workbench User Table)).

	Generate a UUID for this new (ML Workbench) user and populate in userId.uuid, if not already populated

	Populate userId.IdentifierType = “USER”, if not already populated.

	Keep other fields such as userId.metrics and userId.version empty

CDS Dependency:

	CDS REST API that returns a Boolean if the authenticatedUserId exists in Workbench User Table.

	CDS REST API to add a new row entry in the Workbench User Table.

	CDS REST API to update an entry in Workbench User Table.

	Create new Notebook: The Notebook Service must create a new entry in the Notebook Table

	Generate a new uuid for the Notebook.

	Populate the above uuid into notebookId.uuid

	Populate the notebook name supplied in the request into notebookId.name

	Populate the notebook version, if supplied in the request, into notebookId.versionId.label

	Populate the notebookId.identiierType = NOTEBOOK

	Populate the notebookId.versionId.timestamp with the current timestamp

	Populate the owner field of the Notebook table with the reference to the authenticatedUserId row in the (Workbench) User Table [The owner field is a FK to the User Table].

	Populate the notebookType with the notebook type information provided in the request.

	Populate the description with the notebook description provided in the REST call.

	Create the JSON formatted Notebook object.

	Associate the user with the Notebook: The Notebook Service must populate the owner field of the Notebook Table with the reference to this user entry in the Workbench User Table.

CDS Dependency:

	CDS REST API that updates an entry in the Notebook table.

	Add the notebook to the (Workbench) User Table: The Notebook Service must populate the notebooks field of the User Table with the reference to the new Notebook record/entry just created in the Notebook table. Note that a User may have multiple notebooks associated with him.

	Add the notebook to the Project Table: If projectId.uuid was provided in the request, then the Notebook Service must populate the notebooks field in the Project Table with the reference to the new Notebook record/entry just created in the Notebook table.

	Add the location of notebook in Git Repository to the Notebook table: The Notebook Service must populate the notebookId.repositoryUrl field of the Notebook table with the relative URL of the notebook where it will be stored in Git repository.

Note: In Git, the notebooks are identified by their notebookId.uuid. Since a notebook may belong to multiple projects and also to multiple users, the notebook file will be stored in Git at the following path:

	/notebooks/notebookId.uuid ((make sure to delete this path when deleting the notebook))

	The Notebook Service must return the following to the UI Layer:

	The JSON formatted Notebook object in the body of the response.

	Http response code 201 – created.

Note: The Notebook is not yet launched. When the user clicks on the “Launch Notebook” icon in the Notebook space, then the Jupyter Notebook server will be created and the notebook is launched in a separate browser tab.

2. Launch (Get) Notebook

	Operation Name

	launchNotebook

Trigger

This API is called when the user:

	Clicks on the “Launch Notebook” icon in the Notebook folder (space) under the user’s Project in ML Workbench, or,

	Clicks on the “Launch Notebook” icon in the user’s ML Workbench space, outside of any project.

	Request

	
	{

	notebook:Notebook;//mandatory

}

	Response

	
	{

	notebook:Notebook;

}

Behavior

	The Notebook Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Notebook Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	The Notebook Service must check that notebookId.uuid entry exists in the request body otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Notebook Id missing”

	Send response to client with Http response code – 4xx (404)

	Check if the notebook is archived: The Notebook Service must call CDS to check if the notebook is archived, and if so it should return:

	status.SERVICE_STATUS =ERROR

	statusMessage = “Cannot launch – notebook is archived”.

	Send response to client with Http response code – 4xx

	The Notebook Service must check that the requested notebookId.uuid exists in the Notebook table, otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Notebook not found”

	Send response to client with Http response code – 4xx(404)

	Check if the user is authorized to launch the notebook: The Notebook service must check if the user is the owner of the notebook (or in future release it must check if the user is otherwise authorized by the Permission table to perform such an action), otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permissions denied”

	Send response to client with Http response code – 4xx

	Call JupyterHub Server to start an instance of the Notebook Server for the user: The Notebook Service must:

	Check if the user specific Notebook Server instance is already running.

	If not, call the JupyterHub Server to start a user specific Notebook Server instance

	The Notebook Service must populate notebookId.serviceUrl field with above URL.

	The Notebook Service must create a JSON formatted notebook object with the URL populated.

	The Notebook Service must retrieve the notebookId.repositoryUrl field (which was populated during create notebook operation) from the Notebook table and pass this to Notebook Server so that when the user presses SAVE in the notebook page the Notebook Server stores the notebook file at that url in Git repository. (discuss with Mukesh)

	The Notebook Service must return the following to the UI Layer:

	The JSON formatted notebook object in the body of the response.

	Http response code 200 – OK

3. List Notebooks

	Operation Name

	ListNotebooks

	Trigger

	This API is called when the user clicks on “My Notebooks” catalog in his ML Workbench User space or when the user clicks on the “My Notebooks” catalog under a particular project.

	Request

	
	{

	user:User;//mandatory

}

	Response

	
	{

	notebookList:Notebooks;

}

Behavior

	The Notebook Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx (404)

	The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check if the user is authorized to request this operation: The Notebook service must check if the user is authorized by the Permission table to perform such an action), otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permissions denied”

	Send response to client with Http response code – 4xx

Note: The test is out of Boreas scope.

	Check if the Project Id exists: If projectId.uuid is populated then the Notebook service must call CDS to check if the project exists in the Project Table, otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id does not exists”

	Send response to client with Http response code – 4xx (404)

	Retrieve all notebooks associated with the user and the project: The Notebook Service must:

	Call CDS to retrieve all notebooks, active and archived, associated (both owner and collaborator) with the user and if the projectId.uuid is also populated in the request to retrieve a list of notebooks associated with the given user and project. Each notebook object is populated with the notebook name, version, notebookId.uuid, description, notebookType and kernelType

	Create a list of JSON formatted Notebook objects with the above information populated.

CDS Dependency:

	CDS must implement a REST Call that returns a list of notebook object objects (populated with the above information) associated with the user.

	CDS must implement a REST Call that returns a list of notebook object objects (populated with the above information) associated with a given user and project.

	The Notebook Service must return the following to the UI Layer:

	The list of JSON formatted Notebook objects in the body of the response.

	Http response code – 200 OK.

4. Update Notebook

	Operation Name

	updateNotebooks

	Trigger

	This API is called when the user request the update of an existing Notebook in his ML Workbench workspace. The notebook name, version or description may be changed with this call.

	Request

	
	{

	notebook:Notebook;//mandatory

}

	Response

	
	{

	notebook:Notebook;

}

Behavior

	The Notebook Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Notebook Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check requestor permissions: The Notebook Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the notebook (or in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it must return:

	status.SERVICE_STATUS =ERROR

	statusMessage = “Permission denied”.

	Send response to client with Http response code – 4xx.

	Check if the notebook is archived: The Notebook Service must call CDS to check if the notebook is archived, and if so it should return:

	status.SERVICE_STATUS =ERROR

	statusMessage = “Update not allowed – notebook is archived”.

	Send response to client with Http response code – 4xx

	Check if new Notebook name and version already exists for the user: The Notebook Service must call Common Data Service (CDS) to make sure that the combination of the requested new notebook name and version provided in the request does not already exist for the authenticatedUserId in the Workbench User Table, otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Notebook name and version already exists for user”.

	Send response to client with Http response code – 4xx

CDS Dependency:

	CDS must implement a REST API that returns a Boolean if the notebook name and version already exists, i.e. associated with the user in Workbench User Table,

	Check if project id exist: If projectId.uuid is provided in the request object then check if this project exist. Call CDS to check if projectId.uuid exist in Project table. If it does then return the following

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id is invalid”.

	Send response to client with Http response code – 4xx (404)

	Assign the notebook to an existing project: If the projectId.uuid is populated in the request object and if the notebook is not part of any existing project then assign this notebook to the requested projectId.uuid

	Call CDS to check if the notebook is part of any other project. CDS will return a project UUID. If this returned project Id matches the one that was provided in the request object, then it is not a request to assign the notebook to a project – may be a request to update the name or version or description.

	If CDS returns a null project Id then it is a request to assign the notebook to a project.

	Call CDS to add the notebookId.uuid to the Project Table.

CDS Dependency:

	CDS should expose a REST API to check if the project Id is valid

	CDS should expose a REST API to return the projectId.uuid with which a notebookId.uuid is associated with.

	Update the Notebook table with the user : Add the user as the collaborator of Notebook.

	Update the existing entry in Notebook Table: The Project Service must update the existing notebookId.uuid entry in Notebook Table.

	Populate the notebook name, if supplied in the request, into notebookId.name

	Populate the notebook version, if supplied in the request, into notebookId.versionId.label

	Populate the notebookId.versionId.timestamp with the current timestamp.

	Note that owner of the notebook is still the original notebook creator.

	Populate the description with the notebook description provided in the REST call

	(Note: Previous notebook name and version is overwritten and hence lost). (May be we should save the old name/version in the Notebook revision history – History Table)

Note: If this notebook was shared with other users, then the other user(s) will see the revised name and version.

	The Notebook Service must return:

	JSON formatted Notebook Object in body of the response

	Http response code 200 – OK.

5. Archive Notebook

	Operation Name

	archiveNotebooks

	Trigger

	This API is called when the user request the archival of an existing Notebook in his notebook catalog in (either under the Project or Users Notebook folder) in ML Workbench.

	Request

	
	{

	notebook:Notebook;//mandatory

}

	Response

	
	{

	notebook:Notebook;

}

Behavior

	The Notebook Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Notebook Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check if the requestor is the owner of the notebook or is authorized to archive the notebook: The Notebook Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permission denied”.

	Send response to client with Http response code – 4xx.

	Check if the Notebook is referenced by other Users or in Other Projects: The Notebook service must check if this notebookId.uuid is referenced (i.e., in use) by any other users by following the links to the Notebooks in each entry of the User Table. If yes it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Notebook is referenced by other users / projects”.

c. Send response to client with Http response code – 4xx
Note: This check is out of scope of Boreas Release – because artifact sharing is out of scope.

	Mark the Notebook “Archived”: The Notebook Service must call the CDS to update the artifactStatus of the notebook to “Archived”.

CDS Dependency:

	CDS must implement a REST API to add, delete and update an artifact entry in the (Notebook, Pipeline, Solution, etc.) artifact table.

	Construct a JSON formatted Notebook object with serviceStatus.status=COMPLETED and artifactStatus = ARCHIVED.

	The Notebook Service must return:

	Notebook object as the body of the response

	Http response code 200.

6. Delete Project Notebook Association

	Method

	DELETE

	Context Path

	/mlWorkbench/v1/notebook/users/{authenticatedUserId}/projects/{projectId}/notebooks/{notebookId}

	Operation Name

	deleteProjectNotebookAssociation

	Trigger

	This API is called when the user delete the associated notebook of a project in the project catalog in ML Workbench.

	Request

	
	{

	authenticatedUserId:Acumos User Login Id;//mandatory

projectId:ProjectId //mandatory

notebookId:NotebookId //mandatory

}

	Response

	
	{

	servicestate:ServiceState;

}

Behavior

	The Notebook Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check if the requester is the owner of the notebook : The Notebook Service must call CDS to check if the requester (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requester is allowed to perform this action). If not it just return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permission denied”.

	Send response to client with Http response code – 4xx.

	Check if the Notebook is exists in CDS or not, If not then it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Requested Notebook Not found”.

	Send response to client with Http response code – 4xx

	Delete the Project Notebook Association : The Notebook Service must call the CDS to drop the Association between the Project and Notebook.

CDS Dependency:

	CDS must implement a REST API to drop the association between Project and Notebook.

	Construct a JSON formatted ServiceState object with serviceStatus.status=COMPLETED and the corresponding message as serviceStatus.statusMessage=Project Notebook Association Deleted successfully.

	The Notebook Service must return:

	ServiceState object as the body of the response

	Http response code 200.

ML Workbench Notebook Service Developer Guide

1. Overview

This is the developers guide to ML Workbench Notebook Service.

1.1. What is ML Workbench Notebook Service?

ML Workbench Notebook Service expose API to allow to perform CRUD operation on Notebook in ML Workbench.

2. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 2.1.3.RELEASE

	Java 8

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

3. Project Resources

	Gerrit repo: workbench/notebook-service [https://gerrit.acumos.org/r/#/admin/projects/workbench]

	Jira [https://jira.acumos.org/browse/ACUMOS-2485] Create Notebook

	Jira [https://jira.acumos.org/browse/ACUMOS-2485] Update Notebook

	Jira [https://jira.acumos.org/browse/ACUMOS-2496] List Notebook

	Jira [https://jira.acumos.org/browse/ACUMOS-2503] Delete Notebook

	Jira [https://jira.acumos.org/browse/ACUMOS-2495] Launch Notebook

4. Development Setup

	Clone or download code from “Gerrit repo” mentioned above.

	Import notebook-service Project in IDE (viz., Eclipse or STC)

	Once successfully imported, set the required properties in application.properties file.

	Run as Springboot application.

	Access using Swagger UI : http://localhost:9089/mlWorkbench/v1/notebook/swagger-ui.html#

	
	Once you get the Swagger UI, click Authorize button and provide JWT token as below :

	Bearer <JWT token for Acumos User>

Note: JWT token value can be obtained after successful login in Acumos.

	After successfully setting Authorize value, API are available to access. Following are the sample inputs :

	Create Notebook

1.1 : Create Independent Notebook

“authenticatedUserId” : <Acumos User login ID>

	“notebook” :

	
	{

	
	“notebookId”: {

	“name”: “<Notebook name>”,
“versionId”: {

“label”: “<notebook version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of notebook>”,
“notebookType”:”<Jupyter|Zeplin>”

}

1.2 : Create Notebook associated to Project

“authenticatedUserId” : <Acumos User login ID>

	“notebook” :

	
	{

	
	“notebookId”: {

	“name”: “<Notebook name>”,
“versionId”: {

“label”: “<notebook version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of notebook>”,
“notebookType”:”<Jupyter|Zeplin>”

}

“projectId” : <Project UUID to associate Notebook with>

	Launch Notebook

2.1 Launch Independent Notebook :

“authenticatedUserId” : <Acumos User login ID>

“notebookId” : <Notebook UUID>

2.2 Launch Notebook associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

“notebookId” : <Notebook UUID>

“projectId” : <Project UUID associated to Notebook>

	List Notebook

3.1 List of Independent Notebook :

“authenticatedUserId” : <Acumos User login ID>

3.2 List of Notebook associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

“projectId” : <Project UUID associated to Notebook>

	Get Notebook

“authenticatedUserId” : <Acumos User login ID>

“notebookId” : <Notebook UUID>

	Update Notebook

5.1 Update Independent Notebook :

“authenticatedUserId” : <Acumos User login ID>

	“notebook” :

	
	{

	
	“notebookId”: {

	“name”: “<Notebook name>”,
“versionId”: {

“label”: “<notebook version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of notebook>”,
“notebookType”:”<Jupyter|Zeplin>”

}

“notebookId” : <Notebook UUID>

5.2 Update Notebook associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

	“notebook” :

	
	{

	
	“notebookId”: {

	“name”: “<Notebook name>”,
“versionId”: {

“label”: “<notebook version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of notebook>”,
“notebookType”:”<Jupyter|Zeplin>”

}

“notebookId” : <Notebook UUID>

“projectId” : <Project UUID associated to Notebook>

	Archive Notebook

6.1 Archive Independent Notebook :

“authenticatedUserId” : <Acumos User login ID>

	“notebook” :

	
	{

	
	“notebookId”: {

	“name”: “<Notebook name>”,
“versionId”: {

“label”: “<notebook version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of notebook>”,
“notebookType”:”<Jupyter|Zeplin>”

}

notebookId : <Notebook UUID>

6.2 Archive Notebook associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

	“notebook” :

	
	{

	
	“notebookId”: {

	“name”: “<Notebook name>”,
“versionId”: {

“label”: “<notebook version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of notebook>”,
“notebookType”:”<Jupyter|Zeplin>”

}

“notebookId” : <Notebook UUID>

“projectId” : <Project UUID associated to Notebook>

	Delete Project Notebook Association

“authenticatedUserId” : <Acumos User login ID>

“projectId” : <Project UUID associated to Notebook>

“notebookId” : <Notebook UUID associated to Project>

Notebook Service Release Notes

Version 2.0.5, 2020-05-29

	ACUMOS-3688 : IST | MLWB | Unable to delete the external notebook.

	Updated the workbench-common depndency to 2.0.4

Version 2.0.4, 2020-01-29

	Updated Notebook Service CDS version to 3.1.1

Version 2.0.3, 2019-12-16

	Added Logger dependencies

Version 2.0.2, 2019-12-10

	Updated Notebook Service CDS version to 3.1.0

Version 2.0.1, 2019-10-25

	ACUMOS-3620 : Define new API to delete Project-Pipeline and Project-Notebook Association

	ACUMOS-3480 : User Guide | Design Studio | Acu-Compose | MLWB : Few section need to update

Version 2.0.0, 2019-10-01

	ACUMOS-3454 : Update all MLWB MS to use Java 11

Version 1.0.3, 2019-09-25

	ACUMOS-3450 : Update MLWB MS to point to CDS 3.0.0

Version 1.0.2, 2019-09-09

	ACUMOS-3390 : allow users to create external URL for enterprise pipeline and notebook support

	ACUMOS-3408 : Allow users to enter external URL for enterprise Notebook while creating new Notebook

	ACUMOS-3414 : Modify Notebook MS to accept URL of external enterprise Pipeline

Version 1.0.1, 2019-05-30

	ACUMOS-2850 : Move common code to workbench-common

	
	ACUMOS-2971IST2 - Note book requires short name and FQN

	Fix required new configuration parameter in SPRING_APPLICATION_JSON :
“jupyternotebook”:{“url”:”https://<hostname>:<port>”}

	Updated to refer workbench-common-1.0.3

Version 1.0.0, 2019-04-27

	Initial Code commit

	ACUMOS-2485 : Create (Jupyter) Notebook

	ACUMOS-2486 : Update Jupyter notebook

	ACUMOS-2496 : List Notebooks

	ACUMOS-2503 : Delete Notebook

	ACUMOS-2495 : Launch Notebook

ML Workbench NoteBook Web Component

Version 2.0.9 31st January 2020

	Combine multiple options as dropdown (ACUMOS-3788)

Version 2.0.8 7th November 2019

	IST | MLWB | Unable to delete the notebook (ACUMOS-3688)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

Version 2.0.5 25th October 2019

	IST | MLWB | Project, Notebook , Data Pipeline | Creation of Project, Notebook and Data pipeline giving error if the description fields filled with all the capacity (ACUMOS-3617)

	IST | Pipeline and Notebook | Font size for for the pop is not proper (ACUMOS-3616)

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	IST | MLWB | Notebook | Archival of notebook navigating user to edit screen. (ACUMOS-3619)

	IST | MLWB | After archival of Data pipeline and notebook tooltip’s in action item showing incorrect information about the icons (ACUMOS-3621)

Version 2.0.3 18th October 2019

	MLW - update Notebook details from polymer to Vue components (ACUMOS-3544)

	IST | MLWB | Creation and Modified date is not showing for notebook while editing the notebook (ACUMOS-3456)

	IST2 | MLWB | Max count for description filed is missing for Creation of project and notebook (ACUMOS-2981)

Version 1.0.6 9th September 2019

	Notebook UI Web Component to defile property at application level configuration to allow user to enter URL (ACUMOS-3412)

	User should be able to enter enterprise notebook url while creating new Notebook (ACUMOS-3413)

	MLWB UI Changes for displaying details for Notebook (ACUMOS-3283)

Version 1.0.5 31st May 2019

	ML Workbench facing compatibility issues with Mozilla Firefox (ACUMOS-2866)

	IST2 | MLWB | Validation message showing some garbage values in pop-up for creation of notebook and projects (ACUMOS-2983)

Version 1.0.3 3rd May 2019

	Update Error messages (ACUMOS-2852)

Version 1.0.2 26th April 2019

	Commit Initial skeleton UI code to workbench Repo (ACUMOS-2615)

	ML Workbench UI - Deliver Workbench UI code for Boreas release (ACUMOS-2623)

	ML Workbench UI - Notebook Component with integration with Notebook service (ACUMOS-2752)

ML Workbench Pipeline Catalog Web Component

Version 2.0.9 31st January 2020

	Combine multiple options as dropdown (ACUMOS-3788)

	Bug fixes | deploy to K8s UI (ACUMOS-3852, ACUMOS-3854)

	Project details: combine multiple buttons to single drop-down list (ACUMOS-3877)

	Validation: combine multiple buttons to single drop-down list (ACUMOS-3926)

Version 2.0.8 7th November 2019

	IST | MLWB | Deletion of Data pipeline giving error (ACUMOS-3624)

Version 2.0.7 6th November 2019

	IST | MLWB | Deletion of Data pipeline giving error (ACUMOS-3624)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

Version 2.0.5 25th October 2019

	IST | MLWB | Project, Notebook , Data Pipeline | Creation of Project, Notebook and Data pipeline giving error if the description fields filled with all the capacity (ACUMOS-3617)

	IST | Pipeline and Notebook | Font size for for the pop is not proper (ACUMOS-3616)

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	IST | MLWB | Data pipeline archival navigating user to pipeline edit screen (ACUMOS-3614)

	IST | MLWB | After archival of Data pipeline and notebook tooltip’s in action item showing incorrect information about the icons (ACUMOS-3621)

Version 2.0.3 18th October 2019

	MLW - update Pipeline details from polymer to Vue components (ACUMOS-3542)

Version 1.0.6 9th September 2019

	Service URL is not being picked up right (ACUMOS-3235)

	User should be able to enter enterprise pipeline url while creating new pipeline (ACUMOS-3410)

	ML Workbench UI - Pipeline catalog Component with integration with Pipeline service (ACUMOS-2741)

	Pipeline UI Web Component to defile property at application level configuration to allow user to enter URL (ACUMOS-3409)

	MLWB UI Changes for displaying details for Pipeline (ACUMOS-3284)

	Removing pipeline version (ACUMOS-2884)

ML Workbench Pipeline Service Engine Application Programming Interfaces

API

1. Create Pipeline

	Operation Name

	createPipeline

	Trigger

	This API is called when the user:

	Clicks on the “Create Pipeline” icon under the Pipeline folder under the user’s Project space in ML Workbench, or,

	Clicks on the “Create Pipeline” icon under the Pipeline folder in the user’s ML Workbench space (outside the project)

	Request

	
	{

	pipeline:Pipeline;//mandatory

}

	Response

	
	{

	pipeline:Pipeline;

}

Behavior

	The Pipeline Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Pipeline Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx

	The Pipeline Service must check that pipeline name is provided in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Pipeline Name missing” or “Invalid Pipeline name” or “Invalid Pipeline version”

	Send response to client with Http response code – 4xx

Validation:

	Pipeline name may contain alphanumeric characters and “_” character – no other any other characters are allowed. The name must start with an alpha character.

	Pipeline version is optional. It is a string which can contain alphanumeric characters, zero or more “_” character, and zero or more period character. The version must start with a numeric character. Other characters are not allowed.

	Check pipeline type is provided in the request: The Pipeline Service must check that pipeline type is provided in the request and it is one of the pre-defined types (defined below) otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Missing mandatory field – pipeline type” or “Invalid pipeline type provided”

	Send response to client with Http response code – 4xx

Note: The following pipeline types are supported:

	Jupyter

	Zeppelin

	Check if project exists: If projectId.uuid is included in the request, then the Pipeline Service must call Common Data Service (CDS) to make sure that the projectId.uuid exists in the Project Table, otherwise it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “ProjectId does not exist.

	Send response to client with Http response code – 4xx

	Check if Pipeline name and version already exists in the user’s pipeline space: The Pipeline Service must call Common Data Service (CDS) to make sure that the combination of the pipeline name and version provided in the request does not already exist in the User Table for the specified authenticatedUserId requesting the pipeline creation, otherwise it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Pipeline name and version already exists for this user”.

	Send response to client with Http response code – 4xx

CDS Dependency:

	CDS REST API that returns a Boolean if the specified pipeline name and version already exists (I.e. associated with the user in)

	Add the user (i.e., authenticatedUserId) in the (Workbench) User Table: The Pipeline service must add this user requesting the creation of pipeline to the Workbench User Table if the user is not already populated in the table.

	Check if the authenticatedUserId is present in the Workbench User Table (the project owner should be in the Boreas User Table but if the user requesting the creation of the pipeline is not the project owner rather is a project collaborator then his authenticatedUserId may not be in the Workbench User Table)).

	Generate a UUID for this new (ML Workbench) user and populate in userId.uuid, if not already populated

	Populate userId.IdentifierType = “USER”, if not already populated.

	Keep other fields such as userId.metrics and userId.version empty

CDS Dependency:

	CDS REST API that returns a Boolean if the authenticatedUserId exists in Workbench User Table.

	CDS REST API to add a new row entry in the Workbench User Table.

	CDS REST API to update an entry in Workbench User Table.

	Create new Pipeline: The Pipeline Service must create a new entry in the Pipeline Table

	Generate a new uuid for the Pipeline.

	Populate the above uuid into pipelineId.uuid

	Populate the pipeline name supplied in the request into pipelineId.name

	Populate the pipeline version, if supplied in the request, into pipelineId.versionId.label

	Populate the pipelineId.identiierType = PIPELINE

	Populate the pipelineId.versionId.timestamp with the current timestamp

	Populate the owner field of the Pipeline table with the reference to the authenticatedUserId row in the (Workbench) User Table [The owner field is a FK to the User Table].

	Populate the pipelineType with the pipeline type information provided in the request.

	Populate the description with the pipeline description provided in the REST call.

	Create the JSON formatted Pipeline object.

	Associate the user with the Pipeline: The Pipeline Service must populate the owner field of the Pipeline Table with the reference to this user entry in the Workbench User Table.

CDS Dependency:

	CDS REST API that updates an entry in the Pipeline table.

	Add the pipeline to the (Workbench) User Table: The Pipeline Service must populate the pipelines field of the User Table with the reference to the new Pipeline record/entry just created in the Pipeline table. Note that a User may have multiple pipelines associated with him.

	Add the pipeline to the Project Table: If projectId.uuid was provided in the request, then the Pipeline Service must populate the pipelines field in the Project Table with the reference to the new Pipeline record/entry just created in the Pipeline table.

	Add the location of pipeline in Git Repository to the Pipeline table: The Pipeline Service must populate the pipelineId.repositoryUrl field of the Pipeline table with the relative URL of the pipeline where it will be stored in Git repository.

Note: In Git, the pipelines are identified by their pipelineId.uuid. Since a pipeline may belong to multiple projects and also to multiple users, the pipeline file will be stored in Git at the following path:

	/pipelines/pipelineId.uuid ((make sure to delete this path when deleting the pipeline))

	The Pipeline Service must return the following to the UI Layer:

	The JSON formatted Pipeline object in the body of the response.

	Http response code 201 – created.

Note: The Pipeline is not yet launched. When the user clicks on the “Launch Pipeline” icon in the Pipeline space, then the Jupyter Pipeline server will be created and the pipeline is launched in a separate browser tab.

2. Launch (Get) Pipeline

	Operation Name

	launchPipeline

Trigger

This API is called when the user:

	Clicks on the “Launch Pipeline” icon in the Pipeline folder (space) under the user’s Project in ML Workbench, or,

	Clicks on the “Launch Pipeline” icon in the user’s ML Workbench space, outside of any project.

	Request

	
	{

	pipeline:Pipeline;//mandatory

}

	Response

	
	{

	pipeline:Pipeline;

}

Behavior

	The Pipeline Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Pipeline Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	The Pipeline Service must check that pipelineId.uuid entry exists in the request body otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Pipeline Id missing”

	Send response to client with Http response code – 4xx (404)

	Check if the pipeline is archived: The Pipeline Service must call CDS to check if the pipeline is archived, and if so it should return:

	status.SERVICE_STATUS =ERROR

	statusMessage = “Cannot launch – pipeline is archived”.

	Send response to client with Http response code – 4xx

	The Pipeline Service must check that the requested pipelineId.uuid exists in the Pipeline table, otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Pipeline not found”

	Send response to client with Http response code – 4xx(404)

	Check if the user is authorized to launch the pipeline: The Pipeline service must check if the user is the owner of the pipeline (or in future release it must check if the user is otherwise authorized by the Permission table to perform such an action), otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permissions denied”

	Send response to client with Http response code – 4xx

	Call JupyterHub Server to start an instance of the Pipeline Server for the user: The Pipeline Service must:

	Check if the user specific Pipeline Server instance is already running.

	If not, call the JupyterHub Server to start a user specific Pipeline Server instance

	The Pipeline Service must populate pipelineId.serviceUrl field with above URL.

	The Pipeline Service must create a JSON formatted pipeline object with the URL populated.

	The Pipeline Service must retrieve the pipelineId.repositoryUrl field (which was populated during create pipeline operation) from the Pipeline table and pass this to Pipeline Server so that when the user presses SAVE in the pipeline page the Pipeline Server stores the pipeline file at that url in Git repository. (discuss with Mukesh)

	The Pipeline Service must return the following to the UI Layer:

	The JSON formatted pipeline object in the body of the response.

	Http response code 200 – OK

3. List Pipelines

	Operation Name

	ListPipelines

	Trigger

	This API is called when the user clicks on “My Pipelines” catalog in his ML Workbench User space or when the user clicks on the “My Pipelines” catalog under a particular project.

	Request

	
	{

	user:User;//mandatory

}

	Response

	
	{

	pipelineList:Pipelines;

}

Behavior

	The Pipeline Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx (404)

	The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check if the user is authorized to request this operation: The Pipeline service must check if the user is authorized by the Permission table to perform such an action), otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permissions denied”

	Send response to client with Http response code – 4xx

Note: The test is out of Boreas scope.

	Check if the Project Id exists: If projectId.uuid is populated then the Pipeline service must call CDS to check if the project exists in the Project Table, otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id does not exists”

	Send response to client with Http response code – 4xx (404)

	Retrieve all pipelines associated with the user and the project: The Pipeline Service must:

	Call CDS to retrieve all pipelines, active and archived, associated (both owner and collaborator) with the user and if the projectId.uuid is also populated in the request to retrieve a list of pipelines associated with the given user and project. Each pipeline object is populated with the pipeline name, version, pipelineId.uuid, description, pipelineType and kernelType

	Create a list of JSON formatted Pipeline objects with the above information populated.

CDS Dependency:

	CDS must implement a REST Call that returns a list of pipeline object objects (populated with the above information) associated with the user.

	CDS must implement a REST Call that returns a list of pipeline object objects (populated with the above information) associated with a given user and project.

	The Pipeline Service must return the following to the UI Layer:

	The list of JSON formatted Pipeline objects in the body of the response.

	Http response code – 200 OK.

4. Update Pipeline

	Operation Name

	updatePipelines

	Trigger

	This API is called when the user request the update of an existing Pipeline in his ML Workbench workspace. The pipeline name, version or description may be changed with this call.

	Request

	
	{

	pipeline:Pipeline;//mandatory

}

	Response

	
	{

	pipeline:Pipeline;

}

Behavior

	The Pipeline Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Pipeline Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check requestor permissions: The Pipeline Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the pipeline (or in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it must return:

	status.SERVICE_STATUS =ERROR

	statusMessage = “Permission denied”.

	Send response to client with Http response code – 4xx.

	Check if the pipeline is archived: The Pipeline Service must call CDS to check if the pipeline is archived, and if so it should return:

	status.SERVICE_STATUS =ERROR

	statusMessage = “Update not allowed – pipeline is archived”.

	Send response to client with Http response code – 4xx

	Check if new Pipeline name and version already exists for the user: The Pipeline Service must call Common Data Service (CDS) to make sure that the combination of the requested new pipeline name and version provided in the request does not already exist for the authenticatedUserId in the Workbench User Table, otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Pipeline name and version already exists for user”.

	Send response to client with Http response code – 4xx

CDS Dependency:

	CDS must implement a REST API that returns a Boolean if the pipeline name and version already exists, i.e. associated with the user in Workbench User Table,

	Check if project id exist: If projectId.uuid is provided in the request object then check if this project exist. Call CDS to check if projectId.uuid exist in Project table. If it does then return the following

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id is invalid”.

	Send response to client with Http response code – 4xx (404)

	Assign the pipeline to an existing project: If the projectId.uuid is populated in the request object and if the pipeline is not part of any existing project then assign this pipeline to the requested projectId.uuid

	Call CDS to check if the pipeline is part of any other project. CDS will return a project UUID. If this returned project Id matches the one that was provided in the request object, then it is not a request to assign the pipeline to a project – may be a request to update the name or version or description.

	If CDS returns a null project Id then it is a request to assign the pipeline to a project.

	Call CDS to add the pipelineId.uuid to the Project Table.

CDS Dependency:

	CDS should expose a REST API to check if the project Id is valid

	CDS should expose a REST API to return the projectId.uuid with which a pipelineId.uuid is associated with.

	Update the Pipeline table with the user : Add the user as the collaborator of Pipeline.

	Update the existing entry in Pipeline Table: The Project Service must update the existing pipelineId.uuid entry in Pipeline Table.

	Populate the pipeline name, if supplied in the request, into pipelineId.name

	Populate the pipeline version, if supplied in the request, into pipelineId.versionId.label

	Populate the pipelineId.versionId.timestamp with the current timestamp.

	Note that owner of the pipeline is still the original pipeline creator.

	Populate the description with the pipeline description provided in the REST call

	(Note: Previous pipeline name and version is overwritten and hence lost). (May be we should save the old name/version in the Pipeline revision history – History Table)

Note: If this pipeline was shared with other users, then the other user(s) will see the revised name and version.

	The Pipeline Service must return:

	JSON formatted Pipeline Object in body of the response

	Http response code 200 – OK.

5. Archive Pipeline

	Operation Name

	archivePipelines

	Trigger

	This API is called when the user request the archival of an existing Pipeline in his pipeline catalog in (either under the Project or Users Pipeline folder) in ML Workbench.

	Request

	
	{

	pipeline:Pipeline;//mandatory

}

	Response

	
	{

	pipeline:Pipeline;

}

Behavior

	The Pipeline Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage = “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx

	The Pipeline Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check if the requestor is the owner of the pipeline or is authorized to archive the pipeline: The Pipeline Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permission denied”.

	Send response to client with Http response code – 4xx.

	Check if the Pipeline is referenced by other Users or in Other Projects: The Pipeline service must check if this pipelineId.uuid is referenced (i.e., in use) by any other users by following the links to the Pipelines in each entry of the User Table. If yes it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Pipeline is referenced by other users / projects”.

c. Send response to client with Http response code – 4xx
Note: This check is out of scope of Boreas Release – because artifact sharing is out of scope.

	Mark the Pipeline “Archived”: The Pipeline Service must call the CDS to update the artifactStatus of the pipeline to “Archived”.

CDS Dependency:

	CDS must implement a REST API to add, delete and update an artifact entry in the (Pipeline, Pipeline, Solution, etc.) artifact table.

	Construct a JSON formatted Pipeline object with serviceStatus.status=COMPLETED and artifactStatus = ARCHIVED.

	The Pipeline Service must return:

	Pipeline object as the body of the response

	Http response code 200.

6. Delete Project Pipeline Association

	Method

	DELETE

	Context Path

	/mlWorkbench/v1/pipeline/users/{authenticatedUserId}/projects/{projectId}/pipelines/{pipelineId}

	Operation Name

	deleteProjectPipelineAssociation

	Trigger

	This API is called when the user delete the associated pipeline of a project in the project catalog in ML Workbench.

	Request

	{

authenticatedUserId:Acumos User Login Id;//mandatory

projectId:ProjectId //mandatory

pipelineId:PipelineId //mandatory

}

	Response

	
	{

	servicestate:ServiceState;

}

Behavior

	The Pipeline Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send response to client with Http response code – 4xx (404)

	Check if the requester is the owner of the pipeline : The Pipeline Service must call CDS to check if the requester (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requester is allowed to perform this action). If not it just return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permission denied”.

	Send response to client with Http response code – 4xx.

	Check if the Pipeline is exists in CDS or not, If not then it must return:

	serviceStatus.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Requested Pipeline Not found”.

	Send response to client with Http response code – 4xx

	Delete the Project Pipeline Association : The Pipeline Service must call the CDS to drop the Association between the Project and Pipeline.

CDS Dependency:

	CDS must implement a REST API to drop the association between Project and Pipeline.

	Construct a JSON formatted ServiceState object with serviceStatus.status=COMPLETED and the corresponding message as serviceStatus.statusMessage=Project Pipeline Association Deleted successfully.

	The Pipeline Service must return:

	ServiceState object as the body of the response

	Http response code 200.

ML Workbench Pipeline Service Developer Guide

1. Overview

This is the developers guide to ML Workbench Pipeline Service.

1.1. What is ML Workbench Pipeline Service?

ML Workbench Pipeline Service expose API to allow to perform CRUD operation on Pipeline in ML Workbench.

2. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 2.1.3.RELEASE

	Java 8

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

3. Project Resources

	Gerrit repo: workbench/pipeline-service [https://gerrit.acumos.org/r/#/admin/projects/workbench]

	Jira [https://jira.acumos.org/browse/ACUMOS-2504] Create Pipeline

	Jira [https://jira.acumos.org/browse/ACUMOS-2505] Launch Pipeline

	Jira [https://jira.acumos.org/browse/ACUMOS-2506] Update Pipeline

	Jira [https://jira.acumos.org/browse/ACUMOS-2507] List Pipeline

	Jira [https://jira.acumos.org/browse/ACUMOS-2508] Delete Pipeline

4. Development Setup

	Clone or download code from “Gerrit repo” mentioned above.

	Import pipeline-service Project in IDE (viz., Eclipse or STC)

	Once successfully imported, set the required properties in application.properties file.

	Run as Springboot application.

	Access using Swagger UI : http://localhost:9089/mlWorkbench/v1/pipeline/swagger-ui.html#

	
	Once you get the Swagger UI, click Authorize button and provide JWT token as below :

	Bearer <JWT token for Acumos User>

Note: JWT token value can be obtained after successful login in Acumos.

	After successfully setting Authorize value, API are available to access. Following are the sample inputs :

	Create Pipeline

1.1 : Create Independent Pipeline

“authenticatedUserId” : <Acumos User login ID>

	“pipeline” :

	
	{

	
	“pipelineId”: {

	“name”: “<Pipeline name>”,
“versionId”: {

“label”: “<pipeline version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of pipeline>”,
“pipelineType”:”<Jupyter|Zeplin>”

}

1.2 : Create Pipeline associated to Project

“authenticatedUserId” : <Acumos User login ID>

	“pipeline” :

	
	{

	
	“pipelineId”: {

	“name”: “<Pipeline name>”,
“versionId”: {

“label”: “<pipeline version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of pipeline>”,
“pipelineType”:”<Jupyter|Zeplin>”

}

“projectId” : <Project UUID to associate Pipeline with>

	Launch Pipeline

2.1 Launch Independent Pipeline :

“authenticatedUserId” : <Acumos User login ID>

“pipelineId” : <Pipeline UUID>

2.2 Launch Pipeline associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

“pipelineId” : <Pipeline UUID>

“projectId” : <Project UUID associated to Pipeline>

	List Pipeline

3.1 List of Independent Pipeline :

“authenticatedUserId” : <Acumos User login ID>

3.2 List of Pipeline associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

“projectId” : <Project UUID associated to Pipeline>

	Get Pipeline

“authenticatedUserId” : <Acumos User login ID>

“pipelineId” : <Pipeline UUID>

	Update Pipeline

5.1 Update Independent Pipeline :

“authenticatedUserId” : <Acumos User login ID>

	“pipeline” :

	
	{

	
	“pipelineId”: {

	“name”: “<Pipeline name>”,
“versionId”: {

“label”: “<pipeline version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of pipeline>”,
“pipelineType”:”<Jupyter|Zeplin>”

}

“pipelineId” : <Pipeline UUID>

5.2 Update Pipeline associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

	“pipeline” :

	
	{

	
	“pipelineId”: {

	“name”: “<Pipeline name>”,
“versionId”: {

“label”: “<pipeline version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of pipeline>”,
“pipelineType”:”<Jupyter|Zeplin>”

}

“pipelineId” : <Pipeline UUID>

“projectId” : <Project UUID associated to Pipeline>

	Archive Pipeline

6.1 Archive Independent Pipeline :

“authenticatedUserId” : <Acumos User login ID>

	“pipeline” :

	
	{

	
	“pipelineId”: {

	“name”: “<Pipeline name>”,
“versionId”: {

“label”: “<pipeline version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of pipeline>”,
“pipelineType”:”<Jupyter|Zeplin>”

}

pipelineId : <Pipeline UUID>

6.2 Archive Pipeline associated to a Project:

“authenticatedUserId” : <Acumos User login ID>

	“pipeline” :

	
	{

	
	“pipelineId”: {

	“name”: “<Pipeline name>”,
“versionId”: {

“label”: “<pipeline version e.g., 0.0.1 or 1”

}

},
“description”: “<Description of pipeline>”,
“pipelineType”:”<Jupyter|Zeplin>”

}

“pipelineId” : <Pipeline UUID>

“projectId” : <Project UUID associated to Pipeline>

	Delete Project Pipeline Association

“authenticatedUserId” : <Acumos User login ID>

“projectId” : <Project UUID associated to Pipeline>

“pipelineId” : <Pipeline UUID associated to Project>

Pipeline Service Release Notes

Version 2.0.5, 2020-05-29

	Updated Pipeline Service CDS version to 3.1.1

	Updated the workbench-common depndency to 2.0.4

Version 2.0.4, 2019-12-16

	Added Logger dependencies

Version 2.0.3, 2019-12-10

	Updated Pipeline Service CDS version to 3.1.0

Version 2.0.2, 2019-10-31

	ACUMOS-3624 : IST | MLWB | Deletion of Data pipeline giving error

Version 2.0.1, 2019-10-25

	ACUMOS-3624 : IST | MLWB | Deletion of Data pipeline giving error

	ACUMOS-3620 : Define new API to delete Project-Pipeline and Project-Notebook Association

	ACUMOS-3480 : User Guide | Design Studio | Acu-Compose | MLWB : Few section need to update

Version 2.0.0, 2019-10-01

	ACUMOS-3454 : Update all MLWB MS to use Java 11

Version 1.0.3, 2019-09-25

	ACUMOS-3450 : Update MLWB MS to point to CDS 3.0.0

Version 1.0.2, 2019-09-09

	Added the new Artifact Status codes(viz., INPROGRESS & FAILED) in MLWB PLS code.

	ACUMOS-2986 : IST2 | MLWB | Update Project and Notebook | Creation date getting updated along with modified date

	ACUMOS-3390 : allow users to create external URL for enterprise pipeline and notebook support

	ACUMOS-3407 : Allow users to enter external URL for enterprise pipeline while creating new pipeline

	ACUMOS-3411 : Modify Pipeline MS to accept URL of external enterprise Pipeline

Version 1.0.1, 2019-05-30

	ACUMOS-2850 : Move common code to workbench-common

	Updated to refer workbench-common-1.0.3

Version 0.0.1, 2019-04-27

	Initial pipeline project commit

	ACUMOS-2504 : Create Pipeline

	ACUMOS-2505 : Launch Pipeline

	ACUMOS-2506 : Update Pipeline

	ACUMOS-2507 : List Pipeline

	ACUMOS-2508 : Delete Pipeline

ML Workbench Pipeline Web Component

Version 2.0.9 31st January 2020

	Combine multiple options as dropdown (ACUMOS-3788)

Version 2.0.8 7th November 2019

	IST | MLWB | Deletion of Data pipeline giving error (ACUMOS-3624)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

Version 2.0.5 25th October 2019

	IST | MLWB | Project, Notebook , Data Pipeline | Creation of Project, Notebook and Data pipeline giving error if the description fields filled with all the capacity (ACUMOS-3617)

	IST | Pipeline and Notebook | Font size for for the pop is not proper (ACUMOS-3616)

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	IST | MLWB | Data pipeline archival navigating user to pipeline edit screen (ACUMOS-3614)

	IST | MLWB | After archival of Data pipeline and notebook tooltip’s in action item showing incorrect information about the icons (ACUMOS-3621)

Version 2.0.3 18th October 2019

	MLW - update Pipeline details from polymer to Vue components (ACUMOS-3542)

Version 1.0.6 9th September 2019

	ML Workbench UI - Pipeline Component with integration with pipeline service (ACUMOS-2751)

	Service URL is not being picked up right (ACUMOS-3235)

	User should be able to enter enterprise pipeline url while creating new pipeline (ACUMOS-3410)

	Pipeline UI Web Component to defile property at application level configuration to allow user to enter URL (ACUMOS-3409)

	MLWB UI Changes for displaying details for Pipeline (ACUMOS-3284)

	Removing pipeline version (ACUMOS-2884)

ML Workbench Predictor Service Engine Application Programming Interfaces

API

1. Associate Predictor to a Project (create association)

	Method

	POST

	Context Path

	/mlWorkbench/v1/predictor/users/{authenticatedUserId}/projects/{projectId}/predictors

	Trigger

	This API will be invoked when the user selects appropriate Predictor and clicks on Associate Predictor button under the user’s project details space in ML workbench.

	Operation Name

	associatePredictorToProject

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id
predictorId : predictor.predictorId.uuid //Only if predictor already exists
projectId : project.projectId.uuid

}

	Response

	
	{

	Predictor : PredictorVO (with KVPair containing “associationId” key and corresponding value.)

}

HTTPStatus : 201

	Error/Exception

	Predictor VO with Service Status error Message : “Not able to associate Predictor to a Project”

HTTPStatus : 4xx

	Behavior

	
	
	Input Validation

	Mandatory Field Check

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	
	Existence Validation

	Check if authenticated User exists

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if Project for input ProjectId exists (i.e., status Active)

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if Predictor for input PredictorId exists (with status Active)

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	
	Access Validation

	Check if logged in user has access to the input ProjectId

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if logged in user has access to the input Predictor

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	
	Restriction :

	Check if model of the selected predictor is associate to a Project

	If not :

	Error Message : “Cannot Associate Predictor as corresponding model is not associated to a Project”

HTTPStatus : As per the existing implementation

Predictor deployment status should be Active. User should not be allowed to associate Predictor to a Project if predictor deployment status is other than Active.

If deployment status is not Active :

Error Message : “Predictor is not in Active state so cannot associate to a Project”

HTTPStatus : As per the existing implementation

	Check if PredictorId is not present in input then create new Predictor in CouchDB with “Active” state.

	Insert PredictorProjectAssociation in CouchDB with status “Active”

	Return Predictor VO (with KVPair containing “associationId”) along with HTTPStatus 201.

2. Get Predictors associated to a Project

	Method

	GET

	Context Path

	/mlWorkbench/v1/predictor/users/{authenticatedUserId}/projects/{projectId}/predictors

	Trigger

	This API will be invoked when user clicks on any project tile, on project-catalog page in ML workbench, to view project details.

	Operation Name

	getPredictorsAssociatedToProject

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id
projectId : project.projectId.uuid

}

	Response

	
	{

	PredictorVOs : List of PredictorVO

}

HTTPStatus : 200

	Error/Exception

	As per the existing implementation and message : “Not able to fetch associated Predictors”

HTTPStatus : 4xx

	Behavior

	
	
	Input Validation

	Mandatory Field Check

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	
	Existence Validation

	Check if authenticated User exists

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if Project for input ProjectId exists (with status Active)

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	
	Access Validation

	Check if logged in user has access to the input ProjectId. For now check if user is owner of the Project.

	On Failure :

	Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Get the PredictorProjectAssociation from CouchDB with status “Active”

	For each associated Predictor and version check if the corresponding deployment is available (i.e., deployed K8s environment is not down) <future enhancement> :

If in case deployment is down, then need to update the Predictor Deployment status Error/Failed, update all PredictorProjectAssociation status as Invalid in Couch DB for respective predictorId and version and in current list of PredictorProjectAssociation.

	For PredictorProjectAssociation construct Predictor VO (with KVPair containing “associationId”) and add to the list. Return the Predictor VO list along with HTTPStatus 200.

3. Edit Predictor association to a Project

	Method

	PUT

	Context Path

	/mlWorkbench/v1/predictor/users/{authenticatedUserId}/predictors/{predictorId}/associations/{associationId}

	Trigger

	This API will be invoked when user clicks on edit Predictor Project Association button for the associated predictor actions and edits the predictor details.

	Operation Name

	modifyPredictorAssociationToProject

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,
predictorProjectAssociationId : PredictorProjectAssociation.associationId.uuid,
predictorId : Predictor.predictorId.uuId

}

	Response

	
	{

	PredictorProjectAssociation : with new details

}

HTTPStatus : 200

	Error/Exception

	PredictorProjectAssociation VO with Service Status error Message : “Not able to associate Predictor to a Project”

HTTPStatus : 4xx

	Behavior

	
	
	Input Validation

	Mandatory Field Check

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Existence Validation

Check if authenticated User exists

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if Project for input ProjectId exists (i.e., status Active)

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if Predictor for input PredictorId exists (with status Active)

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Access Validation

Check if logged in user has access to the input ProjectId. For now check if user is owner of the Project.

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if logged in user has access to the input Predictor. Either user has to be owner or collaborator of the Predictor’s model. <Need to check further>

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	
	Restriction :

	Check if model of the selected predictor is associate to a Project

If not :

Error Message : “Cannot Associate Predictor as corresponding model is not associated to a Project”

HTTPStatus : As per the existing implementation

Predictor deployment status should be Active. User should not be allowed to associate Predictor to a Project if predictor deployment status is other than Active.

If deployment status is not Active :

Error Message : “Predictor is not in Active state so cannot associate to a Project”

HTTPStatus : As per the existing implementation

	Update Predictor in CouchDB with status “Active”

	Update PredictorProjectAssociation for the input AssociationId in CouchDB with status “Active”

	Construct the Predictor VO (with KVPair containing “associationId”) from PredictorProjectAssociation. Return Predictor VO along with HTTPStatus 200.

4. Delete Predictor Project association

	Method

	DELETE

	Context Path

	/mlWorkbench/v1/predictor/users/{authenticatedUserId}/predictors/associations/{associationId}

	Trigger

	This API will be invoked when user clicks on the Delete Predictor Project Association button for the associated predictor actions.

	Operation Name

	deletePredictorAssociation

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,
predictorProjectAssociationId : PredictorProjectAssociation.associationId.uuid

}

	Response

	
	{

	ServiceStatus with success message.

}

HTTPStatus : 200

	Error/Exception

	ServiceStatus with error Message : “Not able to delete specified Predictor Project association”

HTTPStatus : 4xx

	Behavior

	
	Input Validation

Mandatory Field Check

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Existence Validation

Check if authenticated User exists

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if PredictorProjectAssociation for input AsscoaitionId exists

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Access Validation

Check if logged in user has access to the input AssociationId. For now check if user is owner of the Association

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Delete PredictorProjectAssociation for the input AssociationId

	Return ServiceStatus along with HTTPStatus 200.

5. Get Predictor Details for given input Model

	Method

	GET

	Context Path

	/mlWorkbench/v1/predictor/users/{authenticatedUserId}/models/{modelId}/version/{version}

	Trigger

	This API will be invoked after user selects one of model and version associated to a Project.

	Operation Name

	getPredictorDetails

	Request

	JWT authentication token (in request header)

	{

	authenticatedUserId : User login Id,
modelId : solutionId //model UUID.
version : version //version of the model.

}

	Response

	
	{

	Predictor : Predictor VO with required details.

}

HTTPStatus : 200

	Error/Exception

	As per the existing implementation and message : “No Predictor Found”

HTTPStatus : 4xx

	Behavior

	
	Input Validation

Mandatory Field Check

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Existence Validation

Check if authenticated User exists

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

Check if the input model and version exists in CDS

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Access Validation

Check if logged in user has access to the input Model and Version. For now check if user is owner of the Model:version

On Failure :

Error Message : As per the existing implementation

HTTPStatus : As per the existing implementation

	Get the predictor details from Couch DB for the specified Model Id and version.

	Return Predictor with details if found for the input model Id and version or empty Predictor.

ML(Machine Learning) Workbench Predictor Service Developer Guide

1. Overview

This is the developers guide to ML Workbench Predictor Service.

1.1. What is ML Workbench Predictor Service?

ML Workbench Predictor Service expose API to allow to perform CRUD operation on Predictor in ML Workbench.

2. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 2.1.7.RELEASE

	Java 11

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

3. Project Resources

	Gerrit repo: workbench/predictor-service [https://gerrit.acumos.org/r/#/admin/projects/workbench]

	Jira [https://jira.acumos.org/browse/ACUMOS-3492] Predictor Service API

4. Development Setup

	Clone or download code from “Gerrit repo” mentioned above.

	Import prdicotr-service Project in IDE (viz., Eclipse or STC)

	Once successfully imported, set the required properties in application.properties file.

	Run as Springboot application.

	Access using Swagger UI : http://localhost:9096/mlWorkbench/v1/predictor/swagger-ui.html#

	
	Once you get the Swagger UI, click Authorize button and provide JWT token as below :

	Bearer <JWT token for Acumos User>

Note: JWT token value can be obtained after successful login in Acumos.

	After successfully setting Authorize value, API are available to access. Following are the sample inputs :

	Associate Predictor to a Project

“authenticatedUserId” : <Acumos User login Id>

	“predictorProjAssociation” :

	

	{

	“userId”: “<Acumos User Login Id>”,

“solutionId”: “<Solution UUID”,

“revisionId”: “<Revision UUID>”,

“modelStatus”: “ACTIVE”,

“predictorDeploymentStatus”: “ACTIVE”,

“predictorName”: “<Predictor Name>”,

“predictorkey”:”<Predictor Unique Key>”,

“environmentPath”: “<URL to access Predictor>”,

“metadata1”: “MetaData2”,

“metadata2”: “MetaData2”

}

“projectId” : <Project Id>

	Get Predictors associated to a Project

“authenticatedUserId” : <Acumos User login Id>

“modelId” : <Solution UUID>

“version” : <Solution version>

	Edit Predictor association to a Project

	“associationData” :

	

	{

	“userId”: “<Acumos User Login Id>”,

“projectId”: “<Project UUID>”,

“solutionId”: “<Solution UUID”,

“revisionId”: “<Revision UUID>”,

“preidctorId”: “<Predictor UUID>”,

“predictorName”: “<Predictor name>”,

“environmentPath”: “<URL to access Predictor>”,

“predictorkey”:”<Predictor Unique Key>”,

}

“associationId” : <Predictor Project Association UUID>

“authenticatedUserId” : <Acumos User login ID>

“predictorId” : <Predictor UUID associated to Project>

	Delete Predictor Project association

“associationId” : <Predictor Project Association UUID >

“authenticatedUserId” : <Acumos User login Id>

	Get Predictor Details for given input Model

“authenticatedUserId” : <Acumos User login Id>

“projectId” : <Project UUID>

Predictor Service Release Notes

Version 1.0.5, 2020-05-29

	ACUMOS-3888 : Predictor-Manager known issues fixes.

	Updated the workbench-common depndency to 2.0.4

Version 1.0.4, 2020-01-29

	Updated Predictor Service CDS version to 3.1.1

Version 1.0.3, 2019-12-16

	Added Logger dependencies

Version 1.0.2, 2019-12-10

	Updated Predictor Service CDS version to 3.1.0

Version 1.0.0, 2019-10-01

	ACUMOS-3491 : Create New Project in workbench Repository named : predictor-service

	ACUMOS-3492 : Define new API for Predictor Project Association

ML Workbench Project-Catalog Web Component

Version 2.0.9 31st January 2020

	Combine multiple options as dropdown (ACUMOS-3788)

	Bug fixes | deploy to K8s UI (ACUMOS-3852, ACUMOS-3854)

	Project details: combine multiple buttons to single drop-down list (ACUMOS-3877)

	Validation: combine multiple buttons to single drop-down list (ACUMOS-3926)

Version 2.0.8 7th November 2019

	IST | MLWB | unable to delete Project (ACUMOS-3691)

Version 2.0.7 6th November 2019

	IST | MLWB | Project screen is not loading so unable to test any of project related functionality (ACUMOS-3687)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

Version 2.0.5 25th October 2019

	IST | MLWB | Project, Notebook , Data Pipeline | Creation of Project, Notebook and Data pipeline giving error if the description fields filled with all the capacity (ACUMOS-3617)

	IST | MLWB | Model Collaborator | Collaborator profile showing invalid data in shared project tab once project deleted (ACUMOS-3634)

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	IST | MLWB | Archival of the project navigating user to edit screen (ACUMOS-3618)

Version 2.0.3 18th October 2019

	MLW - update Project catalog from ploymer to Vue components (ACUMOS-3540)

	IST | MLWB | Creation and Modified date is not showing for projects (ACUMOS-3455)

	IST2 | MLWB | Max count for description filed is missing for Creation of project and notebook (ACUMOS-2981)

Version 2.0.0 3rd October 2019

	integrate project collaboration UI with project service (ACUMOS-3473)

	Project collaboration <initial launch> (ACUMOS-3465)

Version 1.0.6 9th September 2019

	MLWB UI Changes for displaying details for Project (ACUMOS-3282)

Version 1.0.5 31st May 2019

	ML Workbench facing compatibility issues with Mozilla Firefox (ACUMOS-2866)

	IST2 | MLWB | Validation message showing some garbage values in pop-up for creation of notebook and projects (ACUMOS-2983)

Version 1.0.3 3rd May 2019

	Update Error messages (ACUMOS-2852)

Version 1.0.2 26th April 2019

	Commit Initial skeleton UI code to workbench Repo (ACUMOS-2615)

	ML Workbench UI - Deliver Workbench UI code for Boreas release (ACUMOS-2623)

	ML Workbench UI - Project catalog Component with integration with Project service (ACUMOS-2739)

ML Workbench Project Service Engine Application Programming Interfaces

API

1.Create Project

Operation Name
createProject
Trigger
This API is called when the user request the creation of a new Project in his ML Workbench workspace UI.
Request
{

project:Project;//mandatory

}
Response
{

project: Project

Note: The projectId.uuid is returned to UI Layer. It is used by the UI Layer later on to populate in the create notebook, create pipeline, create data source, etc. calls, so these artifacts get associated with their parent project if they are created under the project.

}

Behavior

1.The Project Service must check if the request JSON structure is valid, otherwise it should return

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

c.Send the response to client with Http response code – 400 Bad Request

2.The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Acumos User Id missing”.

c.Send response to client with Http response code – 400 Bad Request.

3.The Project Service must check that project name is provided in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Project Name missing”, or “Project Name Syntax Invalid” or “Project Version Syntax Invalid”

c.Send response to client with Http response code – 400 Bad Request

Validation: Project name may contain only alphanumeric characters including space and “_” character but not any other characters. Project version is optional. It is a string which can contain alphanumeric characters, “_” character, and one or more period character. Other characters are not allowed. The version must start with a numeric character.

4.Check if Project name and version already exists: The Project Service must call Common Data Service (CDS) to make sure that the combination of the project name and version provided in the request does not already exist in the Workbench User Table for the specified authenticatedUserId requesting the project creation, otherwise it must return:

a.serviceStatus.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Project name and version already exists”.

c.Send response to client with Http response code – 400 Bad Request

CDS Dependency:

a.CDS REST API that returns a Boolean if the project name and version already exists (I.e. associated with the user in) Workbench User Table,

5.Create new entry in Workbench User Table: The Project Service must call Common Data Service (CDS) to check if the authenticatedUserId exists in the Workbench User Table. If it does not exist it must call CDS to create a new entry for the user in the Workbench User table as follows:

a.Populate the authenticatedUserId of the Workbench User Table row with the authenticatedUserId retrieved from the context of REST call.

b.Generate a UUID for this new (ML Workbench) user and populate in userId.uuid

c.Populate userId.IdentifierType = “USER”

d.Keep other fields such as userId.metrics and userId.version empty

CDS Dependency:

a.CDS REST API that returns a Boolean if the authenticatedUserId exists in Workbench User Table. (Not required – we are using Acumos User Table)

b.CDS REST API to add a new row entry in the Workbench User Table which has a FK to an entry in the Identifier Table (Not required – we are using Acumos User Table)

NOTE: We can populate Workbench User Table piecemeal when a user creates a Project or we can populate this table before the Boreas Release by adding all user entries in the existing (Athena) User Table to this table – only authenticatedUserId, Identifier.uuid, and Identifier.IdentifierType will need to be added via a script.

6.Create new entry in Project Table : The Project Service must:

a.Generate the uuid for the new project.

b.Populate the above uuid into projectId.uuid

c.Populate the project name supplied in the request into projectId.name

d.Populate the project version, if supplied in the request, into projectId.versionId.label

e.Populate the projectId.identiierType = PROJECT

f.Populate the projectId.versionId.timestamp with the current timestamp.

g.Populate the owner.authenticatedUserId with the authenticatedUserId retrieved from the context of the REST call.
h.Populate the description with the project description provided in the REST call

CDS Dependency:

a.CDS REST API t to create a new entry/row in the Project Table.

7.The Project Service must return the following to the UI Layer:

a.The JSON formatted project object in the body of the response.

b.Http response code 201 – created.

2.Update Project

Operation Name
updateProject
Trigger
This API is called when the user request the update of an existing Project in his ML Workbench workspace. The project name, version or description may be changed with this call.
Request
{

project:Project;//mandatory

}
Response
{

project: Project

}

Behavior

1.The Project Service must check if the request JSON structure is valid, otherwise it should return

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

c.Send the response to client with Http response code – 4xx

2.The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Acumos User Id missing”.

c.Send response to client with Http response code – 4xx

3.Check requestor permissions: The Project Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the project (or in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

a.status.SERVICE_STATUS =ERROR

b.statusMessage = “Permission denied”.

c.Send response to client with Http response code – 4xx.

4.Check if the project is archived: The Project Service must call CDS to check if the project is archived, and if so it should return:

a.status.SERVICE_STATUS =ERROR

b.statusMessage = “Update not allowed – project is archived”.

c.Send response to client with Http response code – 4xx.

5.Check if new Project name and version already exists: The Project Service must call Common Data Service (CDS) to make sure that the combination of the requested new project name and version provided in the request does not already exist in the Workbench User Table for the specified authenticatedUserId requesting the project update, otherwise it must return:

a.serviceStatus.status.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Project name and version already exists”.

c.Send response to client with Http response code – 4xx Bad Request

CDS Dependency:

a.CDS REST API that returns a Boolean if the project name and version already exists (I.e. associated with the user in) Workbench User Table,

6.Create new entry in Workbench User Table: The Project Service must call Common Data Service (CDS) to check if the authenticatedUserId exists in the Workbench User Table. If it does not exist it must call CDS to create a new entry for the user in the Workbench User table as follows:

a.Populate the authenticatedUserId of the Workbench User Table row with the authenticatedUserId retrieved from the context of REST call.

b.Generate a UUID for this new (ML Workbench) user and populate in userId.uuid

c.Populate userId.IdentifierType = “USER”

d.Keep other fields such as userId.metrics and userId.version empty

Note: The above check is not required for an owner (because the owner is already created during create operation), but it is required if some other user (aka collaborator) issues an update request and collaborator may not exist in the Workbench User Table.

CDS Dependency:

a.CDS REST API that returns a Boolean if the authenticatedUserId exists in Workbench User Table. (Not required – we are using the Acumos USER Table)

b.CDS REST API to add a new row entry in the Workbench User Table which has a FK to an entry in the Identifier Table (Not required – we are using the Acumos USER Table)

NOTE: We can populate Workbench User Table piecemeal when a user creates a Project or we can populate this table before the Boreas Release by adding all user entries in the existing (Athena) User Table to this table – only authenticatedUserId, Identifier.uuid, and Identifier.IdentifierType will need to be added via a script.

7.Update the existing entry in Project Table: The Project Service must update the existing projectId.uuid entry in Project Table.

a.Populate the project name, if supplied in the request, into projectId.name

b.Populate the project version, if supplied in the request, into projectId.versionId.label

c.Populate the projectId.versionId.timestamp with the current timestamp.

d.Note that owner of the project is still the original project creator.

e.Populate the description with the project description provided in the REST call

f.(Note: Previous project name and version is overwritten and hence lost).

g.(May be we should save the old name/version in the project revision history – History Table)

Note: If this project was shared with other users, then the other user(s) will see the revised name and version.

CDS Dependency:

a.CDS REST API t to update an existing entry/row in the Project Table.

8.The Project Service must return:

a.JSON formatted Project Object as body of the response

	Http response code 200 – OK.

3.Get Project

Operation Name
getProject
Trigger
This API is called when the user clicks on View Project (eye icon) on a project (under the project catalog space) in his ML Workbench workspace UI.
Request
{

project:Project;//mandatory

}
Response
{

project:Project;

}

Behavior

1.The Project Service must check if the request JSON structure is valid, otherwise it should return

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

c.Send the response to client with Http response code – 4xx Bad Request

2.The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

a. serviceStatus.status.SERVICE_STATUS =ERROR
b.serviceStatus.statusMessage = “Acumos User Id missing”.

c.Send response to client with Http response code – 4xx Bad Request.

3.The Project Service must check that projectId.uuid is populated in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Project Id missing”.

c.Send response to client with Http response code – 4xx Bad Request

4.Check if the project is archived: The Project Service must call CDS to check if the project is archived, and if so it should return:

a.status.SERVICE_STATUS =ERROR

b.statusMessage = “Cannot open – project is archived”.

c.Send response to client with Http response code – 4xx.

5.The Project Service must return the following to the UI Layer:

a.The JSON formatted Project object for which the authenticatedUserId is the owner (with project name, version and description populated) in the body of the response.

b.Http response code 200 – OK.

CDS Dependency:

a.CDS REST API t to read and return the content of Project Table entry.

4.List Project

Operation Name
listProject
Trigger
This API is called when the user clicks on “Catalog” of “My Project” in his ML Workbench workspace UI.
Request
{

user: User;//mandatory

}
Response
{

projectList:Projects;

}

Behavior

1.The Project Service must check if the request JSON structure is valid, otherwise it should return

a.serviceStatus.status.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

c.Send the response to client with Http response code – 4xx

2.The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

b.serviceStatus.statusMessage = “Acumos User Id missing”.

c.Send response to client with Http response code – 4xx

3.Retrieve all projects associated with the user.: The Project Service must:

a.Call CDS to retrieve all projects, active and archived both, associated (both owner and collaborator) with the user, which returns a list of all projects associated with the user. Each project object is populated with the project name, version, projectId.uuid, and description.

CDS Dependency:

CDS REST Call that returns a list of project objects (with project name, version and projectId.uuid, and description populated) associated with the user.

4.The Project Service must return the following to the UI Layer:

a.The list of JSON formatted Project objects for which the authenticatedUserId is the owner in the body of the response.

b.Http response code – 200 OK.

5.Archive Project

Operation Name
archiveProject
Trigger
This API is called when the user request the archival of an existing Project in his project catalog in ML Workbench workspace. This operation only changes the artifactStatus field from ACTIVE to ARCHIVED.
Request
{

project:Project;//mandatory

}
Response
{

project:Project;

}

Behavior

1.The Project Service must check if the request JSON structure is valid, otherwise it should return

a.serviceStatus.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage = “Incorrectly formatted input – Invalid JSON”

c.Send the response to client with Http response code – 4xx

2.The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	status.SERVICE_STATUS =ERROR

b.statusMessage = “Acumos User Id missing”.

c.Send response to client with Http response code – 4xx

3.Check if the requestor is the owner of the project Workbench or is authorized to delete the Project: The Project Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

a.serviceStatus.SERVICE_STATUS =ERROR

b.serviceStatus .statusMessage = “Permission denied”.

c.Send response to client with Http response code – 4xx.

4.Mark the Project as Archived: The Project Service must call CDS to update the project in the Project Table as follows

a.Update the artifactStatus field of the project entry as “ARCHIVED”

5.Construct the JSON formatted Project object with serviceStatus.status=COMPLETED and artifactStatus as “ARCHIVED”

6.The Project Service must return:

a. JSON formatted project object as the
body of the response

b.Http response code 200.

6.Delete Project

Operation Name
deleteProject
Trigger
This API is called when the user request the deletion of an existing Project in his project catalog in ML Workbench workspace. The project can only be deleted (i.e., purged) if it is in an ARCHIVED state.
Request
{

project:Project;//mandatory

}
Response
{

serviceState:ServiceState;

}

Behavior

1.The Project Service must check if the request JSON structure is valid, otherwise it should return

a.serviceStatus.SERVICE_STATUS=ERROR

b.serviceStatus.statusMessage = “Incorrectly formatted input – Invalid JSON”

c.Send the response to client with Http response code – 4xx

2.The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

a.status.SERVICE_STATUS =ERROR

b.statusMessage = “Acumos User Id missing”.

c.Send response to client with Http response code – 4xx

3.Check if the requestor is the owner of the project Workbench or is authorized to delete the Project: The Project Service must call CDS to check if the requestor (i.e., authenticatedUserId) is the owner of the project (in later releases must check the Permissions table if the requestor is allowed to perform this action). If not it just return:

a.serviceStatus.SERVICE_STATUS =ERROR

b.serviceStatus .statusMessage = “Permission denied”.

c.Send response to client with Http response code – 4xx.

4.Delete the association (link) between the project and its child artifacts: The Project Service must call the CDS to retrieve all artifacts (notebooks and pipelines) currently associated with the projectId.uuid.

a.For each artifact associated with the project, the Project Service must delete the association between that artifact and the project, i.e. erase the projectId.uuid associated with that artifact in the entry in that artifact table.

CDS Dependency:

a.CDS REST API to add, delete and update an artifact entry in the (Notebook, Pipeline) artifact table.

5.Delete the Project entry in User Table: The Project Service must call the CDS to retrieve all users (both owner and collaborators) currently associated with the projectId.uuid.

a.For each user associated with the project, the Project Service must delete the association between the individual user and the project in the Workbench User Table.
Note: In Boreas there is no concept of a collaborator or the sharing of project.

CDS Dependency:

a.(Future Release) CDS REST API that returns all the users associated with projectId.uuid

b.CDS REST API to add, delete and update an entry in the Workbench User Table.

6.Delete the Project: The Project Service must call Common Data Service (CDS) to remove the projectId.uuid entry/row in the Project Table.

CDS Dependency:

a.CDS REST API that creates, updates and deletes an entry in the Project Table.

7.Construct the JSON formatted ServiceState object with serviceStatus.status=COMPLETED.

8.The Project Service must return:

	JSON formatted project object as the body of the response

b.Http response code 200.

7. Share Project with User:

Operation Name

shareProject

Trigger

This API is called when the user request the to share his owned project to another user in ML Workbench workspace UI.

Request

	{

	Users:collaborators (list of Users with user.userId.uuid and Role)

}

Response

	{

	Project:project (with list of collaborators)

}

Behavior

	The Project Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx NOT_FOUND

	The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send the response to client with Http response code – 4xx NOT_FOUND

	The Project Service must check that projectId.uuid is populated in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id missing”.

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the user is exists in CDS : Project service must call the CDS and check whether user is present in cds otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Exception occured: User does not Exists “

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the user is owner of the project: Project service must call CDS and check whether user is the owner of the project otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permission denied”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if user is ACTIVE or not : Project service must call CDS and check whether the user is active otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “User is not ACTIVE”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if Role is given by the user in input : Project service must check if the given input have roles to the user otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Roles not defined”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the related project is exists : Project service must call CDS and check if the given project with projectId is exists in otherwise it should return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Specified Not found”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the collaborators is already exists : Project service must call couch db and check if collaborators already exists otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Collaborator already Exists”

	Send response to client with Http response code – 4xx NOT_FOUND

	Share project with collaborator : Project service must access couch db and create a document in it with required details and must return the Project object with the user and role respectively otherwise it should return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Exception occured while saving in DB”

	Send response to client with Http response code – 4xx NOT_FOUND

8. Remove user from the Collaborator List:

Operation Name

removeCollaborator

Trigger

This API is called when the user request to remove the user from the collaborators from his owned project in ML Workbench workspace UI.

Request

	{

	Users:collaborators (list of Users with user.userId.uuid)

}

Response

	{

	Project:project (with list of updated collaborators after removal)

}

Behavior

	The Project Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx NOT_FOUND

	The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send the response to client with Http response code – 4xx NOT_FOUND

	The Project Service must check that projectId.uuid is populated in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id missing”.

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the user is exists in CDS : Project service must call the CDS and check whether user is present in cds otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Exception occured: User does not Exists “

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the user is owner of the project: Project service must call CDS and check whether user is the owner of the project otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Permission denied”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if user is ACTIVE or not : Project service must call CDS and check whether the user is active otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “User is not ACTIVE”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if Role is given by the user in input : Project service must check if the given input have roles to the user otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Roles not defined”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the related project is exists : Project service must call CDS and check if the given project with projectId is exists in otherwise it should return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Specified Not found”

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the user is exists as a collaborator : Project service must check in couch db if the user exists as a collaborator otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “User is not a collaborator”

	Send response to client with Http response code – 4xx NOT_FOUND

	Remove user from collaborators list : Project service must call access couch db and get the related document details and remove the user from the collaborators list from couch db.After this successful execution,it must return Project object with updates collaborators with roles respectively otherwise it should return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Exception occured while finding the documents in couchDB”

	Send response to client with Http response code – 4xx NOT_FOUND

9. Get the list of shared Project for the logged in User:

Operation Name
getSharedProjects

Trigger

This API is called when the user request to the projects which are shared with it in ML Workbench workspace UI.

Request

authenticatedUserId

Response

	{

	Project:project (with collaborators)

}

Behavior

	The Project Service must check if the request JSON structure is valid, otherwise it should return

	serviceStatus.status.SERVICE_STATUS=ERROR

	serviceStatus.statusMessage= “Incorrectly formatted input – Invalid JSON”

	Send the response to client with Http response code – 4xx NOT_FOUND

	The Project Service must retrieve the authenticatedUserId from the context of the REST call (the REST Header contains the authenticatedUserId) and make sure it is populated otherwise it must return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Acumos User Id missing”.

	Send the response to client with Http response code – 4xx NOT_FOUND

	The Project Service must check that projectId.uuid is populated in the request otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Project Id missing”.

	Send response to client with Http response code – 4xx NOT_FOUND

	Check if the user is exists in CDS : Project service must call the CDS and check whether user is present in cds otherwise it must return:

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Exception occured: User does not Exists “

	Send response to client with Http response code – 4xx NOT_FOUND

	Get shareProjects for the logged in user: Project service must access couch db and get the list of projects that is been shared with this logged in user and returns the list of project object with the collaborators otherwise it should return :

	serviceStatus.status.SERVICE_STATUS =ERROR

	serviceStatus.statusMessage = “Exception occured while finding the documents in couchDB “

	Send response to client with Http response code – 4xx NOT_FOUND

ML(Machine Learning) Workbench Project Service Developer Guide

1.Overview

This is the developers guide to ML Workbench Project Service

1.1. What is ML Workbench Project Service?

ML Workbench Project Service expose API to allow to perform CRUD operation on Project in ML Workbench.

2. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 2.1.3.RELEASE

	Java 8

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

3.Project Resources

	Gerrit repo: workbench/project-service [https://gerrit.acumos.org/r/#/admin/projects/workbench]

	Jira [https://jira.acumos.org/browse/ACUMOS-2480] Create Project

	Jira [https://jira.acumos.org/browse/ACUMOS-2481] Update Project

	Jira [https://jira.acumos.org/browse/ACUMOS-2482] List Project

	Jira [https://jira.acumos.org/browse/ACUMOS-2483] View Project

	Jira [https://jira.acumos.org/browse/ACUMOS-2484] Delete Project

4. Development Setup

	Clone or download code from “Gerrit repo” mentioned above.

	Import project-service Project in IDE (viz., Eclipse or STC)

	Once successfully imported, set the required properties in application.properties file.

	Run as Springboot application.

	Access using Swagger UI : http://localhost:9088/mlWorkbench/v1/project/swagger-ui.html#

6. Once you get the Swagger UI, click Authorize button and provide JWT token as below :
Bearer <JWT token for Acumos User>

Note: JWT token value can be obtained after successful login in Acumos.

	After successfully setting Authorize value, API are available to access. Following are the sample inputs :

	Create Project :

“authenticatedUserId” : <Acumos User login ID>

“project” :
{

“projectId”: {

“name”: “<Project name e.g. TestProject>”,
“versionId”: {

“label”: “<version e.g. 0.0.1>”

	}

	},
“description”: “<Project description>”

}

	Update Project :

“authenticatedUserId” : <Acumos User login ID>

“project” :
{

“projectId”: {

“name”: “<Project name e.g. TestProject>”,
“versionId”: {

“label”: “<version e.g. 0.0.1>”

	}

	},
“description”: “<Project description>”

}

“projectId” : <Project UUID to be updated>

	List Project :

“authenticatedUserId” : <Acumos User login ID>

	View (Get) Project :

“authenticatedUserId” : <Acumos User login ID>

“projectId” : <Project UUID>

	Delete Project :

“authenticatedUserId” : <Acumos User login ID>

“projectId” : <Project UUID>

Project Service Release Notes

Version 2.0.5, 2020-05-29

	Updated Project Service CDS version to 3.1.1

	Updated the workbench-common depndency to 2.0.4

Version 2.0.4, 2019-12-16

	Added Logger dependencies

Version 2.0.3, 2019-12-10

	Updated Project Service CDS version to 3.1.0

Version 2.0.2, 2019-10-31

	ACUMOS-3650 : IST: ML Workbench: Getting error while clicking on the ML Workbench and Project menu

Version 2.0.1, 2019-10-09

	ACUMOS-3539 : Minor changes in the response of Project Service API : Get Project Details

Version 2.0.0, 2019-10-01

	ACUMOS-3454 : Update all MLWB MS to use Java 11

	ACUMOS-3489 : Define New API in Project Service for Project Collaboration

	ACUMOS-3488 : Modify Project Service API

Version 1.0.3, 2019-09-25

	ACUMOS-3450 : Update MLWB MS to point to CDS 3.0.0

Version 1.0.2, 2019-09-09

	Updated to refer workbench-common 1.0.4

Version 1.0.1, 2019-05-30

	ACUMOS-2850 : Move common code to workbench-common

	Updated to refer workbench-common-1.0.3

Version 1.0.0, 2019-04-27

	Initial Code commit

	ACUMOS-2480 : Create Project

	ACUMOS-2481 : Update Project

	ACUMOS-2482 : List Projects

	ACUMOS-2483 : View (Get) Project

	ACUMOS-2484 : Delete project

	ACUMOS-2690 : Update project-service to include dependency for workbench-common

	ACUMOS-2789 : JWT Authentication

ML Workbench Project Web Component

Version 3.0.0 21st April 2020

	Predictor Manager UI Changes (ACUMOS-3786)

Version 2.0.9 31st January 2020

	Combine multiple options as dropdown (ACUMOS-3788)

Version 2.0.8 7th November 2019

	IST | MLWB | unable to delete Project (ACUMOS-3691)

Version 2.0.6 1st November 2019

	ML Workbench: Create Pipeline button is not clickable due to anchor message (ACUMOS-3654)

	IST | MLWB | Un-archival of project in edit screen gives garbage values on screen (ACUMOS-3655)

Version 2.0.5 25th October 2019

	IST | MLWB | Manage Collaborator | Without selection of permission project can be shared to other users (ACUMOS-3641)

	IST | MLWB | Project, Notebook , Data Pipeline | Creation of Project, Notebook and Data pipeline giving error if the description fields filled with all the capacity (ACUMOS-3617)

	IST | MLWB | Model Collaborator | Collaborator profile showing invalid data in shared project tab once project deleted (ACUMOS-3634)

	IST | Pipeline and Notebook | Font size for for the pop is not proper (ACUMOS-3616)

	IST | Alignment of archive pop is not proper (ACUMOS-3615)

	Allow user to disassociate the Pipeline and Notebook from Project (ACUMOS-3622)

	IST | MLWB | Data Pipeline | Color of Active and Archive in status column not proper (ACUMOS-3623)

	IST | MLWB | Un-archival of project in edit screen gives garbage values on screen (ACUMOS-3627)

	IST | MLWB | After archival of Data pipeline and notebook tooltip’s in action item showing incorrect information about the icons (ACUMOS-3621)

Version 2.0.3 18th October 2019

	IST | MLWB | Creation and Modified date is not showing for projects (ACUMOS-3455)

	IST2 | MLWB | Max count for description filed is missing for Creation of project and notebook (ACUMOS-2981)

Version 2.0.2 14th October 2019

	Project-predictor mapping UI (ACUMOS-3474)

	Predictor Project Association UI and API Integration (ACUMOS-3490)

	integrate with predictor service (ACUMOS-3475)

	MLWB - Model/Project mapping UI known issues (ACUMOS-3424)

Version 2.0.0 3rd October 2019

	integrate project collaboration UI with project service (ACUMOS-3473)

	project collaboration UI (ACUMOS-3472)

	Change project-webcomponent polymer component to vue (ACUMOS-3476)

	Project collaboration <initial launch> (ACUMOS-3465)

Version 1.0.6 9th September 2019

	Service URL is not being picked up right (ACUMOS-3235)

	Notebook UI Web Component to defile property at application level configuration to allow user to enter URL (ACUMOS-3412)

	User should be able to enter enterprise notebook url while creating new Notebook (ACUMOS-3413)

	Develop and integrate Project Service UI to allow user to facilitate User to get Models associated to a Project (ACUMOS-3217)

	Develop and Integrate Project Service UI to allow user to associate Model(s) to a Project (ACUMOS-3215)

	MLWB UI Changes for displaying details for Project (ACUMOS-3282)

	Pipeline UI Web Component to defile property at application level configuration to allow user to enter URL (ACUMOS-3409)

	User should be able to enter enterprise pipeline url while creating new pipeline (ACUMOS-3410)

	Service URL is not being picked up right (ACUMOS-3235)

Version 1.0.5 31st May 2019

	ML Workbench facing compatibility issues with Mozilla Firefox (ACUMOS-2866)

	IST2 | MLWB | Validation message showing some garbage values in pop-up for creation of notebook and projects (ACUMOS-2983)

Version 1.0.3 3rd May 2019

	Update Error messages (ACUMOS-2852)

Version 1.0.2 26th April 2019

	Commit Initial skeleton UI code to workbench Repo (ACUMOS-2615)

	ML Workbench UI - Deliver Workbench UI code for Boreas release (ACUMOS-2623)

	Project Component with integration with Project mS, Notebook mS, Pipeline mS (ACUMOS-2742)

ML Workbench Common library Developer Guide

doc coming soon

Workbench Common Release Notes

version 2.0.4, 2020-05-26

	Added DataSource Model Classes

Version 2.0.3, 2020-01-29

	Updated Workbench commons CDS version to 3.1.1

Version 2.0.2, 2019-12-16

	Added Logger dependencies

Version 2.0.1, 2019-12-10

	Updated Workbench commons CDS version to 3.1.0

Version 2.0.0, 2019-10-01

	ACUMOS-3454 : Update all MLWB MS to use Java 11

	ModelServiceRestClientImpl RestTemplete code added for Predictor Project Association

	PredictorProjectAssociation pojo has been added

Version 1.0.5, 2019-09-25

	ACUMOS-3450 : Update MLWB MS to point to CDS 3.0.0

Version 1.0.4, 2019-06-24

Added the two artifact status codes(viz., FAILED & INPROGRESS) in workbench commons enum

Version 1.0.3, 2019-05-29

Added the loggers in workbench commons code for MLWB PLS Integration purpose

Version 1.0.2, 2019-04-02

	ACUMOS-2850 : Moved Common Code viz., logging, ProjectService rest client, Exceptions

Version 1.0.1, 2019-04-02

	ACUMOS-2789 : Common code for JWT Authentication for ML Workbench micro services

Version 1.0.0, 2019-04-02

	ACUMOS-2675 : Create Common Module for ML Workbench

ML Workbench Common Programming Interfaces

API

Coming Soon

ML Workbench

Contents:

	Dashboard User Guide

	DataSource User Guide

	Home User Guide

	Notebook User Guide

	Pipeline User Guide

	Project User Guide

ML Workbench Platform Overview

The ML Workbench is a web-based platoform designed for users who wish to create, track, manage and organize ML Models, Notebooks, ML Data Pipelines, DataSources.
ML Workbench is the user’s personal space where user can create any projects, notebooks or data pipelines, datasources and share among other platform users.
User will be able to launch Jupyter/Zeppelin Notebook, Nifi pipeline, Acucompose and CMLP Studio from ML workbench.

ML Workbench is an integral part of Acumos Portal which can be launched from ‘Design Studio’ of Acumos Portal as shown in below screenshot.

[image: ../../../../../_images/Acumos-desgin-studio.PNG]

After clicking on launch button of ML workbench, Users are welcomed to ML Workbench home page with displaying
of Projects, Notebooks, Pipelines, DataSources and Models associated to the logged in user. Left part of the ML Workbench screen shows the
sidebar to help in navigation from one to another screens.

Note

Users need to have valid Acumos session present in browser to navigate to the ML Workbench platform.

Home User Guide

Contents:

	ML Workbench Platform Overview

Project User Guide

Contents:

	Project Component Overview
	Project Catalog

	Project Details

Project Component Overview

Project Catalog

Project Catalog screen displays list of projects which are created by user. There are following ways to navigate to the Project Catalog screen.

	Either click on ‘Project’ card from Dashboard screen

	Or click on the ‘Project’ link from sidebar navigation

[image: ../../../../../_images/Project-catalog.PNG]

From Project Catalog screen, user can perform either of following actions.

	Create Project

By clicking on ‘Create Project’ button present at top right corner, a dialog box will get open. Fill out all required information and
click on the ‘Create Project’ button. After successful project creation, User will be able to see that created Project inside ‘Active Project’ tab.

[image: ../../../../../_images/Create-Project-Dialog.PNG]

	Archive Project

If user wish to Archive any Active Project then user can click on the Archive button present at the bottom right corner of that specific project card.
A confirmation dialog box will appear on click of Archive button. After confirmation, project will be archived and user can see that project inside ‘Archive Project’ tab.

[image: ../../../../../_images/archive-project-catalog-dialog.PNG]

	Unarchive Project

If user wish to Unarchive any Archived Project then user can click on the Unarchive button present at the bottom right corner of that specific project card.
A confirmation dialog box will appear on click of Unarchive button. After confirmation, project will be unarchived and user can see that project inside ‘Active Project’ tab.

[image: ../../../../../_images/unarchive-project-catalog-dialog.PNG]

	Delete Project

If user wish to Delete any Archived Project then user can click on the Delete button present at the bottom right corner of that specific project card.
A confirmation dialog box will appear on click of Delete button. After confirmation, project will be deleted physically from database and can not be restored.

[image: ../../../../../_images/delete-project-catalog-dialog.PNG]

Project Catalog screen includes following features/capabilities.

	Project Filter

Project Catalog screen has three different tabs named as ‘Acitve Projects’, ‘Archive Projects’, ‘All Projects’ and ‘Shared Projects’ which basically
provides filter capability based on ‘Project Status’. If user wish to see only ‘Active’ project then user can choose ‘Active Projects’ tab.
Similarly if user wish to see all projects then user can choose ‘All Projects’ tab and if the user wants to see all the shared projects then user can choose ‘Shared Projects’.

[image: submodules/workbench/docs/mlwb-user-guide/project-component/images/project-filter.PNG]

	Project Sorting

User can sort the project list by choosing either one of following options - By Project Created Date, By Project Name.

For Project Created Date

[image: submodules/workbench/docs/mlwb-user-guide/project-component/images/project-created-date.PNG]

For Project Name

[image: project-created-name image.]

	Search with Project metadata

Project Catalog screen provides textual search capability as well where if user wish to search for specific text present in Project metadata
then user can enter into the search box (present at the right top corner) and projects matching with the entered search criteria will get displayed.

[image: project-search image.]

	Pagination

In Project catalog screen, at a time only 8 projects will be displayed. User can use Pagination feature to navigate to another page if user wishes to see other project lists.

Project Details

On click on specific Project card in the Project catalog screen, user will be redirected to the Project details screen. In this screen, Project basic details will get
displayed along with associated notebook details.

[image: ../../../../../_images/Project-details.PNG]

In the Project details screen, user can perform following Project relevant actions.

	Edit Project

To Edit the Project, click on the ‘Edit’ icon present on the card-header of the Project. On edit, project name, version and description field will become editable.
User can provide new information and save it.

[image: ../../../../../_images/edit-project-detail-new.PNG]

	Archive Project

To Archive Project, click on the Archive button. After user confirmation, project will get archived and status will be reflected in project details

[image: ../../../../../_images/archive-project-detail-dialog.PNG]

Note

If project is archived then Notebook and Pipeline section will not be displayed for that project in the Project Details screen.

[image: ../../../../../_images/project-archive-new.PNG]

	Unarchive Project

To Unarchive Project, click on the Unarchive button. After user confirmation, project will get unarchived and status will be reflected in project details

[image: ../../../../../_images/unarchive-project-dialog.PNG]

	Delete Project

If project is archived then Delete button will be enabled for a user to delete the project. On click of Delete Button, Project will get deleted and
user will be redirected to the Project Catalog Screen

[image: ../../../../../_images/delete-project-dialog.PNG]

	Notebook Section

Notebook section will display all notebooks which are associate with the project. Notebook lists will get displayed in tabular format showing Notebook name,
version, type, status, created date etc.

[image: ../../../../../_images/project-notebook.PNG]

If there is no notebook associated to that project then two options ‘Create Notebook’ and ‘Associate Notebook’ will be displayed to the user in this section.

[image: ../../../../../_images/Project-details.PNG]

Following are the user actions available in the Notebook section:

	Create Notebook:

If there is no notebook associated already for a project then user can create a notebook by clicking on the ‘Create Notebook’ button. Or else, user has to click on the ‘+’ sign
displayed on the right top corner of the Notebook section for same. On click event, a dialog box will appeared where user has to fill out all required information and submit.
On successful Notebook creation, notebook will get displayed in the tabular list.

[image: ../../../../../_images/Create-notebook-project.PNG]

	Associate Notebook:

If there is no notebook associated already for a project then user can associate an existing notebook by clicking on the ‘Associate Notebook’ button. Or else, user has to click on the link button
displayed on the right top corner of the Notebook section for same. On click event, a dialog box will appeared where user has to select the desired notebook from drop down and submit.
On successful Notebook association, notebook will get displayed in the tabular list.

[image: ../../../../../_images/associate-notebook-project.PNG]

	Archive/Unarchive Notebook:

User may choose an option of Archiving, Unarchiving a notebook by clicking on appropriate button. On confirmation, notebook will get archived/unarchived based on user action
and status will get reflect into the Notebook list.

[image: ../../../../../_images/archive-notebook-project-dialog.PNG]
[image: ../../../../../_images/unarchive-notebook-project-dialog.PNG]

	Delete Notebook Association:

User may choose an option to delete notebook association. On confirmation, notebook association with project will get deleted and notebook will not be seen under notebook list.

[image: ../../../../../_images/delete-notebook-project-dialog.PNG]

	Launch Notebook

If user wish to Launch any Active Notebook, then user can click on the Launch button. On click of launch button, notebook will be opened in the user specific Jupyter Instance in a new browser tab.

[image: ../../../../../_images/notebook-launch1.PNG]

	Pipeline Section

Pipeline section will display all pipelines which are associate with the project. Pipeline lists will get displayed in tabular format showing Pipeline name,
version, type, status, created date etc.

[image: ../../../../../_images/project-artifacts.PNG]

If there is no pipeline associated to that project then two options ‘Create Pipeline’ and ‘Associate Pipeline’ will be displayed to the user in this section.

[image: ../../../../../_images/project-empty.PNG]

Following are the user actions available in the Pipeline section:

	Create Pipeline:

If there is no pipeline associated already for a project then user can create a pipeline by clicking on the ‘Create Pipeline’ button. Or else, user has to click on the ‘+’ sign
displayed on the right top corner of the Pipeline section for same. On click event, a dialog box will appeared where user has to fill out all required information and submit.
On successful Pipeline creation, pipeline will get displayed in the tablular list.

[image: ../../../../../_images/create-pipeline-project.PNG]

	Associate Pipeline:

If there is no pipeline associated already for a project then user can associate an existing pipeline by clicking on the ‘Associate Pipeline’ button. Or else, user has to click on the link button
displayed on the right top corner of the Pipeline section for same. On click event, a dialog box will appeared where user has to select the desired pipeline from drop down and submit.
On successful Pipeline association, pipeline will get displayed in the tabular list.

[image: ../../../../../_images/associate-pipeline.PNG]

	Archive/Unarchive Pipeline:

User may choose an option of Archiving, Unarchiving a pipeline by clicking on appropriate button. On confirmation, pipeline will get archived/unarchived based on user action
and status will get reflect into the Pipeline list.

[image: ../../../../../_images/archive-pipeline-project-dialog.PNG]
[image: ../../../../../_images/unarchive-pipeline-project-dialog.PNG]

	Delete Pipeline Association:

User may choose an option to delete pipeline association. On confirmation, pipeline association with project will get deleted and pipeline will not be seen under pipeline list.

[image: ../../../../../_images/delete-pipeline-project-dialog.PNG]

	Launch Pipeline

If user wish to Launch any Active Pipeline, then user can click on the Launch button. On click of launch button, pipeline will be opened in the user specific Nifi Instance in a new browser tab.

[image: ../../../../../_images/pipeline-launch1.PNG]

	Model Section

Model section will display all models which are associated with the project. Model lists will get displayed in tabular format showing model name,
version, model type, status, created date etc.

[image: ../../../../../_images/project-artifacts.PNG]

If there is no model associated to that project then one option ‘Associate Model’ will be displayed to the user in this section.

[image: ../../../../../_images/project-empty.PNG]

Following are the user actions available in the Model section:

	Associate Model:

If there is no model associated already for a project then user can associate an existing model by clicking on the ‘Associate model’ button. Or else, user has to click on the link button
displayed on the right top corner of the model section for same. On click event, a dialog box will be appeared where user has to select the desired model from drop down and submit.
On successful MODEL association, model will get displayed in the tablular list.

[image: ../../../../../_images/associate-model.PNG]

	**Deploy to K8

After model association with project, user can deploy that model to k8s, the predictor will be created with user provided values and it will be displayed under the predictor section.

[image: ../../../../../_images/deploy2-k8s.PNG]
[image: ../../../../../_images/deploy2-k8s1.PNG]
[image: ../../../../../_images/deploy2-k8spredictorcreation.PNG]

	Delete Model Association:

User may choose an option to delete model association. On confirmation, model association with project will get deleted and model will not be seen under model list.

[image: ../../../../../_images/delete-model-project-dialog.PNG]

	edit Model Association

User may choose to edit model association. On click of the appropriate button, a dialog box will be appeared where user can select other version of the model to update model association.

[image: ../../../../../_images/edit-model-project.PNG]

	View Model

User can view additional details about the associated model by clicking on view model button. When clicked, user will be redirected to model details page of the marketplace.

[image: ../../../../../_images/view-model-project.PNG]

	Predictor Section

Predictor section will display all predictorss which are associated with the project. Predictor lists will get displayed in tabular format showing predictor name,
version, predictor type, status, created date etc.

[image: ../../../../../_images/project-artifacts.PNG]

If there is no predictor associated to that project then one option ‘Associate Predictor’ will be displayed to the user in this section.

[image: ../../../../../_images/project-empty.PNG]

Following are the user actions available in the Predictor section:

	Associate Predictor:

If there is no predictor associated already for a project then user can associate an existing predictor by clicking on the ‘Associate predictor’ button. Or else, user has to click on the link button
displayed on the right top corner of the predictor section for same. On click event, a dialog box will be appeared where user has to select the desired predictor from drop down and submit.
On successful MODEL association, predictor will get displayed in the tablular list.

[image: ../../../../../_images/associate-predictor.PNG]

	Delete Predictor Association:

User may choose an option to delete predictor association. On confirmation, predictor association with project will get deleted and predictor will not be seen under predictor list.

[image: ../../../../../_images/delete-predictor-project-dialog.PNG]

	edit Predictor Association

User may choose to edit predictor association. On click of the appropriate button, a dialog box will be appeared where user can select other version of the predictor to update predictor association.

[image: ../../../../../_images/edit-predictor-project.PNG]

Datasource Component Overview

Datasource Catalog

Datasource Catalog screen displays list of datasources which are created by user. There are following ways to navigate to the Datasource Catalog screen.

	Either click on ‘Datasources’ card from Dashboard screen

	Or click on the ‘Datasources’ link from sidebar navigation

[image: datasource-catalog image.]
[image: datasource-catalog1 image.]

From datasource Catalog screen, user can perform either of following actions.

	Create Datasource

By clicking on ‘Create Datasources’ button present at top right corner, a dialog box will get open. Fill out all required information and
click on the ‘Create datasource’ button. After successful datasource creation, User will be able to see that created datasource.

[image: create-datasource-catalog image.]

	datasource Sorting

User can sort the datasource list by choosing either one of following options - By datasource On-boarded, By datasource Name.

	Search with datasource metadata

datasource Catalog screen provides textual search capability as well where if user wish to search for specific text present in datasource metadata
then he can enter into the search box (present at the right top corner) and datasources matching with the entered search criteria will get displayed.

	Pagination

In datasource catalog screen, at a time only 8 datasources will be displayed. User can use Pagination feature to navigate to another page if he wish to see other datasources lists.

datasource Details

On click on specific datasource card in the datasource catalog screen, user will be redirected to the datasource details screen. In this screen, datasource basic details will get displayed.

[image: datasource-details image.]

In the datasource details screen, user can perform following datasource relevant actions.

While creating, editing the datasource.

	Edit datasource

To Edit the datasource, click on the ‘Edit’ icon present on the card-header of the datasource. On edit, datasource name, description, Reaw write descriptor, data connector field will become editable. User can provide new information and save it.

[image: edit-datasource image.]

	Delete datasource

If datasource is archived then Delete button will be enabled for a user to delete the datasource. On click of Delete Button, datasource will get deleted and
user will be redirected to the datasource Catalog Screen.

[image: delete-datasource-detail-dialog image.]

DataSource User Guide

Contents:

	Datasource Component Overview
	Datasource Catalog

	datasource Details

Pipeline User Guide

Contents:

	Pipeline Component Overview
	Pipeline Catalog

	Pipeline Details

Pipeline Component Overview

Pipeline Catalog

Pipeline Catalog screen displays list of pipelines which are created by user. There are following ways to navigate to the Pipeline Catalog screen.

	Either click on ‘Pipelines’ card from Dashboard screen

	Or click on the ‘Pipelines’ link from sidebar navigation

[image: pipeline-catalog image.]

From pipeline Catalog screen, user can perform either of following actions.

	Create Pipeline

By clicking on ‘Create Pipeline’ button present at top right corner, a dialog box will get open. Fill out all required information and
click on the ‘Create Pipeline’ button. After successful pipeline creation, User will be able to see that created Pipeline.
if external pipeline flag is set to true, user will be able to create a external pipeline in acumos by providing its url in the create pipeline form.

[image: create-pipeline-create-url image.]

	Archive Pipeline

If user wish to Archive any Active Pipeline then he can click on the Archive button present at the bottom right corner of that specific Pipeline card.
A confirmation dialog box will appear on click of Archive button. After confirmation, pipeline will be archived.

[image: archive-pipeline image.]

	Unarchive Pipeline

If user wish to Unarchive any Archived Pipeline then he can click on the Unarchive button present at the bottom right corner of that specific pipeline card.
A confirmation dialog box will appear on click of Unarchive button. After confirmation, pipeline will be unarchived.

[image: unarchive-pipeline image.]

	Delete Pipeline

If user wish to Delete any Archived Pipeline then he can click on the Delete button present at the bottom right corner of that specific pipeline card.
A confirmation dialog box will appear on click of Delete button. After confirmation, pipeline will be deleted physically from database and can not be restored.

[image: delete-pipeline image.]

	Launch Pipeline

If user wish to Launch any Active Pipeline, then he can click on the Launch button present at the bottom right corner of that specific pipeline card.
On click of launch button, pipeline will be opened in the user specific Nifi Instance in a new browser tab.

[image: pipeline-launch image.]

Pipeline Catalog screen includes following features/capabilities.

	Pipeline Sorting

User can sort the pipeline list by choosing either one of following options - By Pipeline Created Date, By Pipeline Name.

	Search with Pipeline metadata

Pipeline Catalog screen provides textual search capability as well where if user wish to search for specific text present in Pipeline metadata
then he can enter into the search box (present at the right top corner) and pipelines matching with the entered search criteria will get displayed.

	Pagination

In Pipeline catalog screen, at a time only 8 pipelines will be displayed. User can use Pagination feature to navigate to another page if he wish to see other pipelines lists.

Pipeline Details

On click on specific Pipeline card in the Pipeline catalog screen, user will be redirected to the Pipeline details screen. In this screen, Pipeline basic details will get
displayed.

[image: pipeline-details image.]

If external pipeline flag is set to true, pipeline details including url will be displayed.

[image: pipeline-details-url image.]

In the Pipeline details screen, user can perform following Pipeline relevant actions.

While creating, editing the pipeline, user can give the external pipeline url as well, to save his own nifi pipeline details.

	Edit Pipeline

To Edit the Pipeline, click on the ‘Edit’ icon present on the card-header of the Pipeline. On edit, pipeline name, version and description field will become editable.
User can provide new information and save it.

[image: edit-pipeline image.]

If external Pipeline flag is set to true, user will be able to edit name, version, description and url as well.

[image: pipeline-edit-url image.]

	Archive Pipeline

To Archive Pipeline, click on the Archive button. After user confirmation, pipeline will get archived and status will be reflected in pipeline details.

[image: archive-pipeline-detail-dialog image.]

	Unarchive Pipeline

To Unarchive Pipeline, click on the Unarchive button. After user confirmation, pipeline will get unarchived and status will be reflected in pipeline details.

[image: unarchive-pipeline-detail-dialog image.]

	Delete Pipeline

If Pipeline is archived then Delete button will be enabled for a user to delete the pipeline. On click of Delete Button, Pipeline will get deleted and
user will be redirected to the Pipeline Catalog Screen.

[image: delete-pipeline-detail-dialog image.]

	Launch Pipeline

If Pipeline is active, then launch button will be enabled for the user. On click of launch button, pipeline will be opened in the user specific Nifi Instance in a new browser tab.

[image: pipeline-launch image.]

Dashboard Component Overview

Once user launches ML Workbench from Acumos Design-Studio then user will be landing on the dashboard screen and it provides summary information about user’s artifacts like # of projects, notebooks, Data pipelines, DataSources and My Models.

When user clicks on the Projects tile then it will display the number of projects which are accessible for the logged in user. For Notebooks if user clicks on the Notebook tile then it will display the number of notebooks which are accessible to the same user. The same functionality will be applicable for Data Pipelines also as the user clicks on the Data pipelines tile then it will display the number of pipelines which are accessible for the acumos logged in user. For DataSources also as the user clicks on the DataSources tile then it will display the number of datasources which are accessible for the acumos logged in user. When user clicks on the My Models tile then it will redirect to the My Models Tab of Acumos.

[image: Home-Landing image.]
[image: home-land1 image.]

Dashboard User Guide

Contents:

	Dashboard Component Overview

Notebook User Guide

Contents:

	Notebook Component Overview
	Notebook Catalog

	Notebook Details

Notebook Component Overview

Notebook Catalog

Notebook Catalog screen displays list of notebooks which are created by user. There are following ways to navigate to the Notebook Catalog screen.

	Either click on ‘Notebooks’ card from Dashboard screen

	Or click on the ‘Notebooks’ link from sidebar navigation

[image: notebook-catalog image.]

From notebook Catalog screen, user can perform either of following actions.

	Create Notebook

By clicking on ‘Create Notebook’ button present at top right corner, a dialog box will get open. Fill out all required information and
click on the ‘Create Notebook’ button. After successful notebook creation, User will be able to see that created Notebook.

[image: create-notebook-catalog image.]

if external notebook flag is set to true, user will be able to create a external notebook in acumos by providing its url in the create notebook form.

[image: create-notebook-create-url image.]

	Archive Notebook

If user wish to Archive any Active Notebook then user can click on the Archive button present at the bottom right corner of that specific Notebook card.
A confirmation dialog box will appear on click of Archive button. After confirmation, notebook will be archived.

[image: archive-notebook-dialog image.]

	Unarchive Notebook

If user wish to Unarchive any Archived Notebook then user can click on the Unarchive button present at the bottom right corner of that specific notebook card.
A confirmation dialog box will appear on click of Unarchive button. After confirmation, notebook will be unarchived.

[image: unarchive-notebook-dialog image.]

	Delete Notebook

If user wish to Delete any Archived Notebook then user can click on the Delete button present at the bottom right corner of that specific notebook card.
A confirmation dialog box will appear on click of Delete button. After confirmation, notebook will be deleted physically from database and can not be restored.

[image: delete-notebook-dialog image.]

	Launch Notebook

If user wish to Launch any Active Notebook, then user can click on the Launch button present at the bottom right corner of that specific notebook card.
On click of launch button, notebook will be opened in the user specific Jupyter Instance in a new browser tab.

[image: notebook-launch image.]

Notebook Catalog screen includes following features/capabilities.

	Notebook Sorting

User can sort the notebook list by choosing either one of following options - By Notebook Created Date, By Notebook Name.

For Notebook Created Date

[image: notebook-sorting-by-created-date image.]

For Notebook Name

[image: notebook-sorting-by-name image.]

	Search with Notebook metadata

Notebook Catalog screen provides textual search capability as well where if user wish to search for specific text present in Notebook metadata
then user can enter into the search box (present at the right top corner) and notebooks matching with the entered search criteria will get displayed.

[image: notebook-search image.]

	Pagination

In Notebook catalog screen, at a time only 8 notebooks will be displayed. User can use Pagination feature to navigate to another page if the user wishes to see other notebooks lists.

Notebook Details

On click on specific Notebook card in the Notebook catalog screen, user will be redirected to the Notebook details screen. In this screen, Notebook basic details will get
displayed.

[image: notebook-details image.]

In the Notebook details screen, user can perform following Notebook relevant actions.

While creating, editing the notebook, user can give the external notebook url as well, to save user’s own jupyter or zappelin notebook details.

	Edit Notebook

To Edit the Notebook, click on the ‘Edit’ icon present on the card-header of the Notebook. On edit, notebook name, version and description field will become editable.
User can provide new information and save it.

[image: edit-notebook image.]

If external Notebook flag is set to true, user will be able to edit name, version, description and url as well.

[image: notebook-edit-url image.]

	Archive Notebook

To Archive Notebook, click on the Archive button. After user confirmation, notebook will get archived and status will be reflected in notebook details.

[image: archive-notebook-detail-dialog image.]

	Unarchive Notebook

To Unarchive Notebook, click on the Unarchive button. After user confirmation, notebook will get unarchived and status will be reflected in notebook details.

[image: unarchive-notebook-detail-dialog image.]

	Delete Notebook

If Notebook is archived then Delete button will be enabled for a user to delete the notebook. On click of Delete Button, Notebook will get deleted and
user will be redirected to the Notebook Catalog Screen.

[image: delete-notebook-detail-dialog image.]

	Launch Notebook

If Notebook is active, then launch button will be enabled for the user. On click of launch button, notebook will be opened in the user specific Jupyter Instance in a new browser tab.

[image: notebook-launch image.]

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

Project catalog

Running the api

	yarn to install dependencies

	Copy .env.template to .env

	Set the correct configuration in the .env file

	Run the api using yarn start

vue-component

Project setup

yarn install

Compiles and hot-reloads for development

yarn run serve

Compiles and minifies for production

yarn run build

Run your tests

yarn run test

Lints and fixes files

yarn run lint

Customize configuration

See Configuration Reference [https://cli.vuejs.org/config/].

ML Workbench Pipeline Service Engine

This project is to support ML Workbench Pipeline service UI, by providing the required API.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Acumos Kubernetes Client

This repository holds components and tools supporting deployment of Acumos
machine learning models (“solutions”) under kubernetes. This repo is maintained
by the Deployment project under the Acumos AI open source project. The wiki
home for the Deployment project is https://wiki.acumos.org/display/DEP.

Please see the documentation in the “docs” folder.

Solution Deployment in Private Kubernetes

Documentation for Solution Deployment in Private Kubernetes is provided at
https://docs.acumos.org/en/latest/submodules/kubernetes-client/docs/deploy-in-private-k8s.html

Acumos Solution Deployment in Private Kubernetes Cluster

This document describes the design for the Acumos platform support of deploying
Acumos machine-learning models into private kubernetes (k8s) clusters, as simple
(single model) or composite (multi-model) solutions. This document is published
as part of the Acumos kubernetes-client repository. The private kubernetes
deployment capabilities and design are collectively referred to in this document
as the “private-k8s-deployment” feature.

Scope

“Private” as used here means a k8s cluster deployed in an environment (e.g.
VM(s) or bare metal machine(s)) for which the model user has ability to use the
kubectl CLI tool on the k8s cluster master (“k8s master”) to manage apps in the
cluster. This is typically only available to users when they have deployed the
cluster for their own purposes, e.g. to develop/test k8s apps.

Other designs under the Acumos kubernetes-client repo will address deployment in
other k8s environments, e.g. public clouds, or using other more generic methods
that do not depend upon direct access to the k8s master node. There is expected
to be much in common across these designs, so this design is intended to provide
an initial baseline for direct reuse in other environments where possible.

Initially however, this design makes some simplifying assumptions/choices, which
over time can be relaxed or modified, to support other types of k8s environments
(e.g. other types of private and public k8s clusters, other host machines):

	deployment process split into two steps:

	installation of a k8s cluster, as needed: a downloadable script is provided
for this purpose, which the user must run prior to deploying the solution

	user manual invocation of the deployment process on the k8s master, using a
downloadable solution package including:

	a kubernetes cluster setup script which the user can run to install a
basic single- or mulit-node kubernetes cluster

	a deployment script which the user can run to start the deployment in the
installed or otherwise pre-existing kubernetes cluster

	a k8s template for the solution (solution.yaml)

	a model blueprint file and dockerinfo file as created by the Acumos Design
Studio, and used by the Blueprint Orchestrator (referred to here and in
solution.yaml files as the Model Connector) to route model messages through
the set of model microservices

	if the solution contains the “Proto Viewer” (referred to here and in
solution.yaml files as the Probe), a set of folders containing the
protobuf interface specification for each model microservice

	the k8s cluster is deployed (or will be) on a linux variant host OS. Ubuntu
and Centos 7 will be specifically tested/supported.

Previously Released Features

This is the first release of private-k8s-deployment.

Current Release Features

The private-k8s-deployment features planned for delivery in the current release
(“Athena”) are:

	a utility script (k8s-cluster.sh) enabling the user to prepare a k8s cluster
that includes the prerequisites of the solution deployment process

	a templated deployment shell script (deploy.sh) that executes the deployment
when invoked by the user on the k8s master

	a new Acumos platform component, the “kubernetes-client”, that collects solution
artifacts, creates a k8s template for the solution, and prepares a
downloadable solution package as “solution.zip”

	a new Acumos platform component, the “docker-proxy”, which is installed as
part of automated all-in-one (AIO) or manual installations, as described below

private-k8s-deployment depends upon these related features to be delivered in
the Athena release:

	Acumos portal-marketplace support for a new “deploy to local” option for a
solution

	A new Acumos component, the “docker-proxy”, which provides a user’s kubernetes
cluster to pull docker images from an Acumos platform Nexus repository

Architecture

The following diagram illustrates the functional components, interfaces, and
interaction of the components for a typical private-k8s-deployment process that
includes a composite solution, Data Broker, and Probe:

[image: ../../../_images/private-k8s-client-arch.png]
** Figure 1: Typical Deployment with all components deployed **

The following diagram illustrates the functional components, interfaces, and
interaction of the components for a typical private-k8s-deployment process that
includes a composite solution and Probe, but no Data Broker:

[image: ../../../_images/private-k8s-client-arch-no-databroker.png]
** Figure 2: Typical Deployment with all components except for Data Broker **

A summary of the process steps, with conditional statements illustrating where
the process varies depending upon the type of solution (simple or composite),
and inclusion of specific optional features (Data Broker, Probe):

	At the Acumos platform, the user selects “deploy to local” (in the current
release this is limited to a private kubernetes cluste).

	A: the user selects the “Download Solution Package” button

	B: the portal-marketplace calls the /getSolutionZip API of the k8s-client
service

	C: the k8s-client calls the Solution Controller APIs of the
common-data-service to obtain the URIs of the artifacts to be included

	D: the k8s-client calls the Maven artifact API of nexus to retrieve the
artifacts, prepares the solution package, and returns it to the
portal-marketplace, which downloads it to the user’s machine

	The user prepares the solution package for deployment

	A: the user uploads the downloaded solution package to the k8s master host

	B: the user unpacks the package, which includes

	setup_k8s.sh: optional k8s cluster setup script

	deploy.sh: deployment script

	solution.yaml: k8s template for deploying the set of model microservices
included in the solution, plus the Data Broker, Model Connector, and
Probe services

	blueprint.json: solution blueprint as created by the Design Studio

	dockerinfo.json: file with microservice name to IP/Port mapping info

	a “microservice” subfolder, containing a subfolder named for each
model microservice container (by its container name) in the solution,
within which is the “model.proto” artifact for the microservice

	If needed, the user installs a k8s cluster by running the command, optionally
specifying a set of hosts on which to deploy a multi-node kubernetes cluster

bash setup_k8s.sh

	The user kicks off the deployment, which runs automatically from this point

	A: the user invokes deploy.sh, including parameters

	the path to folder where solution.zip was unpacked; in the
example below the user is in the folder where solution.zip was unpacked,
thus the solution.yaml is in location “.”

	credentials as needed to authorize the user’s docker client to pull
solution microservice images during deployment

	NOTE: for the Athena release, a single set of credentials are provided
for all platform users. The next release will leverage the specific
user’s credentials on the Acumos platform.

	if the Acumos Generic Data Broker was included in the solution, the data
source (file or URL) that the Data Broker should use

bash deploy.sh . 73f7fc0f-7a89-4ae9-a05d-5eb395d8b565 dc91194c-919a-4b47-b73b-e372c51ddff6

	B: deploy.sh logs into the Acumos docker registry via the docker-proxy
using the provided credentials

	
	C: the docker-proxy validates the docker login credentials provided by the

	user, and confirms login success to the docker client

	NOTE: the next release will leverage the specific user’s credentials on
the Acumos platform, as the docker-proxy will call the /api/auth/jwtToken
API of the portal-marketplace to verify that the user is registered on
the platform, and only then confirm login success to the docker client.

	D: deploy.sh logs into the Acumos project docker registry, using the
Acumos project credentials

	E: if the solution includes the Model Connector (i.e. is a composite
solution), deploy.sh copies the microservice folder to /var/acumos and
updates the blueprint.json with the location of the model.proto files as
they will be deployed by the embedded nginx server.

	F: deploy.sh initiates deployment of the solution via kubectl, using the
solution.yaml template. kubectl deploys all the services defined in the
template.

	G: using the cached authentication for the Acumos docker registry (via
the docker-proxy, which validates the active login of the user, and pulls
the requested image(s) from the Acumos platform docker registry) and
the Acumos project docker registry, k8s pulls the docker images for all
solution microservices and Acumos project components, and deploys them.

	H: if the solution includes the Data Broker, when the Data Broker service
is active (determined by monitoring its status through kubectl), deploy.sh

	extracts the “data_broker_map” section of blueprint.json as databroker.json

	invokes the Data Broker /configDB API to configure Data Broker with model
data source to target mapping info using databroker.json

	I: if the solution includes the Data Broker, the Data Broker begins
retrieving the solution input data, and waits for a /pullData API request
from the Model Connector

	J: When all of the microservices are active (determined by monitoring their
status through kubectl), if the solution includes the Model Connector,
deploy.sh

	invokes the Model Connector /putDockerInfo API with dockerinfo.json

	invokes the Model Connector /putBlueprint API with blueprint.json

	K: if the solution includes the Data Broker, the Model Connector calls the
Data Broker /pullData API to start retrieval of test/training data.
Otherwise, as shown in “Figure 2” above, the user will start sending data
directly to the Model Connector, possibly using tools such as the
test-model.sh script provided in the kubernetes-client repo.

	test-model.sh is intended to simplify interaction with models that take
input data in CSV form. Additional types of input (e.g. images) will be
supported in future releases.

Solution operation proceeds, with data being routed into the model microservice(s)
by the following, as applicable to the solution:

	by the Data Broker, upon request of the Model Connector

	if Data Broker is not included, by the Model Connector upon reception of
a protobuf message matching the first blueprint node’s input operation

	if neither the Data Broker or Model Connector are included, upon reception
a protobuf message matching the model’s input operation

Functional Components

The private-k8s-deployment feature will depend upon two new Acumos component
microservices:

	kubernetes-client: packages solution artifacts and deployment tools into the
“solution.zip” package

	docker-proxy: provides an authentication proxy for the platform docker repo

Other Acumos component dependencies, with related impacts in this release:

	portal-marketplace: provides the user with a download link to the
“setup_k8s.sh” script, and a “deploy to local” dialog that allows
the user to download the solution.zip package

Other Acumos component dependencies, used as-is:

	common-data-svc: provides information about solution artifacts to be retrieved

	nexus: provides access to the maven artifact repository

	docker repository: as provided by the Acumos nexus service or another docker
repository service, provides access to the microservice docker images as
they are deployed by the k8s cluster

Other dependencies:

	a kubernetes cluster, deployed via the “setup_k8s.sh” script, or otherwise

Interfaces

Exposed APIs

Solution Download

The k8s-client service exposes the following API for the portal-marketplace to
obtain a downloadable package of solution artifacts and deployment script,
for a specific solution revision.

The base URL for this API is: http://<k8s-client-service-host>:<port>, where
‘k8s-client-service-host’ is the routable address of the verification service
in the Acumos platform deployment, and port is the assigned port where the
service is listening for API requests.

	URL resource: /getSolutionZip/{solutionId}/{revisionId}

	{solutionId}: ID of a solution present in the CDS

	{revisionId}: ID of a version for a solution present in the CDS

	Supported HTTP operations

	GET

	Response

	200 OK

	meaning: request successful

	body: solution package (solution.zip)

	404 NOT FOUND

	meaning: solution/revision not found, details in JSON body. NOTE: this
response is only expected in race conditions, e.g. in which a deploy
request was initiated when at the same time, the solution was deleted
by another user

	body: JSON object as below

	status: “invalid solutionId”|”invalid revisionId”

Docker Login

The Acumos platform docker-proxy will expose the docker login API.

Docker Pull

The Acumos platform docker-proxy will expose the docker pull API.

Consumed APIs

Docker Login

Via the local docker CLI client on the host machine, deploy.sh will call the
login API of:

	the Acumos platform docker-proxy, to verify that the user is authorized to
access docker images in the Acumos platform docker registry

	the Acumos project Nexus docker API, to enable pull of the Acumos project
docker images to be deployed as part of the solution

Docker Pull

Via the local docker CLI client on the host machine, kubectl will call the
docker pull API of:

	the Acumos platform docker-proxy, to pull the model microservice images to be
deployed as part of the solution

	the Acumos project Nexus docker API, to pull the Acumos project docker images
to be deployed as part of the solution

Portal User Authentication

NOTE: the next release will leverage the specific user’s credentials on the
Acumos platform, as the docker-proxy will call the /api/auth/jwtToken API of
the portal-marketplace to verify that the user is registered on the platform,
and only then confirm login success to the docker client.

Solution Controller

The k8s-client service will call the Solution Controller APIs of the
common-data-svc to obtain the following solution/revision-related data:

	nexus URI of the model.proto artifact

	nexus URI of the blueprint.json artifact (if any)

Component Design

k8s-client

Upon a request to the /getSolutionZip API, the k8s-client will perform the
following high-level actions to prepare the downloadable solution deployment
package:

	get the following artifacts if existing from Nexus, by querying the CDS for
the set of solution/revision artifacts

	blueprint.json

	databroker.json

	if a blueprint.json artifact was found, this is a composite solution and the
following actions are taken

	get the model.proto artifact for each solution model microservice, for the
model revision included in the solution

	create a kubernetes service+deployment template as solution.yaml including
all the solution components included in blueprint.json. See below for an
example.

	For a solution that does not include the Data Broker, the Model Connector
service will be assigned a “type: NodePort” port with nodePort value of
30855, so that data can be directly pushed to the solution

	create a dockerinfo.json file using the example below

	if a blueprint.json artifact was not found, this is a simple solution and a
kubernetes service+deployment template is created, as solution.yaml. See below
for an example.

	In the generated solution.yaml, specify for each model microservice the
hostname:port for the Acumos platform docker proxy, e.g.
“acumos.example.com:35001” in the examples below

	retrieve the current deploy.sh script from the Acumos github mirror, at
https://raw.githubusercontent.com/acumos/kubernetes-client/master/deploy/private/deploy.sh

	retrieve the current setup_k8s.sh script from the Acumos github mirror, at
https://raw.githubusercontent.com/acumos/kubernetes-client/master/deploy/private/setup_k8s.sh

	create a zip archive as solution.zip containing:

	deploy.sh

	solution.yaml

	for a composite solution:

	blueprint.json

	dockerinfo.json

	databroker.json (if Data Broker is included in the solution)

	a “microservice” subfolder, with subfolders named for each model
microservice, containing the model.proto for that model (if Probe is
included in the solution)

	return the solution.zip as /getSolutionZip API response

Design notes for the solution.yaml structure:

	to support distribution of solution microservices and other Acumos components
(Data Broker, Model Connector, Probe) across nodes in multi-node kubernetes
clusters, each microservice and the Acumos components are deployed using
a specific service and related deployment spec.

	services which require external exposure on the cluster are provided nodePort
assignments. These include:

	simple solution microservices, to expose its protobuf API

	for composite solutions, as applies to the specific solution design

	Data Broker (if included, for its API)

	Model Connector (for receiving pushed model data, when Data Broker is N/A)

	any model microservices that require external exposure for receiving data

	Probe (for its UI)

Following are a series of examples of solution.yaml templates, from simple to
complex. The first is an example of the generated solution.yaml template for a
simple solution. Notes on the template attributes:

	the model microservice is directly exposed at NodePort 30333, in the default
range for kubernetes nodePorts

	the cluster-internal port value 8557 is selected per the Acumos convention
of assigning model microservices ports starting at 8557

	the model pod created by the deployment is exposed at port 3330, which is the
Acumos convention for microservices as built by the microservice-generation
component of the Acumos platform

	the namespace “acumos” ensures that the ports assigned to the microservice
does not conflict with other pods on the kubernetes cluster

	the imagePullSecrets value “acumos-registry” refers to the cached credentials
for the user for access to the Acumos platform docker registry

	so that the model microservice images and Data Broker image (in a later
example) can be pulled from the Acumos platform repository, the host and port
(default 30883) in the image name are set to values for the docker-proxy, as
specified in the environment section of the kubernetes-client template

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: padd
spec:
 selector:
 app: padd
 type: NodePort
 ports:
 - name: protobuf-api
 nodePort: 30333
 port: 8557
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: padd
 labels:
 app: padd
spec:
 replicas: 1
 selector:
 matchLabels:
 app: padd
 template:
 metadata:
 labels:
 app: padd
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: padd
 image: acumos.example.com:30883/padd_cee0c147-3c64-48cd-93ae-cdb715a5420c:3
 ports:
 - name: protobuf-api
 containerPort: 3330

Example of the generated solution.yaml template for a complex (composite)
solution with two model microservices and Model Connector. Notes on the template
attributes:

	the model microservices are accessed via the Model Connector, which is directly
exposed at NodePort 30555, and internal to the cluster namespace at port 8555,
as specified in the Acumos project build process for the Data Broker image

	the names given to the services defined for each model microservice serve as
resolvable hostnames within the cluster namespace, so their protobuf-api
interfaces can be accessed by other pods in the cluster e.g. Model Connector,
independent of the assigned service IP

	the image name (repository and image version) for the Model Connector is set
by an environment parameter in the kubernetes-client template

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: modelconnector
spec:
 selector:
 app: modelconnector
 type: NodePort
 ports:
 - name: mc-api
 nodePort: 30555
 port: 8555
 targetPort: 8555

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: modelconnector
 labels:
 app: modelconnector
spec:
 replicas: 1
 selector:
 matchLabels:
 app: modelconnector
 template:
 metadata:
 labels:
 app: modelconnector
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: modelconnector
 image: nexus3.acumos.org:10004/blueprint-orchestrator:1.0.13
 ports:
 - name: mc-api
 containerPort: 8555
 volumeMounts:
 - mountPath: /logs
 name: logs
 restartPolicy: Always
 volumes:
 - name: logs
 hostPath:
 path: /var/acumos/log

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: padd1
spec:
 selector:
 app: padd1
 type: ClusterIP
 ports:
 - name: protobuf-api
 port: 8557
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: padd1
 labels:
 app: padd1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: padd1
 template:
 metadata:
 labels:
 app: padd1
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: padd1
 image: acumos.example.com:30883/padd_cee0c147-3c64-48cd-93ae-cdb715a5420c:3
 ports:
 - name: protobuf-api
 containerPort: 3330

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: square1
spec:
 selector:
 app: square1
 type: ClusterIP
 ports:
 - name: protobuf-api
 port: 8558
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: square1
 labels:
 app: square1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: square1
 template:
 metadata:
 labels:
 app: square1
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: square1
 image: acumos.example.com:30883/square_c8797158-3ead-48fd-ab3e-6b429b033677:6
 ports:
 - name: protobuf-api
 containerPort: 3330

Example of the generated solution.yaml template for a complex (composite)
solution with two model microservices, Data Broker, Model Connector, and Probe.
Notes on the template attributes:

	the model microservices are accessed via the Data Broker, which is exernally
exposed at NodePort 30555

	the Data Broker, Model Connector, and Probe are exposed internal to the cluster
at the ports specified in the Acumos project build processes for those images

	the Model Connector is also externally exposed at NodePort 30555 so that it can
be configured by deploy.sh via its APIs

	the Probe is also exposed externally at NodePort 30800 so that its UI can be
access by the user’s web browser

	the image name (repository and image version) for the Probe is set by an
environment parameter in the kubernetes-client template

	the Data Broker image name is set per the “datasource” type model that the user
selected in creating the composite solution

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: databroker
spec:
 selector:
 app: databroker
 type: NodePort
 ports:
 - name: databroker-api
 nodePort: 30556
 port: 8556
 targetPort: 8556

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: databroker
 labels:
 app: databroker
spec:
 replicas: 1
 selector:
 matchLabels:
 app: databroker
 template:
 metadata:
 labels:
 app: databroker
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: databroker
 image: acumos.example.com:30883/genericdatabroker:1
 ports:
 - containerPort: 8556
 volumeMounts:
 - mountPath: /var/acumos/datasource
 name: datasource
 restartPolicy: Always
 volumes:
 - name: datasource
 hostPath:
 path: /var/acumos/datasource

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: probe
spec:
 selector:
 app: probe
 type: NodePort
 ports:
 - nodePort: 30800
 port: 5006
 targetPort: 5006

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: probe
 labels:
 app: probe
spec:
 replicas: 1
 selector:
 matchLabels:
 app: probe
 template:
 metadata:
 labels:
 app: probe
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: probe
 image: nexus3.acumos.org:10004/acumos-proto-viewer:1.5.5
 env:
 - name: NEXUSENDPOINTURL
 value: http://localhost:80
 - name: ACUMOS_PROBE_EXTERNAL_PORT
 value: "30800"
 ports:
 - name: probe-api
 containerPort: 5006
 - name: nginx
 image: nginx
 ports:
 - name: probe-schema
 containerPort: 80
 volumeMounts:
 - mountPath: /usr/share/nginx/html
 name: proto-files
 restartPolicy: Always
 volumes:
 - name: proto-files
 hostPath:
 path: /var/acumos/microservice

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: modelconnector
spec:
 selector:
 app: modelconnector
 type: NodePort
 ports:
 - name: mc-api
 nodePort: 30555
 port: 8555
 targetPort: 8555

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: modelconnector
 labels:
 app: modelconnector
spec:
 replicas: 1
 selector:
 matchLabels:
 app: modelconnector
 template:
 metadata:
 labels:
 app: modelconnector
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: modelconnector
 image: nexus3.acumos.org:10004/blueprint-orchestrator:1.0.13
 ports:
 - name: mc-api
 containerPort: 8555
 volumeMounts:
 - mountPath: /logs
 name: logs
 restartPolicy: Always
 volumes:
 - name: logs
 hostPath:
 path: /var/acumos/log

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: padd1
spec:
 selector:
 app: padd1
 type: ClusterIP
 ports:
 - name: protobuf-api
 port: 8557
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: padd1
 labels:
 app: padd1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: padd1
 template:
 metadata:
 labels:
 app: padd1
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: padd1
 image: acumos.example.com:30883/padd_cee0c147-3c64-48cd-93ae-cdb715a5420c:3
 ports:
 - name: protobuf-api
 containerPort: 3330

apiVersion: v1
kind: Service
metadata:
 namespace: acumos
 name: square1
spec:
 selector:
 app: square1
 type: ClusterIP
 ports:
 - name: protobuf-api
 port: 8558
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: acumos
 name: square1
 labels:
 app: square1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: square1
 template:
 metadata:
 labels:
 app: square1
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: square1
 image: acumos.example.com:30883/square_c8797158-3ead-48fd-ab3e-6b429b033677:6
 ports:
 - name: protobuf-api
 containerPort: 3330

The included dockerinfo.json can be created directly by the kubernetes-client
as both the container name and the cluster-internal address (resolvable
cluster-internal hostname, and port) of each container can be pre-determined
per the assignments in solution.yaml as above. Example of dockerinfo.json for
the composite solution above:

{
 "docker_info_list": [
 {
 "container_name": "databroker",
 "ip_address": "databroker",
 "port": "8556"
 },
 {
 "container_name": "modelconnector",
 "ip_address": "modelconnector",
 "port": "8555"
 },
 {
 "container_name": "probe",
 "ip_address": "probe",
 "port": "5006"
 },
 {
 "container_name": "padd1",
 "ip_address": "padd1",
 "port": "8557"
 },
 {
 "container_name": "square1",
 "ip_address": "square1",
 "port": "8558"
 }
]
}

docker-proxy

The docker-proxy service of the Acumos platform will provide a simple
user-authenticating frontend (reverse proxy) for the docker registry configured
as part of the Acumos platform. The docker-proxy service as of the Athena
release is based upon nginx as described at
https://docs.docker.com/v17.09/registry/recipes/nginx/. The nginx server is
installed under docker-CE using docker-compose, as described under
Operations User Guide. The docker-proxy service terminates secure connections
(HTTPS) as a proxy for docker operations, connecting to the platform docker
registry on the backend through an HTTP connection.

The docker-proxy will provide only a docker login service and image download
service for docker pull requests, as below:

	validate the username and password provided in docker login requests

	NOTE: as of Athena release, the following user-specific design aspects are
deferred to the Boreas release, and a single username/password is supported
by the docker-proxy service. See Operations User Guide for details.

	upon a docker login request, invoke the auth/jwtToken API of the Acumos
portal, with the username and password provided in the docker login request

	if the auth/jwtToken API returns success, accept the user login and return
an authentication token for the user, otherwise return an authentication error

	upon a docker pull request, if there is a valid authentication token, attempt
to retrieve the requested image from the Acumos platform docker registry, and
return the result to the requester

To support the use of self-signed certificates for the docker-proxy, deploy.sh
will configure docker on the kubernetes master to support the specified
docker proxy as an insecure registry, i.e. one in which a self-signed
certificate will be accepted, if provided.

setup_k8s.sh

setup_k8s.sh is a tool allowing the user to install a basic single-or-multinode
kubernetes cluster. It will install kubernetes prerequisites and core services
via the following actions:

	install the latest docker-ce version

	install the latest stable kubernetes version (currently 1.10.0)

	initialize the kubernetes master node

	install calico as CNI

	setup kubernetes worker nodes if the user selected more than one target node

As future needs arise, the kubernetes cluster setup will be extended with
helm as deployment tool, and persistent volume support via ceph.

deploy.sh

After the user has transferred solution.zip to the deployment host and unzipped
it, deploy.sh will be invoked by the user from a shell session on the deployment
host, using the example command:

bash deploy.sh <docker-proxy username> <docker-proxy password> <datasource>

where:

	docker-proxy username> is the user’s account username on the Acumos platform

	NOTE: for the Athena release, this must be a single value set for the
platform in the installation of the docker-proxy, as described under
Operations User Guide

	<docker-proxy password> is the user’s account password on the Acumos platform

	NOTE: for the Athena release, this must be a single value set for the
platform in the installation of the docker-proxy, as described under
Operations User Guide

	<datasource> is where the Data Broker will be instructed to obtain data to
feed into the solution, and can be a file path or a URL

deploy.sh will then take the following actions to deploy the solution:

	retrieve the hostname:port of the Acumos platform docker proxy from the
solution.yaml, using the “image” attribute of any model microservice

	if not already configured, configure the docker service to allow access to the
Acumos platform docker proxy as an insecure registry.

	login to the Acumos platform docker proxy using the docker-proxy username
and password provided by the user

	login to the Acumos project docker registry (current credentials are provided
as default values in deploy.sh)

	copy the subfolders under “microservice” from the unpacked solution.zip to
/var/acumos

	update Data Broker.json per the datasource selected by the user

	if the user provided a file path as datasource, replace the hostpath
attribute of the Data Broker deployment in solution.yaml with the
user-provided file path, replace the “local_system_data_file_path” attribute
in Data Broker.json with the path “/var/acumos/datasource”, and set the
“target_system_url” attribute to “”

	if the user provided a URL as datasource, set the “target_system_url”
attribute in Data Broker.json to the URL, and set the
“local_system_data_file_path” attribute to “”

	create a namespace “acumos” using kubectl

	create a secret “acumos-registry” using ~/.docker/config.json

	invoke kubectl to deploy the services and deployments in solution.yaml

	monitor the status of the Data Broker service and deployment, and when they are
running, send Data Broker.json to the Data Broker via its /configDB API

	monitor the status of all other services and deployments, and when they are
running

	create dockerinfo.json with the service name, assigned IP address, and
port of each service defined in solution.yaml

	send dockerinfo.json to the Model Connector service via the /putDockerInfo
API

	send blueprint.json to the Model Connector service via the /putBlueprint API

Operations User Guide

Platform support for private-k8s-deployment is automatically installed as part
of the Acumos AIO (all-in-one)
deployment process. For manual installations, the docker-proxy component needs
to be manually installed using the “deploy.sh” script from the Acumos
system-integration repo. The subsections below address how to deploy the
docker-proxy for Acumos platforms installed using other methods (e.g. manually),
and how to maintain the docker-proxy service in the platform.

NOTE: for the Athena release, only a single docker-proxy user account is
supported, as a value that the Acumos platform admin can set/change as needed.
The Boreas release will support authentication of users using their Acumos
platform credentials. As a result of this design limitation,the current
platform support for the docker-proxy is intended for use in private Acumos
installations.

However, since Acumos platforms installed for company use typically are viewed
as private to that company, this limitation should not impact the usefullness
of the current release support for deployment in kubernetes. Further, admins
can change the docker-proxy credentials at any time, through a process described
below under Updating the docker-proxy credentials.

Manual docker-proxy Installation

The docker-proxy service can be manually installed by following these steps:

	clone the Acumos system-integration repo onto one of the host machines in your
Acumos platform cluster, and enter the folder

git clone https://gerrit.acumos.org/r/system-integration
cd system-integration

	edit acumos-env.sh in that folder

	set ACUMOS_NEXUS_HOST to the hostname or IP address of your Nexus server or
other docker registry used by your Acumos platform

	set ACUMOS_DOCKER_MODEL_PORT the port where the docker registry for your
platform is accessible

	NOTE: the platform docker registry must be exposed at the specified host
and port as a non-secure (http-based) service, and accessible to the host
where you are installing the docker-proxy

	set ACUMOS_RO_USER to the username of the Nexus server “RO” (read-only)
account setup for your platform

	if needed, choose a different value for ACUMOS_DOCKER_PROXY_PORT

	add these lines to the end of the script, choosing values as desired

	ACUMOS_RO_USER_PASSWORD=”Nexus RO user password for your installation”

	export ACUMOS_RO_USER_PASSWORD

	ACUMOS_DOCKER_PROXY_USERNAME=”username”

	export ACUMOS_DOCKER_PROXY_USERNAME

	ACUMOS_DOCKER_PROXY_PASSWORD=”password”

	export ACUMOS_DOCKER_PROXY_PASSWORD

	Copy your Acumos platform server certificate and key to the following
locations

	Certificate: /var/acumos/docker-proxy/auth/domain.crt

	Certificate key: /var/acumos/docker-proxy/auth/domain.key

	run deploy.sh

bash docker-proxy/deploy.sh

Once deploy.sh completes, the docker-proxy should be ready to proxy docker
login requests to the platform Nexus server. To test this, run the command:

sudo docker login <ACUMOS_DOMAIN>:<ACUMOS_DOCKER_PROXY_PORT> -u <ACUMOS_DOCKER_PROXY_USERNAME> -p <ACUMOS_DOCKER_PROXY_PASSWORD>

where:

	ACUMOS_DOMAIN is the domain name or IP address of your Acumos platform, and is
setup for use with your server certificate

	ACUMOS_DOCKER_PROXY_PORT, ACUMOS_DOCKER_PROXY_USERNAME, and
ACUMOS_DOCKER_PROXY_PASSWORD are as defined in acumos-env.sh (updated as
needed, per the instructions above)

Updating the docker-proxy credentials

To update the docker-proxy credentials, edit acumos-env.sh and select new
values for:

	ACUMOS_DOCKER_PROXY_USERNAME

	ACUMOS_DOCKER_PROXY_PASSWORD

The redeploy the docker-proxy service, delete and restart it via:

sudo bash docker-proxy/docker-compose.sh -f docker-compose.yml down -v
bash docker-proxy/deploy.sh

Testing private-k8s-deployment

To test operation of the private-k8s-deployment, follow these steps:

	create or select a simple or composite solution to deploy

	NOTE: make sure that

	before you create a composite solution, or select a
simple solution to deploy, that the microservice generation phase is
complete for the model(s) that are includes. You can check this when viewing
model details, under “Model Artifacts”. You should see an artifact named
<name>_<SolutionId>:<version>, e.g.
“iris_0740751d-34fd-47fb-b4da-c71b27bb9bf7:1”.

	before you try to deploy a composite solution, you select the “validate”
button in the design studio. This creates the blueprint.json file, which
is essential for deployment to work.

	when viewing the solution, select the “deploy to local” option as described above

	NOTE: If you get an error when downloading the solution.zip file, there are
two possible causes:

	As noted above, the model microservice image(s) may not have been
completely created yet. Check this as above, and for a simple solution
just wait until the image shows up in the artifact list. For a composite
solution, you will need to recreate the solution and save a new version of
it.

	As noted above, for a composite solution, verify that you had selected the
“validate” button. To be sure, you can check for the presence of an
artifact named BLUEPRINT-<SolutionId>-<version>.json. If that artifact is
not present, reload the solution in the Design Studio and select
“validate”. The blueprint file should then be created.

	save the downloaded solution.zip to your host where you will deploy it

	unzip the solution.zip file

	if you don’t have a private k8s cluster (for which you have admin rights on the
k8s master node), install a private cluster

bash setup_k8s.sh

	when the k8s cluster has been installed, deploy the solution

bash deploy.sh . <ACUMOS_DOCKER_PROXY_USERNAME> <ACUMOS_DOCKER_PROXY_PASSWORD>

To test that the solution works as expected, use the applicable test harness
as specified for the solution, if any.

For models that take CSV-formatted input, the kubernetes-client repo provides a
bash test script
(test-model.sh [https://github.com/acumos/kubernetes-client/blob/master/deploy/private/test-model.sh]).

For example, to verify a composite model which adds two values, and squares the
result, you can use the script as below. In the output of that script, the “+”
lines show how the script communicates with the model using the protobuf
interface, and the “d: 36” shows the output is calculated correctly. This
verifies that the model was deployed correctly, and the Model Connector is able
to route the protobuf messages through the sequence of model microservices.

bash test-model.sh "f1:2.0,f2:4.0" acumos
+ echo f1:2.0,f2:4.0
+ /home/ubuntu/protoc/bin/protoc --encode=qpkoABdpWtEectZiyCoOSVwwmOyrVLcv.ParmInput --proto_path=microservice/padd1 microservice/padd1/model.proto
+ curl -s --request POST --header 'Content-Type: application/protobuf' --data-binary @- http://acumos:30555/padd
+ /home/ubuntu/protoc/bin/protoc --decode rJdqDZiRsZmWwHvgVFBWtGwvPgvuIHEM.SquareMessage --proto_path=microservice/square1 microservice/square1/model.proto
d: 36
+ set +x

For a simple model, the same script can be used with a couple of additional
steps. Because the solution.zip package for simple solutions does not currently
contain a blueprint.json file or set of microservice subfolders, two artifacts
need to be manually downloaded and placed in the folder where you unzipped the
solution.zip file:

	the “model name”.proto artifact: this is the protobuf interface specification
for the model

	the “TOSCAPROTOBUF-n”.json artifact: this is the description of the model that
for a composite solution would be present in blueprint.json

After downloding and placing those files in the same folder where you unzipped
the solution.zip, you can test the model as in this example:

bash test-model.sh "d:2.0" opnfv01 square-9.proto TOSCAPROTOBUF-9.json
+ echo d:2.0
+ /home/ubuntu/protoc/bin/protoc --encode=rJdqDZiRsZmWwHvgVFBWtGwvPgvuIHEM.SquareMessage --proto_path=. square-9.proto
+ curl -s --request POST --header 'Content-Type: application/protobuf' --data-binary @- http://opnfv01:30333/square
+ /home/ubuntu/protoc/bin/protoc --decode rJdqDZiRsZmWwHvgVFBWtGwvPgvuIHEM.SquareMessage --proto_path=. square-9.proto
d: 4
+ set +x

To terminate a solution deployment, run:

kubectl delete -f solution.yaml

You can then redeploy the solution as described above.

Kubernetes Client

	Kubernetes Client Release Notes
	Kubernetes-Client Component

	Private-Kubernetes-Deployment Support Tools

	Acumos Solution Deployment in Private Kubernetes Cluster
	Scope

	Architecture

	Component Design

	Operations User Guide

Kubernetes Client Release Notes

Kubernetes-Client Component

Version 3.0.4, 26 October 2020

	MicroService Generation for AcuCompose Model (ACUMOS-3896 [https://jira.acumos.org/browse/ACUMOS-3896])

Version 3.0.3, 31 January 2020

	update acumos-azure-client, openstack-client,kubernetis-client and deployment-client for cds 3.1.1(ACUMOS-3957 [https://jira.acumos.org/browse/ACUMOS-3957])

Version 3.0.2, 30 December 2019

	update acumos-azure-client, acumos-openstack-client,kubernetis-client and deployment-client for logging library 3.0.5(ACUMOS-3880 [https://jira.acumos.org/browse/ACUMOS-3880])

Version 3.0.1, 11 December 2019

	update acumos-azure-client, acumos-openstack-client,kubernetis-client and deployment-client for cds 3.1.0 (ACUMOS-3835 [https://jira.acumos.org/browse/ACUMOS-3835])

Version 3.0.0, 19 September 2019

	update CDS 3.0.0 for Kubernetes-client (ACUMOS-3448 [https://jira.acumos.org/browse/ACUMOS-3448])

Version 2.0.11, 8 May 2019

	Improve deploy.sh to use environment setup in 2.0.9

	Support multiple model runner versions
(ACUMOS-2782 [https://jira.acumos.org/browse/ACUMOS-2782])

Version 2.0.10, 30 April 2019

	K8S client migrate Docker base image away from frolvlad/alpine-oracle (ACUMOS-2545 [https://jira.acumos.org/browse/ACUMOS-2545])

Version 2.0.9, 24 April 2019

	Require - k8s-client implements the spring variables required for model runner (ACUMOS-2780 [https://jira.acumos.org/browse/ACUMOS-2780])

Version 2.0.8, 18 April 2019

	update CDS 2.2.1 for Kubernetes-client (ACUMOS-2767 [https://jira.acumos.org/browse/ACUMOS-2767])

Version 2.0.7, 28 March 2019

	Logging Standardization (ACUMOS-2330 [https://jira.acumos.org/browse/ACUMOS-2330])

	Increase Sonar coverage to at least 40% (ACUMOS-2367 [https://jira.acumos.org/browse/ACUMOS-2367])

	update CDS 2.1.2 for kubernetes-client (ACUMOS-2669 [https://jira.acumos.org/browse/ACUMOS-2669])

Version 2.0.4, 1 March 2019

	update CDS 2.1.1 for Kubernetes-client (ACUMOS-2589 [https://jira.acumos.org/browse/ACUMOS-2589])

Version 2.0.3, 15 February 2019

	update CDS 2.0.7 for kubernetes-client (ACUMOS-2528 [https://jira.acumos.org/browse/ACUMOS-2528])

Version 2.0.2, 4 February 2019

	IST2: Deploy to Azure : Message Improvements(ACUMOS-863 [https://jira.acumos.org/browse/ACUMOS-863])

Version 2.0.0, 28 January 2019

	update CDS 2.0.4 for kubernetes-client (ACUMOS-2412 [https://jira.acumos.org/browse/ACUMOS-2412])

Version 1.1.0, 12 October 2018

	ACUMOS-1884: Download solution package for deploy to local does not work for simple solution in K8S <https://jira.acumos.org/browse/ACUMOS-1884>’

Version 1.0.0, 5 October 2018

Released version as of Release Candidate 0 (RC0).

	ACUMOS-1792: K8S Client Fixes needed in solution.yaml [https://jira.acumos.org/browse/ACUMOS-1792]

	update version for greater than 1 [https://gerrit.acumos.org/r/#/c/3071/]

	Add double quates in value filed [https://gerrit.acumos.org/r/#/c/3012/]

	Add Nginx detail in solution yaml file [https://gerrit.acumos.org/r/#/c/2971/]

	ACUMOS-1783: K8S client dockerinfo is missing docker_info_list wrapper element [https://jira.acumos.org/browse/ACUMOS-1783]

	Add dockerproxy and dockerport for kubernetes [https://gerrit.acumos.org/r/#/c/2952/]

	ACUMOS-1782: K8S client Replace nexus docker host:port with docker-proxy host:port [https://jira.acumos.org/browse/ACUMOS-1782]

	changes in dockerinfo file [https://gerrit.acumos.org/r/#/c/2953/]

	ACUMOS-1382: Create k8s (Kubernetes) template from Blueprint [https://jira.acumos.org/browse/ACUMOS-1382]

	Updated CDS 1.18.2 version [https://gerrit.acumos.org/r/#/c/2930/]

	ACUMOS-1289: Deploy model to Kubernetes Environment [https://jira.acumos.org/browse/ACUMOS-1289]

	Update release notes [https://gerrit.acumos.org/r/3039]

	Update release notes [https://gerrit.acumos.org/r/#/c/3076/]

Version 0.0.9, 24 September 2018

Released version as of code freeze (M4).

Initial release of the kubernetes-client component, per the design for
Acumos Solution Deployment in Private Kubernetes Cluster [https://docs.acumos.org/en/latest/submodules/kubernetes-client/docs/deploy-in-private-k8s.html].

	ACUMOS-1289: Deploy model to Kubernetes Environment [https://jira.acumos.org/browse/ACUMOS-1289]

	Add probe details in kubernetes-client [https://gerrit.acumos.org/r/#/c/2905/]

	Add condition for single and composite sol [https://gerrit.acumos.org/r/#/c/2893/]

	Create getsolutionZip api for single and composite [https://gerrit.acumos.org/r/#/c/2888/]

	Add solution yml in project [https://gerrit.acumos.org/r/#/c/2867/]

	Set path for environment variables [https://gerrit.acumos.org/r/#/c/2827/]

	Add maven path in kubernetes-client [https://gerrit.acumos.org/r/#/c/2823/]

	Added path of file used in kubernetes-client [https://gerrit.acumos.org/r/#/c/2770/]

	Add Kubernetes-client code for private kubernetes [https://gerrit.acumos.org/r/#/c/2674/]

	ACUMOS-1383 [https://jira.acumos.org/browse/ACUMOS-1383]

	Baseline of kubernetes-client component

Private-Kubernetes-Deployment Support Tools

Version 1.0.0, 11 October 2018

	ACUMOS-1893: test-model.sh doesn’t work with simple model [https://jira.acumos.org/browse/ACUMOS-1893]

	Fix test-model.sh for simple models [https://gerrit.acumos.org/r/#/c/3156/]

	Fix test-model.sh for simple models

	Fix deployment and testing in Centos 7 hosts

	ACUMOS-1289: Deploy model to Kubernetes Environment [https://jira.acumos.org/browse/ACUMOS-1289]

	Fix doc link format [https://gerrit.acumos.org/r/#/c/3126/]

	Update user guide per RC0 version [https://gerrit.acumos.org/r/#/c/3099/]

Version 0.2, 4 October 2018

Released version as of Release Candidate 0 (RC0).

	ACUMOS-1289: Deploy model to Kubernetes Environment [https://jira.acumos.org/browse/ACUMOS-1289]

	Update release notes [https://gerrit.acumos.org/r/3039]

	Align design doc with current implementation [https://gerrit.acumos.org/r/#/c/2940/]

	Patch dockerinfo.json as workaround for ACUMOS-1791 [https://jira.acumos.org/browse/ACUMOS-1791]

Version 0.1, 22 September 2018

Released version as of code freeze (M4).

Initial release of support tools per the design for
Acumos Solution Deployment in Private Kubernetes Cluster [https://docs.acumos.org/en/latest/submodules/kubernetes-client/docs/deploy-in-private-k8s.html].

	ACUMOS-1289: Deploy model to Kubernetes Environment [https://jira.acumos.org/browse/ACUMOS-1289]

	Add release notes for support tools [https://gerrit.acumos.org/r/#/c/2921/]

	Aligned with initial kubernetes-client version [https://gerrit.acumos.org/r/#/c/2918/]

	Add Helm, Prometheus, Grafana setup tools

	Add sample Grafana dashboards

	Add Data Broker support

	Align design document with final code freeze version

	Updates for deploy testing [https://gerrit.acumos.org/r/#/c/2596/]

	Fix code block rendering

	Fix and further explain solution.yaml examples

	Add modelconnector API calls

	Add test-model.sh

	Fix readme [https://gerrit.acumos.org/r/#/c/2670/]

	Fix firstop parameter use [https://gerrit.acumos.org/r/#/c/2655/]

	Baseline of private-k8s-deployment [https://gerrit.acumos.org/r/#/c/2537/]

	deploy.sh: main deployment script

	setup_k8s.sh: kubernetes cluster setup script

	deploy-in-private-k8s.rst: design document

Acumos Data Broker

This repository holds projects that together comprise the Marketplace Backend for the Acumos platform.

Build Prerequisites

	JDK 1.8

	Spring STS 3.8.x (https://spring.io/tools/sts/all)

	Git Shell (https://git-for-windows.github.io/) or SourceTree (https://www.sourcetreeapp.com/) for Cloning & pushing the code changes.

	Maven 3.x

	Proxy setup to download dependencies from open source repositories

	Open Source or GitShell Command Line Interface

Build Instructions

	Browse to your preferred directory and run below command:

git clone https://@gerrit.acumos.org/databroker.git

 Acumos DataBroker Common

Acumos DataBroker Common

This project provides library for using DataBroker Common framework in the Acumos machine-learning platform.

Please see the documentation in the parent project’s “docs” folder.

 Data Broker Developer Guide

Data Broker Developer Guide

Data broker exposed two API configDB and pullData.

configDB: call by Deployer E6
* Zipbroker received url ,mimeType and content (JSON format) and set environment variable.

pullData: call by Model connector with script(JSON string) to retrieve data.
* Retrieved input stream and unzip it.
* Iterate on stream as per pattern(script).
* Used protobuf api and convert unzipped filtered input stream to byte array.
* Send response(byte array) to pullData.

 Data Broker

Data Broker

	Data Broker Release Notes
	Version 0.0.1-SNAPSHOT, 09 March 2018

	Data Broker Developer Guide

 Data Broker Release Notes

Data Broker Release Notes

Version 0.0.1-SNAPSHOT, 09 March 2018

	Limit memory use in server JVM to max 512MB

	deliver configDB api - Deployer E6 will call /configDB to set all env variables.

	deliver pullData api - Model connector will call POST operation /pullData to retrieve the results

 <no title>

 “tests” directory:
The “tests/component” directory contains test scripts for single components.
The “tests/integration” directory contains test scripts that require calling more than one component.

The “tests/scratch” directory contains scripts that test a discrete piece of functionality, similar to a unit test in Java or Python. These tests don’t involve a component.

“resources” directory:
contains common keywords and variables

 Automated API Testing

Automated API Testing

Environment

External libraries:

	robotframework-requests

	

How to Run

$ robot -d results -v ccds_user:<ccds user> -v ccds_password:<ccds password> -v url:<url:port/topContextPath> tests/cds/role.robot

URL example:
For the Common Data Service API, the url parameter for dev would be:
-v url:http://cognita-dev-vm01-core.eastus.cloudapp.azure.com:8000/ccds
Substitute ist or ist2 for those environments.

Test Cases

On-Board Model

Steps:

	Register User: create portal user using portal API (this creates user with default role)

	POST /users/register

	POST /users/verifyUser

	Onboard Model

	Authorize user POST /onboarding-app/v2/auth logs user into portal and returns jwtToken

	if successful, onboard model /onboarding-app/v2/models

	if successful, fetch model

	if successful, delete model

	if successful, delete user

 Acumos Test Automation

Acumos Test Automation

This is the developers guide to Acumos Test Automation.

What is Acumos Test Automation?

Acumos test automation is the automation test execution for acumos test scenarios. Using robot framework we can design the automation scripts and execution will generate the result of the scripts(Test Scenarios).

Pre-requisites for Acumos Test Automation

	Python 2.7.12

	robotFramework-3.0.2

	robotframework-selenium2library (1.8.0)

Below are the files which are useful for script development

	acumosTestSuit.robot : This robot file is used for writing the scripts/test scenarios and designing the keywords.

	locators_Acumos.robot : This robot file(Resource file) is used for storing the xpath of the webelements in variables which can be used in the designing the scripts.

	resource_Acumos_data.robot : This robot file(Resource file) is used for storing the configuration data and other data required for script designing.

 Test Automation

Test Automation

	Release Notes

	Acumos Test Automation
	What is Acumos Test Automation?

	Pre-requisites for Acumos Test Automation

	Below are the files which are useful for script development

	Acumos Test Automation User Guide
	1. Introduction

	2. Basic Building Blocks of Acumos Test Automation

	3. To Run The Automation Suite

	4. Output of Execution of Automation Suite

	Automated API Testing
	Environment

	How to Run

	Test Cases

	Tutorial

 Release Notes

Release Notes

 Acumos Test Automation User Guide

Acumos Test Automation User Guide

1. Introduction

This is a user’s guide that describes how to execute the test automation.

The purpose of the acumos test automation is to execute the acumos test scenarios using automation scripts.

2. Basic Building Blocks of Acumos Test Automation

Acumos test automation build on the Robot framework. Robot Framework is generic open source, application and technology independent framework. It Python-based testing framework for the automation.

3. To Run The Automation Suite

To run the test scripts present in the suite file we need to run the automation suite file. Ex. AcumosTestSuite.robot

We can run this suite file using the Jenkins job and also by using the below command
robot acumosTestSuite.robot

4. Output of Execution of Automation Suite

Test Automation execution of acumos will generate the below important files

1. Test Log File
Log file show the output of each step for an automation script.

2. Test Report File
Report file show the detailed report of status of executed test scripts with pass/fail and execution time required for the same.

 Tutorial

Tutorial

 Acumos Nexus Client Library

Acumos Nexus Client Library

This repository provides a client library used to fetch artifacts from a Nexus
repository and to upload artifacts to the repository.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos Nexus Client Developer Guide

Acumos Nexus Client Developer Guide

The Acumos Nexus Client is a Java library that facilitates download and upload of artifacts
from/to a Nexus repository.

Usage Example

The following code excerpt shows a test case of the get-artifact feature:

import org.acumos.nexus.client.NexusArtifactClient;
import org.acumos.nexus.client.RepositoryLocation;

..

public void testGetArtifact() throws Exception {
 NexusArtifactClient artifactClient = new NexusArtifactClient(
 new RepositoryLocation("0", REPO_URL, REPO_USER, REPO_PASS, null));
 ByteArrayOutputStream outputStream = artifactClient.getArtifact(artifactPath);
}

 Acumos Nexus Client

Acumos Nexus Client

Contents:

	Nexus Client Release Notes
	Version 2.2.1, 14 Aug 2018

	Version 2.2.0, 11 Jun 2018

	Version 2.1.0, 19 Apr 2018

	Version 2.0.0, 6 Feb 2018

	Acumos Nexus Client Developer Guide
	Usage Example

	Search Page

 Nexus Client Release Notes

Nexus Client Release Notes

Version 2.2.1, 14 Aug 2018

	Set pre-emptive authentication on Nexus requests (ACUMOS-1589)

Version 2.2.0, 11 Jun 2018

	Upgrade to Apache Maven Wagon v3.1.0 (ACUMOS-665)

Version 2.1.0, 19 Apr 2018

	Revise client upload method to reduce memory use (ACUMOS-665)

Version 2.0.0, 6 Feb 2018

	Release to project

 acumos-model-schema

acumos-model-schema

This repository contains the evolution of Acumos model metadata jsonschema.

See the release notes for the latest changes and examples.

 Model Schema Developer Guide

Model Schema Developer Guide

The model-schema repository version controls the JSON schema used to define and validate the Acumos model metadata generated by client libraries.

See the Release Notes for the latest updates and examples.

 Model Schema

Model Schema

	Model Schema Release Notes
	Version 0.5.0

	Version 0.4.0

	Versions 0.1.0 - 0.3.0

	Model Schema Developer Guide

 Model Schema Release Notes

Model Schema Release Notes

Version 0.5.0

	The runtime field is now a list instead of an object, allowing for multiple runtimes to be specified. For example, to allow R + Java (e.g. to use RWeka) or R + Python (e.g to use kerasR).

Example:

{
 "schema": "acumos.schema.model:0.5.0",
 "name": "my-model",
 "runtime": [
 {
 "name": "python",
 "version": "3.4.5",
 "dependencies": {
 "pip": {
 "indexes": [],
 "requirements": [
 {
 "name": "scikit-learn",
 "version": "0.18.0"
 }
]
 },
 "conda": {
 "channels": [],
 "requirements": []
 }
 }
 }
],
 "methods": {
 "transform": {
 "input": "DataFrame",
 "output": "Classification",
 "description": "Classifies the input iris data as one of 3 possible classes "
 }
 }
}

Version 0.4.0

	Introduced arbitrary function names, removing reserved functions such as fit, predict, etc.

	Descriptions added to clarify the purpose of various schema fields.

	Added regex pattern to required schema field.

Example:

{
 "schema": "acumos.schema.model:0.4.0",
 "name": "my-model",
 "runtime": {
 "name": "python",
 "version": "3.4.5",
 "dependencies": {
 "pip": {
 "indexes": [],
 "requirements": [
 {
 "name": "scikit-learn",
 "version": "0.18.0"
 }
]
 },
 "conda": {
 "channels": [],
 "requirements": []
 }
 }
 },
 "methods": {
 "transform": {
 "input": "DataFrame",
 "output": "Classification",
 "description": "Classifies the input iris data as one of 3 possible classes "
 }
 }
}

Versions 0.1.0 - 0.3.0

	Older schemas used during initial development.

	Now deprecated and should not be used.

 Acumos Predictor Management Service

Acumos Predictor Management Service

This repository holds the server components of the Predictor Management Service
for the Acumos machine-learning platform. The service provides the ability to undeploy
model (predictors) and clean up resources. It also operationalizes models built on popular
AI tools in the industry and stores metadata about those models in a relational database.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2018 AT&T Intellectual Property. All rights reserved.
Acumos is distributed by AT&T under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Mongo DB Server Instructions

Mongo DB Server Instructions

This mS uses mongoDB server community edition to store its documents and collections
Note: Clients who want to run these mS on their own Linux environments have to install mongoDB server

The basic setup requires that a user with a password is configured as well as a DB the user can access. The database settings can be passed into a service as a parameter or defaulted to use the ones in /properties/settings.cfg which is shown as:
[MONGO]
mongo_dbname = TEST_DB
mongo_username = user
mongo_password = dummy
mongo_host = localhost
mongo_port = 27017

Installation detail available at mongodb wiki

https://docs.mongodb.com/manual/administration/install-on-linux/

 Acumos Predictor Management Python Developer Guide

Acumos Predictor Management Python Developer Guide

This service stores the predictor details in a mongo DB and provides crud operations on the predictor resources. The connection to mongodb can be configured by passing in a settings.cfg either as a parameter on command line or using the one stored in the properties folder and setting with the correct values.

The main class to start this service is /predictor-management/run.py

The command line interface gives options to run the application. Type help for a list of available options.
> python run.py help
usage: run.py [-h] [–host HOST] [–settings SETTINGS] [–port PORT]

By default without adding arguments the swagger interface should be available at: http://localhost:8085/v2/

Testing

The only prerequisite for running testing is installing python and tox. It is recommended to use a virtual environment for running any python application. If using a virtual environment make sure to run “pip install tox” to install it

To setup MongoDB for testing please visit https://docs.mongodb.com/manual/administration/install-on-linux/

As mentioned in the database install guide these are the settings in properties/settings.cfg that are needed to connect to a mongo instance.

$ [MONGO]
$ mongo_dbname = TEST_DB
$ mongo_username = someuser
$ mongo_password = dummy
$ mongo_host = localhost
$ mongo_port = 27017

There are many guides for installing Mongo but a general setup may go something like this:

Set up the config file for MongoDB
PathtoMongoMongoDBServer3.2mongod.cfg
.. code:: bash

$
$ systemLog:
$ destination: file
$ path: locationdatalog$ storage:
$ dbPath: locationdatadb

Start the mongo service from command line

$ # Create admin user
$ use admin
$ db.createUser({ user: "admin", pwd: "password", roles: [{ role: "dbOwner", db: "admin" }] })
$
$ # Create Database and user login for dbOwner
$ use ACUMOS_DB
$ db.createUser({ user: "someuser", pwd: "**ChangeMe**", roles: [{ role: "dbOwner", db: "ACUMOS_DB" }] })
$
$ # Validate credentials login
$ db.auth("someuser", "**ChangeMe***")
$ show collections
$
$ # Start mongo with auth to mimic TEST
$ mongod —auth —dbpath data/db
$
$ # Login and test user
$ mongo
$ use ACUMOS_DB
$ db.auth("someuser", "**ChangeMe**", ")
$ db.predictorcatalog.insert({"predictorKey":"ABC123", "notes": "Hello World" }) #this is optional
$ exit

Once it is setup then make sure to start it with auth enabled

net stop MongoDB <- To kill stop it if its already running

mongod –auth –port 27017

We use a combination of tox, pytest, and flake8 to test
predictor-management. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd predictor-management
$ autopep8 -r --in-place --ignore E501 predictormanagerservice/ test/

Run tox directly:

$ cd predictor-management
$ tox

You can also specify certain tox environments to test:

$ tox -e py34 # only test against Python 3.4
$ tox -e flake8 # only lint code

And finally, you can run pytest directly in your environment (recommended starting place):

$ pytest
$ pytest -s # verbose output

 Acumos Predictor Management

Acumos Predictor Management

Contents:

	Predictor Management Service Overview

	Acumos Predictor Management Release Notes
	v0.1.0 09-19-2018

	Acumos Predictor Management Python Developer Guide
	Testing

	Mongo DB Server Instructions

	Search Page

 Predictor Management Service Overview

Predictor Management Service Overview

The Acumos Predictor Management service provides a way to deploy and clean up models
(predictors)as well as storing associated metadata about the predictor. The Acumos
Predictor Management service is a Flask application that provides RESTFul endpoints,
with a swagger spec detailing each endpoint.

The source is available from the Linux Foundation Gerrit server:

https://gerrit.acumos.org/r/gitweb?p=model-deployments/predictor-management.git;a=summary

The CI/CD jobs are in the Linux Foundation Jenkins server:

https://jenkins.acumos.org/view/model-deployments/

Issues are tracked in the Linux Foundation Jira server:

https://jira.acumos.org/secure/Dashboard.jspa

Further information is available from the Linux Foundation Wiki:

https://wiki.acumos.org/

 Acumos Predictor Management Release Notes

Acumos Predictor Management Release Notes

v0.1.0 09-19-2018

	Added initial code with swagger specs and unit test cases.

 Acumos Deployment Client

Acumos Deployment Client

This repository holds components and tools supporting deployment of Acumos
machine learning models (“solutions”) under kubernetes, using CI/CD
infrastructure components based upon Camunda and Jenkins. The Deployment Client
handles the interface between Camunda and Jenkins, processing solution
deployment requests from Camunda, and using Jenkins as the execution engine for
the deployment.

This repo is maintained by the Deployment project under the Acumos AI open
source project. The wiki home for the Deployment project is
https://wiki.acumos.org/display/DEP.

Please see the documentation in the “docs” folder.

Solution Deployment

Documentation for Solution Deployment is provided at
(link TBP)

 Acumos Deployment Client Developer Guide

Acumos Deployment Client Developer Guide

Scope

This guide covers the design of the Deployment Client for the Acumos platform,
as of the Clio (3rd) release.

Previously Released Features

This is the first release of the Deployment Client, although much of the design
of the Boreas release features Kubernetes Client will be reused/enhanced in this
release, for use in the Deployment Client.

Current Release Features

Current release features include:

	deployment of Acumos solutions (simple models, composite models, and NiFi
pipelines) into pre-configured kubernetes clusters

	NOTE: NiFi pipeline support was deferred to a future release

	use of Jenkins as a job executor for deployment tasks

Architecture

The following diagram shows the architecture of the Deployment-related clients
of the Acumos platform, and the new Deployment Client. The current
Deployment-related clients (Azure Client, OpenStack Client, Kubernetes Client)
are not affected by the Deployment Client design or features, but are shown for
context. Also shown is a hypothetical solution as deployed in a target
kubernetes environment, and dependencies of that kubernetes environment and
solution/support components deployed in it, on the Acumos platform and its
dependencies (e.g. a docker registry, and ELK stack).

[image: ../../../../_images/deployment-clio.png]
NOTE: MLWB use of the Deployment Client API was planned but deferred to a future
release.

The typical sequence of messages across Acumos components for a solution
deployment is shown in the figure below.

[image: ../../../../_images/deployment-flow.png]

Functional Components

Deployment Client

The Deployment Client has largely the same role/design as the current
Kubernetes Client, with these key differences:

	solution deployment is automated

	the solution.zip package is designed for use in shared k8s environments, e.g.

	since target namespaces are likely to be used for deployment of multiple
solutions, or multiple instances of the same solution, all resources created
in the namespace are uniquely identified, using a UUID (the deployment
task trackingId)

	since use of cluster ingress is likely required, cluster ingress rules are
used to provide unique URLs where the the solution user can access the
solution APIs

	uses dynamic nodePorts where needed

	does not depend upon privileged operation for containers

Portal

A new “deploy to k8s” option will be added to the “Deployment” menu for
solutions. When the user selects it, the Portal will:

	present a dialog in which the user can select a target k8s env from a set of
pre-configured values (set in site-config value for “k8sClusters”, as a list
of names)

	invoke the /deploy API of the Deployment Client

The Portal will have no further role in the deployment process, but the user
will get a notification created by the Deployment Client when the job is
complete, that will include important information such as the job status
and the assigned ingress URL.

ML Workbench

NOTE: MLWB use of the Deployment Client API was planned but deferred to a future
release.

When a Predictor is created, the MLWB will provide a “deploy to k8s” option
to the user. When the user selects it, the MLWB will:

	in the dialog, allow the user to select the target k8s env from a set of
pre-configured values (set in site-config value for “k8sClusters”, as a list
of names).

	invoke the /deploy API of the Deployment Client

	monitor the status of the taskId returned by the /deploy API

	when the task is complete, present the result to the user (success/fail)

	for success, retrieve the ingress URL from the Notification that was created
for the user, and save the URL in the Predictor object

Post-deployment, the Predictor service can take further actions using the
trackingId value related to the deployment taskId, via an API provided by the
Deployment Client (design is WIP).

Interfaces

Exposed APIs

The base URL for the APIs below is: http://<deployment-client-service-host>:<port>,
where ‘deployment-client-service-host’ is the routable address of the
Deployment Client service in the Acumos platform deployment, and port is the
assigned port where the service is listening for API requests, by default 8080.

Deployment Request

The Deployment Client service exposes the following API that initiates
solution deployment. In the successful case, it will return a JSON response that
includes the assigned taskId.

	URL resource: /deploy

	Supported HTTP operations

	POST

	Body

	
	{“solutionId”: “<id>”, “revisionId”: “<id>”, “envId”: “<id>”,

	“userId”: <id> }

	solutionId: id of a solution in the CDS

	revisionId: id of a solution revision in the CDS

	envId: id of a target kubernetes environment, as configured in the
Spring environment for the Deployment Client, and in the site-config
“k8sCluster” key

	userId: CDS id of the user requesting deployment

	Response

	202 Accepted

	meaning: request accepted, in progress

	Body

	{ “taskId”: <taskId> }

	taskId: the taskId that has been created for the deployment

	404 Not Found

	meaning: the solutionId, revisionId, envId, or userId was not found

Get Solution Zip

The Deployment Client service exposes the following API where Jenkins can obtain
a solution.zip package to be used in solution deployment. In the successful case,
it will return a solution.zip file with the package to be deployed.

	URL resource: /getSolutionZip/<taskId>

	taskId: taskId associated with the deployment task

	Supported HTTP operations

	GET

	Response

	200 OK

	meaning: request received, content provided

	Body
* the solution.zip package generated for the taskId

	404 Not Found

	meaning: taskId not found

Deployment Status

The Deployment Client service exposes the following API where Jenkins can post
updates on the status of solution deployment.

	URL resource: /status/<taskId>

	taskId: taskId associated with the deployment task

	Supported HTTP operations

	POST

	Body

	{“status”: “<status>”, “reason”: “<reason>”, “ingress”: “<ingress>”}

	status: status of the job

	created: job has been created

	in-progress: job has started

	complete: job is complete

	failed: job has failed

	reason: text to be presented to the user as a notification

	for failed jobs, an explanatory reason if available

	for successful jobs, info on how the user can access the solution:

	“<SOLUTION_NAME> deployment is complete. The solution can be
accessed at the ingress URL <ingress>”

	ingress: URL where the solution can be accessed, in the form
https://<SOLUTION_DOMAIN>/<SOLUTION_NAME>/<UNIQUE_ID>/, where

	SOLUTION_DOMAIN: k8s cluster ingress FQDN, as configured for the
selected cluster in the Jenkins solution-deploy job

	SOLUTION_NAME: name of the solution as provided by the
Deployment Client in deploy_env.sh in the solution.zip package,
truncated to 63 characters if needed

	UNIQUE_ID: timestamp (in bash: $(date +%y%m%d)-$(date +%H%M%S))
of the deployment, used to ensure that multiple deployments of the
same solution have distinct ingresses

	Response

	200 OK

	meaning: request received

Consumed APIs

Jenkins Job Invocation

The Deployment Client will use the Jenkins job creation API to start jobs that
have these features:

	take a single parameter: taskId

	POST notifications of job progress (created, in progress, failed, complete)
with the taskId using the Deployment Status API

	deploy the solution using the <taskId>.zip in a similar manner to the Boreas
kubernetes-client design

As described in the Jenkins documentation for the
Remote access API [https://wiki.jenkins.io/display/JENKINS/Remote+access+API]
the API requires an HTTP POST to the Jenkins server with URL formatted as
“JENKINS_URL/job/JOB_NAME/build”, with user credentials and request body in
JSON, e.g.

{"parameter": [{"name": "taskId", "value": "<id>"}]}

The value of JENKINS_URL and the user credentials will be provided in the
Deployment Client Spring environment as jenkins.url as described in
Jenkins Configuration. JOB_NAME will be replaced with the applicable job
name as described in Jenkins Configuration.

Common Dataservice

As used by the current kubernetes-client service, with addition of the
Task Controller APIs for tasks and stepresults.

Nexus

As used by the current kubernetes-client service.

Component Design

Deployment Client

Upon a request to the /deploy API, the Deployment Client will:

	create a task (taskCode “DP”, statusCode”: “IP”) and stepresult (name
“DEP”, statusCode”: “IP”) entry in the CDS

	return 202 Accepted to the Portal-BE, with the taskId

	start the appropriate Jenkins job as specified in the Spring environment with
the parameter ‘taskId’ as created above

	the taskId is used as a convenient unique identifier for the current task
and will be used along with the generated trackingId by Jenkins, to
uniquely identify the solution deployment so information about the deployed
solution can be retrieved later, e.g. for presentation to the user in the ML
Workbench UI.

	the appropriate job for the solution types will be provided as a value under
the Spring environment, as described under Jenkins Configuration

	wait for status updates via the /status API, and save the status events to
the CDS task table, for the taskId and name ‘DEP’

	wait for Jenkins to retrieve the solution package via the /getSolutionZip API
and then

	prepare a solution package per Solution Package Preparation

Jenkins Configuration

The Deployment Client Spring environment will include a block for the configurable
parameters to be used in Jenkins APIs:

"jenkins": {
 "url": "http://jenkins-service:8080",
 "user": "<ACUMOS_DOMAIN>",
 "password": "<password>",
 "job": [
 { "simple": "<jobname>" },
 { "composite": "<jobname>" },
 { "nifi": "<jobname>" }
]
}

	<ACUMOS_DOMAIN> will be the default user ID to use, and ensures the Jenkins
service, if shared by multiple Acumos platforms, can be configured for each

	<password> will be specified by the Admin deploying the platform

	<jobname> is the name of a job configured in Jenkins; by default, these will
configured for use by the Jenkins service at startup

	additional jobs can be created in Jenkins and mapped to new/updated entries
in the Deployment Client config, by updating this Spring environment variable
and redeploying the Deployment Client

k8sCluster Site Config

On startup, the Deployment Client will create or update a new site-config key,
“k8sCluster” as described below. The default value for this key will be provided
in the Spring environment variable siteConfig.k8sCluster:

"siteConfig": {
 "k8sCluster": "[
 { \"name\": \"cluster1\" },
 { \"name\": \"cluster2\" },
 { \"name\": \"cluster3\" }
]"
}

The example above is simply a placeholder, expected to be updated by the
Acumos platform admin. The values represent arbitrary identifiers of k8s
environments that will be configured as part of the Jenkins solution deployment
job.

The Deployment Client will save the Spring environment value as an escaped JSON
string, for the site-config key “k8sCluster”, if it doesn’t already exist.

Adding/updating clusters will require updating the Deployment Client template
and applying the changes, to restart the Deployment Client.

Solution Package Preparation

Solution packages will be prepared when the Jenkins job invokes the
Get Solution Zip API. The Deployment Client will follow the steps below in
preparing the solution deployment package:

	get the following artifacts if existing from Nexus, by querying the CDS for
the set of solution/revision artifacts

	blueprint.json

	databroker.json

	if a blueprint.json artifact was found, this is a composite solution and the
following actions are taken

	get the model.proto artifact for each solution model microservice, for the
model revision included in the solution

	create a kubernetes service+deployment template as solution.yaml including
all the solution components included in blueprint.json. See below for an
example.

	create a dockerinfo.json file using the example below

	create an environment variable script “deploy_env.sh”, with these values

	DEPLOYMENT_CLIENT_API_BASE_URL: Base URL (scheme://domain:port) of Deployment Client

	ACUMOS_DOCKER_REGISTRY: Base URL (https://domain:port) of docker registry

	ACUMOS_DOCKER_REGISTRY_USER: docker registry username

	ACUMOS_DOCKER_REGISTRY_PASSWORD: docker registry password

	LOGSTASH_HOST: Hostname/FQDN of the Logstash service

	LOGSTASH_IP: IP address of the Logstash service

	LOGSTASH_PORT: Port of the Logstash service

	K8S_CLUSTER: name of a pre-configured k8s cluster

	TRACKING_ID: trackingId for the deployment task

	TASK_ID: taskId for the deployment

	SOLUTION_TYPE: simple|composite|pipeline

	SOLUTION_NAME: name of the solution

	SOLUTION_DOMAIN: IP address or resolvable FQDN/hostname of the k8s cluster
ingress

	SOLUTION_MODEL_RUNNER_STANDARD: v1|v2

	SOLUTION_ID: Solution ID for simple solution

	COMP_SOLUTION_ID: Solution ID for composite solution (if applicable)

	COMP_REVISION_ID: Revision ID for composite solution (if applicable)

	if a blueprint.json artifact was not found, this is a simple solution and a
kubernetes service+deployment template is created, as solution.yaml. See below
for an example.

	In the generated solution.yaml, specify for each model microservice the
hostname:port for the Acumos platform docker proxy, e.g.
“$ACUMOS_DOMAIN:$ACUMOS_DOCKER_PROXY_PORT” in the examples below

	create a zip archive as <trackingId>.zip containing:

	deploy.sh, from /app/config/jobs/solution_deploy

	solution.yaml, generated as described above

	for a composite solution:

	blueprint.json, from Nexus

	dockerinfo.json, created as described below

	databroker.json, from Nexus (if Data Broker is included in the solution)

	a “microservice” subfolder, with subfolders named for each model
microservice, containing the model.proto for that model (if Probe is
included in the solution)

Design notes for the solution.yaml structure:

	to support distribution of solution microservices and other Acumos components
(Data Broker, Model Connector, Probe) across nodes in multi-node kubernetes
clusters, each microservice and the Acumos components are deployed using
a specific service and related deployment spec.

	services which require external exposure on the cluster are provided dynamic
nodePort assignments. These include:

	simple solution microservices, to expose its protobuf API

	for composite solutions, as applies to the specific solution design

	Data Broker (if included, for its API)

	Model Connector (for receiving pushed model data directly)

	any model microservices that require external exposure for receiving data

Following are a series of examples of solution.yaml templates, from simple to
complex. The first is an example of the generated solution.yaml template for a
simple solution. Notes on the template attributes:

	the templates are guaranteed to be unique in the

	the model microservice is directly exposed at a dynamic NodePort

	the cluster-internal port value 8557 is selected per the Acumos convention
of assigning model microservices ports starting at 8557

	the model pod created by the deployment is exposed at port 3330, which is the
Acumos convention for microservices as built by the microservice-generation
component of the Acumos platform

	the namespace is as specified for the target kubernetes environment, in the
Deployment Client Spring environment

	the imagePullSecrets value “acumos-registry” refers to the cached credentials
for the user for access to the Acumos platform docker registry

	so that the model microservice images and Data Broker image (in a later
example) can be pulled from the Acumos platform repository, the host and port
in the image name are set to values for the docker-proxy

apiVersion: v1
kind: Service
metadata:
 namespace: <NAMESPACE>
 name: padd-<TRACKING_ID>
 labels:
 app: padd-<TRACKING_ID>
 trackingid: <TRACKING_ID>
spec:
 selector:
 app: padd-<TRACKING_ID>
 type: NodePort
 ports:
 - name: protobuf-api
 port: 8557
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: <NAMESPACE>
 name: padd-<TRACKING_ID>
 labels:
 app: padd-<TRACKING_ID>
 trackingid: <TRACKING_ID>
spec:
 replicas: 1
 selector:
 matchLabels:
 app: padd-<TRACKING_ID>
 template:
 metadata:
 labels:
 app: padd-<TRACKING_ID>
 trackingid: <TRACKING_ID>
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: padd-<TRACKING_ID>
 image: $ACUMOS_DOMAIN:$ACUMOS_DOCKER_PROXY_PORT/padd_cee0c147-3c64-48cd-93ae-cdb715a5420c:3
 ports:
 - name: protobuf-api
 containerPort: 3330
 restartPolicy: Always

Example of the generated solution.yaml template for a complex (composite)
solution with two model microservices, Data Broker, and Model Connector.
Notes on the template attributes:

	the model microservices are accessed via the Data Broker or Model Connector,
which are externally exposed at dynamic NodePorts

	the Data Broker, Model Connector, and Probe are exposed internal to the cluster
at the ports specified in the Acumos project build processes for those images

	the Model Connector is also externally exposed at a dynamic NodePort so that
it can be configured by deploy.sh via its APIs, or used directly to push
data to the solution

	the names given to the services defined for each model microservice serve as
resolvable hostnames within the cluster namespace, so their protobuf-api
interfaces can be accessed by other pods in the cluster e.g. Model Connector,
independent of the assigned service IP

	the image name (repository and image version) for the Model Connector is set
by an environment parameter in the kubernetes-client template

	the Data Broker image name is set per the “datasource” type model that the user
selected in creating the composite solution

apiVersion: v1
kind: Service
metadata:
 namespace: <NAMESPACE>
 name: padd-<TRACKING_ID>
spec:
 selector:
 app: padd-<TRACKING_ID>
 type: ClusterIP
 ports:
 - name: protobuf-api
 port: 8556
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: <NAMESPACE>
 name: padd-<TRACKING_ID>
 labels:
 app: padd-<TRACKING_ID>
 trackingid: <TRACKING_ID>
spec:
 replicas: 1
 selector:
 matchLabels:
 app: padd-<TRACKING_ID>
 template:
 metadata:
 labels:
 app: padd-<TRACKING_ID>
 trackingid: <TRACKING_ID>
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: padd-<TRACKING_ID>
 image: opnfv02:30883/padd_3abecdc4-7f91-41bd-98dd-a14354089f68:1
 ports:
 - name: protobuf-api
 containerPort: 3330

apiVersion: v1
kind: Service
metadata:
 namespace: <NAMESPACE>
 name: square-<TRACKING_ID>
spec:
 selector:
 app: square-<TRACKING_ID>
 type: ClusterIP
 ports:
 - name: protobuf-api
 port: 8556
 targetPort: 3330

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: <NAMESPACE>
 name: square-<TRACKING_ID>
 labels:
 app: square-<TRACKING_ID>
 trackingid: <TRACKING_ID>
spec:
 replicas: 1
 selector:
 matchLabels:
 app: square-<TRACKING_ID>
 template:
 metadata:
 labels:
 app: square-<TRACKING_ID>
 trackingid: <TRACKING_ID>
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: square-<TRACKING_ID>
 image: opnfv02:30883/square_d5782393-44ac-4ca4-8165-da6e8ac636c2:1
 ports:
 - name: protobuf-api
 containerPort: 3330

apiVersion: v1
kind: Service
metadata:
 namespace: <NAMESPACE>
 name: modelconnector-<TRACKING_ID>
spec:
 selector:
 app: modelconnector-<TRACKING_ID>
 type: NodePort
 ports:
 - name: mc-api
 port: 8555
 targetPort: 8555

apiVersion: apps/v1
kind: Deployment
metadata:
 namespace: <NAMESPACE>
 name: modelconnector-<TRACKING_ID>
 labels:
 app: modelconnector-<TRACKING_ID>
 trackingid: <TRACKING_ID>
spec:
 replicas: 1
 selector:
 matchLabels:
 app: modelconnector-<TRACKING_ID>
 template:
 metadata:
 labels:
 app: modelconnector-<TRACKING_ID>
 trackingid: <TRACKING_ID>
 spec:
 imagePullSecrets:
 - name: acumos-registry
 containers:
 - name: modelconnector-<TRACKING_ID>
 image: nexus3.acumos.org:10002/blueprint-orchestrator:2.0.13
 ports:
 - name: mc-api
 containerPort: 8555
 volumeMounts:
 - mountPath: /logs
 name: logs
 restartPolicy: Always
 volumes:
 - name: logs
 hostPath:
 path: /var/acumos/log

The included dockerinfo.json can be created directly by the kubernetes-client
as both the container name and the cluster-internal address (resolvable
cluster-internal hostname, and port) of each container can be pre-determined
per the assignments in solution.yaml as above. Example of dockerinfo.json for
the composite solution above:

{
 "docker_info_list": [
 {
 "container_name": "databroker",
 "ip_address": "databroker",
 "port": "8556"
 },
 {
 "container_name": "modelconnector",
 "ip_address": "modelconnector",
 "port": "8555"
 },
 {
 "container_name": "padd",
 "ip_address": "padd",
 "port": "8557"
 },
 {
 "container_name": "square",
 "ip_address": "square",
 "port": "8558"
 }
]
}

deploy.sh

deploy.sh will be executed by the Jenkins job created for the deployment task,
and will take the following actions to deploy the solution:

	login to the Acumos platform docker proxy using the docker-proxy username
and password from deploy_env.sh

	login to the Acumos project docker registry (current credentials are provided
as default values in deploy.sh)

	create a secret “acumos-registry” using ~/.docker/config.json

	invoke kubectl to deploy the services and deployments in solution.yaml

	monitor the status of the Data Broker service and deployment, and when they are
running, send Data Broker.json to the Data Broker via its /configDB API

	monitor the status of all other services and deployments, and when they are
running

	create dockerinfo.json with the service name, assigned IP address, and
port of each service defined in solution.yaml

	send dockerinfo.json to the Model Connector service via the /putDockerInfo
API

	send blueprint.json to the Model Connector service via the /putBlueprint API

	invoke the Deployment Status API to convey the job result back to the
Deployment Client

 Acumos Deployment Client User Guide

Acumos Deployment Client User Guide

Scope

This guide covers the use of the Deployment Client for the Acumos platform,
as of the Clio (3rd) release. The Deployment Client enables the user to
deploy Acumos ML models (“solutions”) into kubernetes (k8s) clusters, and use
them.

Previously Released Features

This is the first release of the Deployment Client.

Current Release Features

Current release features include:

	deployment of Acumos solutions (simple and composite models) into
pre-configured kubernetes clusters

For Platform Admins

Deploying the Deployment Client Service

If you use the Acumos OneClick toolset [https://docs.acumos.org/en/latest/submodules/system-integration/docs/oneclick-deploy/index.html]
tools, the Deployment Client will automatically be deployed as part of the
Acumos platform, in either an All-in-One (AIO) or kubernetes (k8s) multi-node
cluster, as you choose per the OneClick toolset options.

If you install the Deployment Client in a docker-compose managed platform without
using the OneClick toolset, you will need to adapt the docker-compose template
provided under the system-integration repo as
AIO/docker/acumos/deployment-client.yml [https://raw.githubusercontent.com/acumos/system-integration/master/AIO/docker/acumos/deployment-client.yml].

Configuring Jenkins

Creating the Jenkins solution-deploy job

The Deployment Client also depends upon configuration of a Jenkins job named
“solution-deploy”, in a Jenkins server that is accessible from the
Deployment Client. By default, the OneClick toolset will install a Jenkins server
as part of the Acumos platform, which is the tested configuration in Clio.
Future releases are expected to support use of an external Jenkins server.

The default Jenkins job template is available as
solution-deploy.xml [https://raw.githubusercontent.com/acumos/model-deployments-deployment-client/master/config/jobs/jenkins/solution-deploy.xml] in the
model-deployments-deployment-client repo [https://github.com/acumos/model-deployments-deployment-client].
By default, the OneClick toolset script
setup_jenkins.sh [https://raw.githubusercontent.com/acumos/system-integration/master/AIO/jenkins/setup_jenkins.sh]
will install this template as a Jenkins job, with the following values
as set in the environment file acumos_env.sh:

	ACUMOS_DEFAULT_SOLUTION_DOMAIN: by default set the same as ACUMOS_DOMAIN

	ACUMOS_DEFAULT_SOLUTION_NAMESPACE: by default set the same as ACUMOS_NAMESPACE

These values will be used in the first target cluster configuration block of the
case statement in the solution-deploy job, in place of “acumos.example.com” and
“acumos”. If you also specify a value for ACUMOS_DEFAULT_SOLUTION_KUBE_CONFIG in
acumos_env.sh, setup_jenkins.sh will also copy that kube-config file into the
Jenkins configuration as “kube-config-<ACUMOS_DEFAULT_SOLUTION_DOMAIN>” so that
when a solution-deploy job is executed for that cluster, the correct kube-config
is used to interact with that cluster via kubectl.

If you deployed the platform using some other method, you will need to manually
create and configure the solution-deploy job, similar to how it is configured in
setup_jenkins.sh. Once the solution-deploy job is created under Jenkins, there
is one manual step required to complete the configuration. Use these steps to
complete it:

	login to the Jenkins UI, by default https://<ACUMOS_DOMAIN/jenkins

	select the solution-deploy job link

	select ‘Configure’

	under “Build”, edit the “Execute shell” “Command” field to align the bash shell
code for the job, with the set of k8s clusters you have configured in the
Acumos site-config as per `Configuring Target Kubernetes Clusters`_. The key
section to update is that which matches the default example below:

case "$K8S_CLUSTER"; in
 cluster1)
 SOLUTION_DOMAIN=acumos.example.com
 NAMESPACE=acumos
 FILEBEAT_DATA_PVC_STORAGE_CLASS_NAME=
 FILEBEAT_DATA_PVC_SIZE=1Gi
 NGINX_PROXY_LOG_PVC_STORAGE_CLASS_NAME=
 NGINX_PROXY_LOG_PVC_SIZE=1Gi
 ;;
 *)
 exit 1
esac

	There should be one case block per configured k8s cluster, with each block
named per the “name” values for your k8s clusters. For example, if you have
only one configured cluster:

	replace “cluster1” with the “name” value of a cluster that you have
cofigured in the Acumos platform site-config (by default, “cluster1” is
configured)

	set SOLUTION_DOMAIN to the ingress domain name assigned for interaction with
ML solutions deployed under the cluster

	set NAMESPACE to the k8s namespace to use for the cluster

	note that you can have multiple case blocks for the same cluster, that
use different namespaces

	if you want to use specific storage classes for the logging component PVCs,
set FILEBEAT_DATA_PVC_STORAGE_CLASS_NAME and/or
NGINX_PROXY_LOG_PVC_STORAGE_CLASS_NAME

	if you want to reserve a different size for the logging component
PVCs (persistent volume claims), set FILEBEAT_DATA_PVC_SIZE and/or
NGINX_PROXY_LOG_PVC_SIZE

	once you have completed the customization, select ‘Save’

The actual deployment process occurs through a combination of the Acumos
solution-deploy Jenkins job [https://github.com/acumos/model-deployments-deployment-client/blob/master/config/jobs/jenkins/solution-deploy.xml]
and the deploy.sh [https://github.com/acumos/model-deployments-deployment-client/blob/master/config/jobs/solution_deploy/deploy.sh]
script that it calls to execute the deployment. Note that both the Jenkins job
and the deploy.sh script can be customized to fit the specific requirements of
your target k8s environments. Customizing the Jenkins solution-deploy job is
beyond the scope of this document.

Configure Jenkins Access to k8s Clusters

In order to access the k8s cluster API, the Jenkins server needs to be configured
to operate as a kubernetes client, and for access to other tools that are used by
the default “solution-deploy” Jenkins job and ‘deploy.sh’ script that is used
by it, both of which are available in the
deployment-client repo [https://github.com/acumos/model-deployments-deployment-client/tree/clio/config/jobs].

Note that the guide below assumes you are using k8s cluster(s) compatible with
the default design of the Acumos Clio release, which is based upon the generic
k8s distribution version 1.13.8, and has not been tested on other k8s versions,
or k8s distributions such as OpenShift or Azure-AKS (those are planned for the
next release). If you need to use some other k8s version:

	in order to install a compatible kubectl version, you will need to ensure you
use a kubectl version within one minor version of the k8s server

	you can customize the ‘initial-setup’ job described below, to use another
supported k8s version

	if you have multiple target k8s clusters that you want to configure, you
will need to ensure that they are all the same version, or customize
the default Acumos “solution-deploy” Jenkins job to be capable of switching
between k8s client versions on a per-deployment-job basis

	any other differences may require that you customize both the “solution-deploy”
Jenkins job and the ‘deploy.sh’ script it calls

How you prepare the Jenkins server depends upon how your Jenkins server was
installed:

	if you installed your Jenkins server via the
Acumos OneClick toolset [https://docs.acumos.org/en/latest/submodules/system-integration/docs/oneclick-deploy/index.html],
Jenkins will have been fully configured by installation and execution of the
Jenkins job
initial-setup [https://github.com/acumos/system-integration/blob/master/charts/jenkins/jobs/initial-setup.xml]

	if you installed your Jenkins server manually, or are using an existing Jenkins
service

	If your Jenkins server is capable of running privileged jobs, you can create
a job similar to the ‘initial-setup’ job described above, or run these
commands directly in the Jenkins server’s shell

	Note: this an Ubuntu example; update as needed for Centos

apt-get update
apt-get install -y jq uuid-runtime
Install kubectl per https://kubernetes.io/docs/setup/independent/install-kubeadm/
KUBE_VERSION=1.13.8
apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF | tee /etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get -y install --allow-downgrades kubectl=${KUBE_VERSION}-00

	if your Jenkins server restricts privileged jobs, you can either run the
commands above manually, or build and use an updated Jenkins docker image,
e.g. as built using the Dockerfile [https://github.com/acumos/system-integration/blob/master/charts/jenkins/Dockerfile]
in the system-integration repo.

	NOTE: a pre-built Jenkins image customized for Acumos as above is
available under Docker Hub as blsaws/jenkins, and is the image use by
default in the OneClick toolset installation of Jenkins. In future
releases, it’s expected that a similarly-prepared image will be provided
through the Acumos project Nexus repository.

Once you have completed the basic configuration of the Jenkins server, you will
need to provide a k8s config file (‘kube config’) that contains the token(s)
used by the kubectl client to connect to your k8s server(s). If you used the OneClick
toolset to deploy the Jenkins service under your Acumos platform, it will have
already been configured by default to use the same k8s cluster and namespace
for deploying solutions, unless you specified values for the following in
acumos_env.sh:

	ACUMOS_DEFAULT_SOLUTION_DOMAIN: by default set the same as ACUMOS_DOMAIN

	ACUMOS_DEFAULT_SOLUTION_NAMESPACE: by default set the same as ACUMOS_NAMESPACE

	ACUMOS_DEFAULT_SOLUTION_KUBE_CONFIG: by default empty, which causes
setup_jenkins.sh to use the kube-config for the Acumos platform k8s cluster

You can add other target k8s clusters to the solution-deploy job through the
Jenkins admin UI or by preparing a customized solution-deploy.xml file as
AIO/jenkins/deploy/jobs/solution-deploy.xml in the system-integration
clone used to execute the OneClick-based deployment. To do that, you should:

	add additional target cluster case blocks to solution-deploy as described in
Creating the Jenkins solution-deploy job, updating at least the first two
lines in the case block as shown below for a “cluster2” that has been added:

case "$K8S_CLUSTER"; in
 cluster1)
 SOLUTION_DOMAIN=acumos-1.example.com
 NAMESPACE=acumos-1
 FILEBEAT_DATA_PVC_STORAGE_CLASS_NAME=
 FILEBEAT_DATA_PVC_SIZE=1Gi
 NGINX_PROXY_LOG_PVC_STORAGE_CLASS_NAME=
 NGINX_PROXY_LOG_PVC_SIZE=1Gi
 ;;
 cluster2)
 SOLUTION_DOMAIN=acumos-2.example.com
 NAMESPACE=acumos-2
 FILEBEAT_DATA_PVC_STORAGE_CLASS_NAME=
 FILEBEAT_DATA_PVC_SIZE=1Gi
 NGINX_PROXY_LOG_PVC_STORAGE_CLASS_NAME=
 NGINX_PROXY_LOG_PVC_SIZE=1Gi
 ;;
 *)
 exit 1
esac

	create and/or copy an applicable kube-config file for the additional clusters
into the Jenkins container; to do that for the “cluster2” example above:

	it’s assumed that you have access to the k8s cluster(s) from your workstation,
and have the current context set as needed

kubectl config use-context cluster2-acumos
Switched to context "cluster2-acumos".
$ kubectl config get-contexts cluster2-acumos
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* cluster2-acumos cluster2 <your id> acumos

	once you have set the context, copy ~/.kube/config to the home folder of
the Jenkins user in your Jenkins server, identifying the config file as
related to the solution domain for “cluster2”. For example, if you are using
the default Jenkins server installed by the OneClick toolset and want
to update the kube config,

cp ~/.kube/config kube-config-acumos-2.example.com
Switch back to using the Acumos platform kube config
kubectl config use-context <Acumos platform context name>
Switched to context "<Acumos platform context name>".
pod=$(kubectl get pods | awk '/jenkins/{print $1}')
kubectl cp kube-config-acumos-2.example.com $pod:/var/jenkins_home/.
kubectl exec -it $pod -- bash -c 'ls /var/jenkins_home/'

Acumos Site Configuration

The “deploy to k8s” feature supports provisioning of a set of k8s clusters to
be offered to users as deployment target environments.

Admins will have two methods to configure the k8s clusters to be offered to users
for solution deployment. In the examples below, the “name” values should
be aligned with the solution-deploy Jenkins job as described under
Configuring Jenkins.

	by setting the site-config value through the Swagger UI of the Acumos
Common Data Service (CDS) [https://docs.acumos.org/en/clio/submodules/common-dataservice/docs/index.html]
or direcly to the CDS API via curl, as below:

curl -H 'Content-Type: application/json' \
 -u <ACUMOS_CDS_USER>:<ACUMOS_CDS_PASSWORD> \
 http://<ACUMOS_DOMAIN>:<ACUMOS_CDS_PORT>/ccds/site/config \
 -d '{ "configKey": "k8sCluster", "configValue": "[\
 { \"name\": \"cluster1\" }, \
 { \"name\": \"cluster2\" }, \
 { \"name\": \"cluster3\" }]", \
 "userId": "<ACUMOS_ADMIN_USER_ID>" }'

where:

	ACUMOS_DOMAIN is the domain name or IP address of the Acumos platform host
where the CDS API is exposed

	ACUMOS_CDS_PORT is the TCP port at which the CDS API is exposed

	ACUMOS_CDS_USER is the username configured for CDS API access

	ACUMOS_CDS_PASSWORD is the password configured for CDS API access

	ACUMOS_ADMIN_USER_ID is the CDS user table ID value (GUID) of an Admin role
user

	by configuring the Deployment Client deployment template, under “siteConfig”
in the Spring environment settings (SPRING_APPLICATION_JSON value) of the
Deployment Client; the following example shows the default values.

"siteConfig": "[
 { \"name\": \"cluster1\" },
 { \"name\": \"cluster2\" },
 { \"name\": \"cluster3\" }
]"
}

Kubernetes Cluster Configuration

Following are prerequisite requirements for k8s cluster configuration per the
default design:

	an nginx-ingress controller, e.g. deployed using the
nginx-ingress helm chart [https://github.com/helm/charts/tree/master/stable/nginx-ingress]
or the Acumos OneClick tool
setup_ingress_controller.sh [https://github.com/acumos/system-integration/blob/master/charts/ingress/setup_ingress_controller.sh]

	persistent volumes available for use by the ML solution logging support
components

A docker daemon service on each k8s cluster node is used by k8s to pull images
that are being deployed on the k8s node. One or both of the following
configuration updates are needed to ensure the cluster can pull solution images
from the docker registry used by the Acumos platform:

	create a k8s secret with a valid access token for the Acumos project docker
registry and your Acumos platform docker registry

	IF your Acumos docker registry service is installed in insecure mode,
configure the docker daemon on each k8s cluster node to be able to access the
registry as an insecure registry

The deployment-client repo contains a tool to help you perform these actions
as needed for AIO test platforms, in tools/update_k8s_config.sh. NOTE: This script
will update and restart the docker daemon as needed, which will disrupt docker
service on the k8s master node for a short time, but all k8s services will be
restarted by docker. FOR TEST PURPOSES ONLY. To run that tool:

$ bash update_k8s_config.sh <kube-context> <k8s-host> <admin-user>
 <solution-namespace> <registry-host> <nexus-namespace> <acumos-namespace>

	where:

	kube-context: name of k8s context for Acumos platform

	k8s-host: target k8s cluster hostname/FQDN

	admin-user: admin username on k8s host

	solution-namespace: namespace for creating acumos-registry secret on k8s-host

	registry-host: hostname/FQDN of the docker registry

	nexus-namespace: namespace of the Nexus service on the Acumos platform

	acumos-namespace: namespace of the Acumos core on the Acumos platform

The following sections describe the actions in detail.

Create a k8s secret for Acumos docker registry access

Deploying Acumos project and platform docker images into k8s clusters requires
that the cluster be pre-configured with access tokens for the registries, since
they are password-protected. This is a two-step process, with the second step
being applied for each namespace under which Acumos solutions will be deployed:

	create a docker client configuration file (~/.docker/config.json) by logging
into the Acumos project and Acumos platform docker registry; this can be done
from any host that has access to the k8s cluster via kubectl, e.g. your
workstation or the k8s cluster master node

docker login nexus3.acumos.org:10002 -u docker -p docker
docker login nexus3.acumos.org:10003 -u docker -p docker
docker login nexus3.acumos.org:10004 -u docker -p docker
docker login http://<docker registry domain>:<docker registry port> -u <username> -p <password>

	where:

	<docker registry domain> is the host/FQDN of your Acumos platform docker registry

	<docker registry port> is the port of your Acumos platform docker registry

	<username> is a username with access to the Acumos platform docker registry

	<password> is the password for the username

	create/update the “acumos-registry” secret in the target namespace with the
content of the docker config updated above

b64=$(cat $HOME/.docker/config.json | base64 -w 0)
cat <<EOF >acumos-registry.yaml
apiVersion: v1
kind: Secret
metadata:
 name: acumos-registry
 namespace: <namespace>
data:
 .dockerconfigjson: $b64
type: kubernetes.io/dockerconfigjson
EOF

kubectl create -f acumos-registry.yaml

	where <namespace> is the k8s namespace under which you plan to deploy
solutions, as described in Creating the Jenkins solution-deploy job

	NOTE: if you are running the commands above under MacOS, remove the option
‘-w 0’ in the base64 command shown above

	verify the acumos-registry secret now contains the correct address and
credentials for your docker registry

kubectl get secret -n acumos acumos-registry -o yaml | \
 awk '/.dockerconfigjson:/{print $2}' | base64 --decode

	to verify the credentials, copy the “auth” value from the “auths” array
member for the updated registry and decode it, e.g.

$ kubectl get secret -n acumos acumos-registry -o yaml | awk '/.dockerconfigjson:/{print $2}' | base64 --decode
{
 "auths": {
 "nexus3.acumos.org:10002": {
 "auth": "ZG9ja2VyOmRvY2tlcg=="
 },
 "nexus3.acumos.org:10003": {
 "auth": "ZG9ja2VyOmRvY2tlcg=="
 },
 "nexus3.acumos.org:10004": {
 "auth": "ZG9ja2VyOmRvY2tlcg=="
 },
 "opnfv04:30908": {
 "auth": "YWN1bW9zX3J3OmQ3YTkxODcyLWFmNWItNDhkNi1hMGViLWU0ODdhN2YwNmYzZg=="
 }
 },
 "HttpHeaders": {
 "User-Agent": "Docker-Client/18.06.3-ce (linux)"
 }
}
$ echo YWN1bW9zX3J3OmQ3YTkxODcyLWFmNWItNDhkNi1hMGViLWU0ODdhN2YwNmYzZg== | base64 --decode
acumos_rw:d7a91872-af5b-48d6-a0eb-e487a7f06f3f

Configure docker daemon to access your Acumos docker registry

If your Acumos solution docker registry is configured in either of the
following ways, it is an insecure registry from the docker daemon’s perspective
and must be configured specifically for access as an insecure registry:

	accessed over HTTP (vs HTTP), e.g. per the default for the OneClick toolset
deployment of Nexus as a platform-internal docker registry

	accessed over HTTPS without a commercial cert, i.e. with no cert or a
self-signed cert

Configuring the docker daemon to access your Acumos solution docker registry
as an insecure registry requires host admin (root or sudo user), and the
following actions:

	add the docker registry to /etc/docker/daemon.json

	edit /etc/docker/daemon.json)

	if /etc/docker/daemon.json is a new file, enter this content

{
"insecure-registries": ["<ACUMOS_DOCKER_REGISTRY_HOST>:<ACUMOS_DOCKER_MODEL_PORT>"],
"disable-legacy-registry": true
}

	where

	ACUMOS_DOCKER_REGISTRY_HOST is the domain name or IP address of your
docker registry service

	ACUMOS_DOCKER_MODEL_PORT is the TCP port where the docker registry
service is provided

	if /etc/docker/daemon.json already has values for “insecure-registries”,
add the additional <ACUMOS_DOCKER_REGISTRY_HOST>:<ACUMOS_DOCKER_MODEL_PORT>
to the list

	restart the docker service

sudo systemctl daemon-reload
sudo service docker restart

	NOTE: this restart action will restart your k8s service on the updated
node, and may be disruptive to any running services on that node; ALSO note
that for OpenShift clusters, additional actions may be needed to restore the
cluster and services running under it

Kubernetes Cluster Maintenance

If there is a change to your Acumos docker registry host or port, e.g. you have
redeployed the Acumos platform or the Nexus service resulting in assignment of
a new nodePort value for the Nexus service at ACUMOS_DOCKER_MODEL_PORT, you will
need to update the docker daemon configuration for k8s clusters that are used
for solution deployment, as described in
Configure docker daemon to access your Acumos docker registry.

The Clio release does not include any platform capabilities or specific solution
lifecycle management tools enabling Admins to manage the Acumos solutions once
the solutions have been deployed in k8s clusters, other than as described below.
Platform-integrated tools are planned for the next release (Demeter).

In the meantime, Admins or users (if they have access to the k8s clusters via
kubectl) will need to manually manage deployed solution resources, e.g. when the
running solution is no longer needed, removing all solution-specific resources
created during deployment.

One tool is provided in the deployment-client repo to simplify cleaning up
solution resources, as
deployment-client/tools/clean_solution.sh. To run that tool:

$ bash clean_solution.sh [ns=<namespace>] [days=<days>] [match=<match>] [--dry-run] [--force]

	where:

	namespace: k8s namespace under which the solution is deployed, in the
cluster to which the user is currently connected, as the active
context for the kubectl client (run ‘kubectl config current-context’ to
see the current active context)

	days: select all solutions that are <days> old or older

	match: select solutions that match <pattern>

	If no <match> is specified, resources that match the default pattern
[0-9]{5}-[0-9]{5} will be selected. These are resources for solutions
identified by the uniqueid value generated by the deploy.sh script.

	–dry-run: show what would be deleted only

	–force: do not prompt for confirmation of resource deletion

In order to identify a specific deployment job and its resources, use the
“ingress URL” provided to the user when the deployment job completion
notification was provided on the Acumos platform, e.g.

square deployment is complete. The solution can be accessed at the ingress
URL https://acumos.example.com/square/191111-162114/

The URL part after the model name is the unique ID assigned to the
deployment job, and provides a timestamp when the deployment job was
invoked by the default deploy,sh deployment script:

UNIQUE_ID=$(date +%y%m%d)-$(date +%H%M%S)

Using the unique ID as the “match=” parameter shown above, you should be able
to clean up all related resources as needed.

For Platform Users

In the Clio release, a solution is deployed using these steps:

	select a solution you want to deploy, and ensure that microservice images
have been built for all models included in the solution

	in the upper-right of the screen, select “Deploy to Cloud” and in the list
of target cloud types, select “Kubernetes”

	You will see a disclaimer e.g.

Deploying this model outside the Acumos system may expose its information to
third parties. Please click OK to confirm this deployment is being done in
compliance with all local policies.

	Click-thru the disclaimer, and you will see a “Select Kubernetes cluster”
drop-down, from which you can select the target k8s cluster

	Select the target cluster, and and select “Deploy”

	You will see a briefly presented notification ala

The deployment process has been started, will take some time to complete.
Notification will be sent on completion.

	Watch for updates in the Notification list, accessed by the “bell” icon in the
top menu bar. When deployment is complete, you should see a notice e.g.

<model name> deployment is complete. The solution can be accessed at the ingress
URL https://acumos.example.com/<model name>/<unique id>/

	in the notification, the URL is the API where you should be able to send
data to the solution, and get results. The ‘model name’ is the displayed
name of the model on the Acumos platform. The ‘unique id’ is an identifier
for the specific deployment job, in the form of a timestamp.

 Deployment Client

Deployment Client

	Deployment Client Release Notes
	Version 1.0.9, 04 August 2020

	Version 1.0.8, 04 May 2020

	Version 1.0.7, 04 May 2020

	Version 1.0.6, 31 January 2020

	Version 1.0.5, 23 January 2020

	Version 1.0.4, 22 January 2020

	Version 1.0.2, 11 December 2019

	Version 1.0.1, 09 Dec 2019

	Version 1.0.0, 01 Oct 2019

	Acumos Deployment Client Developer Guide
	Scope

	Architecture

	Component Design

	Acumos Deployment Client User Guide
	Scope

	For Platform Admins

	For Platform Users

 Deployment Client Release Notes

Deployment Client Release Notes

Version 1.0.9, 04 August 2020

	update sidecar component of deployment-client for cds 3.1.1 (ACUMOS-3922 [https://jira.acumos.org/browse/ACUMOS-3922]) and (ACUMOS-3083 [https://jira.acumos.org/browse/ACUMOS-3083])

Version 1.0.8, 04 May 2020

	update sidecar component of deployment-client for cds 3.1.1 (ACUMOS-3923 [https://jira.acumos.org/browse/ACUMOS-3923]) and (ACUMOS-3083 [https://jira.acumos.org/browse/ACUMOS-3083])

Version 1.0.7, 04 May 2020

	update deployment-client for cds 3.1.1 (ACUMOS-3922 [https://jira.acumos.org/browse/ACUMOS-3922])

Version 1.0.6, 31 January 2020

	update acumos-azure-client, openstack-client,kubernetis-client and deployment-client for cds 3.1.1(ACUMOS-3957 [https://jira.acumos.org/browse/ACUMOS-3957])

Version 1.0.5, 23 January 2020

	deployment client api changes (ACUMOS-3934 [https://jira.acumos.org/browse/ACUMOS-3934])

Version 1.0.4, 22 January 2020

	deployment client api changes(ACUMOS-3934 [https://jira.acumos.org/browse/ACUMOS-3934])

	update acumos-azure-client, acumos-openstack-client,kubernetis-client and deployment-client for logging library 3.0.5(ACUMOS-3880 [https://jira.acumos.org/browse/ACUMOS-3880])

	Refactored some of the bash shell scripts to not require python

	Adding support for model usage tracking (that was brought over from kubernetes-client) - (ACUMOS-3925 [https://jira.acumos.org/browse/ACUMOS-3925])
- Added support for USER_ID (not user name) to be recorded
- Added support for simple model SOLUTION_ID and REVISION_ID to be
supported by nginx proxy
- Added support for composite model SOLUTION_ID and REVISION_ID
to be supported by nginx proxy

	Updated deployment-client to be using java 11 - (ACUMOS-3323 [https://jira.acumos.org/browse/ACUMOS-3323])

Version 1.0.2, 11 December 2019

	update acumos-azure-client, acumos-openstack-client,kubernetis-client and deployment-client for cds 3.1.0 (ACUMOS-3835 [https://jira.acumos.org/browse/ACUMOS-3835])

Version 1.0.1, 09 Dec 2019

This is the Clio maintenance release of the Deployment Client. The current
k8s and docker-compose templates are at:

	deployment-client-deployment.yaml [https://github.com/acumos/system-integration/blob/master/AIO/kubernetes/deployment/deployment-client-deployment.yaml]

	deployment-client.yml [https://github.com/acumos/system-integration/blob/master/AIO/docker/acumos/deployment-client.yml]

Jira items:

	ACUMOS-3677: Ensure all resources have names with max length 63 chars [https://jira.acumos.org/browse/ACUMOS-3677]

	5816: Max resource name length 63 chars [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5816/]

	5873: Admin/user guide updates [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5873/]

	5983: deployment-client release 1.0.1 [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5983/]

	5996: deployment-client release 1.0.1 [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5996/]

	ACUMOS-3188: Invoke Jenkins Job for Model deployment [https://jira.acumos.org/browse/ACUMOS-3188]

	5606: Update spring env file [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5606/]

	ACUMOS-3133: Migrate Solution/Pipeline deployment to Jenkins-based process [https://jira.acumos.org/browse/ACUMOS-3133]

	6051: Fix deploy flow image [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/6051/]

	6048: Add clean_solution.sh, update docs [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/6048/]

	5589: Complete deployment job template [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5589/]

	5652: Add link to user guide [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5652/]

	5716: Fix XML file format [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5716/]

	5749: Add more content in docs [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5749/]

Version 1.0.0, 01 Oct 2019

This is the first release of the Deployment Client. The Deployment Client is
derived from the Acumos Boreas release of the Kubernetes Client, and is dependent
upon a Jenkins server being deployed as part of the Acumos platform or externally.
See the
Deployment Client [https://docs.acumos.org/en/latest/submodules/model-deployments/deployment-client/docs/index.html]
documents for further information.

	3181: Deployment Client to deploy model to K8s using Jenkins [https://jira.acumos.org/browse/ACUMOS-3181]

	5368: Jenkins integration [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5368/]

	5309: update code for deployment-client [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5309/]

	5279: Add missing detail on /deploy API response [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5279/]

	5276: Update siteConfig key k8sCluster design [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5276/]

	5189: API structure for deployment-client [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5189/]

	5237: Fix diagram [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5237/]

	5178: Add Jenkins job and updates to deploy process [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5178/]

	5071: Add docs and other base folders [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5071/]

	5069: Initial repo files [https://gerrit.acumos.org/r/#/c/model-deployments/deployment-client/+/5069/]

The Kubernetes templates are in the System Integration repo, under AIO/kubernetes.
The docker-compose template is in the System Integration repo under AIO/docker,
and copied below:

version: '3.2'
services:
 deployment-client-service:
 image: ${DEPLOYMENT_CLIENT_IMAGE}
 environment:
 SPRING_APPLICATION_JSON: '{
 "logging": {
 "level": {
 "root": "INFO"
 }
 },
 "server": {
 "port": 8337
 },
 "jenkins": {
 "url": "${ACUMOS_JENKINS_API_URL}",
 "user": "${ACUMOS_JENKINS_USER}",
 "password": "${ACUMOS_JENKINS_PASSWORD}",
 "job": {
 "simple": "${ACUMOS_JENKINS_SIMPLE_SOLUTION_DEPLOY_JOB}",
 "composite": "${ACUMOS_JENKINS_COMPOSITE_SOLUTION_DEPLOY_JOB}",
 "nifi": "${ACUMOS_JENKINS_NIFI_DEPLOY_JOB}"
 }
 },
 "api": {
 "baseUrl": "https://${ACUMOS_DOMAIN}/deployment/"
 },
 "kube" : {
 "incrementPort": "8557",
 "singleModelPort": "8556",
 "folderPath": "/maven/home",
 "singleNodePort": "30333",
 "singleTargetPort": "3330",
 "dataBrokerModelPort": "8556",
 "dataBrokerNodePort": "30556",
 "dataBrokerTargetPort": "8556",
 "mlTargetPort": "3330",
 "nginxImageName": "nginx",
 "nexusEndPointURL": "http://localhost:80"
 },
 "dockerRegistry": {
 "url": "https://${ACUMOS_DOCKER_PROXY_HOST}:${ACUMOS_DOCKER_PROXY_PORT}/",
 "username": "${ACUMOS_DOCKER_PROXY_USERNAME}",
 "password": "${ACUMOS_DOCKER_PROXY_PASSWORD}"
 },
 "blueprint": {
 "ImageName": "${BLUEPRINT_ORCHESTRATOR_IMAGE}",
 "name": "blueprint-orchestrator",
 "port": "8555"
 },
 "nexus": {
 "url": "http://${ACUMOS_NEXUS_HOST}:${ACUMOS_NEXUS_API_PORT}/${ACUMOS_NEXUS_MAVEN_REPO_PATH}/${ACUMOS_NEXUS_MAVEN_REPO}/",
 "password": "${ACUMOS_NEXUS_RW_USER_PASSWORD}",
 "username": "${ACUMOS_NEXUS_RW_USER}",
 "groupid": "${ACUMOS_NEXUS_GROUP}"
 },
 "cmndatasvc": {
 "cmndatasvcendpointurl": "http://<ACUMOS_CDS_HOST>:<ACUMOS_CDS_PORT>/ccds",
 "cmndatasvcuser": "${ACUMOS_CDS_USER}",
 "cmndatasvcpwd": "${ACUMOS_CDS_PASSWORD}"
 },
 "logstash": {
 "host": "${ACUMOS_ELK_HOST}",
 "ip": "${ACUMOS_ELK_HOST_IP}",
 "port": "${ACUMOS_ELK_LOGSTASH_PORT}"
 }
 }'
 expose:
 - 8337
 volumes:
 - type: bind
 source: /mnt/${ACUMOS_NAMESPACE}/logs
 target: /maven/logs
 logging:
 driver: json-file
 extra_hosts:
 - "${ACUMOS_HOST}:${ACUMOS_HOST_IP}"
 restart: on-failure

 <no title>

 This folder will hold images and source files for images, as used in the docs.

 Acumos H2O Model Runner Service

Acumos H2O Model Runner Service

This repository holds the server components of the H2O Model Runner Service
for the Acumos machine-learning platform. The service provides scoring mechanisms
for H2O based models.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2018 AT&T Intellectual Property. All rights reserved.
Acumos is distributed by AT&T under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos H2O Model Runner Python Developer Guide

Acumos H2O Model Runner Python Developer Guide

This predictor will run predictions for H2O POJO (Non compiled Java code) as well as MOJO (Compiled jars) models. This service has a dependency to model-management to download the models. AsyncPredictions and status methods are yet to be implemented in this version. All the model runners follow a similar design pattern in that the expose the 3 endpoints asyncpredictions, syncpredictions and status.

Running this predictor in Windows requires changing the classpath argument as follows however it is assumed to be running on a *nix machine.

h2opredictordevelopment/predictor/h2o/wrapper.py

	From

	classpath_arg = ‘.;./’ + jar_file

	To

	classpath_arg = ‘’ + jar_file

The main class to start this service is /h2o-model-runner/microservice_flask.py

The command line interface gives options to run the application. Type help for a list of available options.
> python microservice_flask.py help
usage: microservice_flask.py [-h] [–host HOST] [–settings SETTINGS] [–port PORT]

By default without adding arguments the swagger interface should be available at: http://localhost:8061/v2/

Sample model creation

This is the R Script can generate both H2O and POJO models. The below sample uses the iris dataset that may be found anywhere online or use the one that is built into R.

$ library(h2o)
$ h2o.init()
$
$ iris.hex <- h2o.importFile("iris.csv")
$ iris.gbm <- h2o.gbm(y="species", training_frame=iris.hex, model_id="irisgbm")
$ h2o.download_pojo(model = iris.gbm, path="/home/project/h2o", get_jar = TRUE)
$ h2o.download_mojo(model=iris.gbm, path="/home/project/h2o", get_genmodel_jar=TRUE)

Testing

The only prerequisite for running testing is installing python and tox. It is recommended to use a virtual environment for running any python application. If using a virtual environment make sure to run “pip install tox” to install it

We use a combination of ‘tox’, ‘pytest’, and ‘flake8’ to test
‘h20-model-runner’. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like ‘autopep8’ to
“clean” your code as follows:

$ pip install autopep8
$ cd h2o-model-runner
$ autopep8 -r --in-place --ignore E501 acumo_h2o-model-runner/ test/

Run tox directly:

$ cd h2o-model-runner
$ tox

You can also specify certain tox environments to test:

$ tox -e py34 # only test against Python 3.4
$ tox -e flake8 # only lint code

And finally, you can run pytest directly in your environment (recommended starting place):

$ pytest
$ pytest -s # verbose output

 Acumos H2O Model Runner

Acumos H2O Model Runner

Contents:

	H2O Model Runner Overview

	Acumos H2O Model Runner Release Notes
	v0.1.0 09-19-2018

	Acumos H2O Model Runner Python Developer Guide
	Sample model creation

	Testing

	Search Page

 H2O Model Runner Overview

H2O Model Runner Overview

The Acumos H2O Model Runner service scores datasets against a POJO or MOJO H2O model. The Acumos
H2O Model Runner service is a Flask application that provides RESTFul endpoints,
with a swagger spec detailing each endpoint.

The source is available from the Linux Foundation Gerrit server:

https://gerrit.acumos.org/r/gitweb?p=on-boarding/model-runner/h2o-model-runner.git;a=summary

The CI/CD jobs are in the Linux Foundation Jenkins server:

https://jenkins.acumos.org/view/on-boarding-model-runner/

Issues are tracked in the Linux Foundation Jira server:

https://jira.acumos.org/secure/Dashboard.jspa

Further information is available from the Linux Foundation Wiki:

https://wiki.acumos.org/

 Acumos H2O Model Runner Release Notes

Acumos H2O Model Runner Release Notes

v0.1.0 09-19-2018

	Added initial code with swagger specs and unit test cases.

 Acumos RDS Model Runner Service

Acumos RDS Model Runner Service

This repository holds the server components of the RDS (R Data) Model Runner Service
for the Acumos machine-learning platform. The service provides scoring mechanisms
for RDS based models which are models saved in R’s RDS format.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2018 AT&T Intellectual Property. All rights reserved.
Acumos is distributed by AT&T under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 R Data Predictor Python Developer Guide

R Data Predictor Python Developer Guide

This RDS (R Data) predictor is used for running predictions on R object files. These models are generally saved via the R command saveRDS. This service also requires having R installed in its environment and RScript to be available on the system path. The minimum version recommended for RScript is 3.4.2 which is the version randomforest package is built with. This service has a dependency on model-manager for downloading models.

This service has a dependency to model-management to download the models. In order for rds-model-runner to talk to model-management the settings need to be configured in settings.cfg that is in rds-model-runner/properties/settings.cfg or the one that is provided in the command line parameter. Then entry is “modelmanager_service=” which points to where model-manager is running.

AsyncPredictions and status methods are yet to be implemented in this version.

The main class to start this service is /rds-model-runner/microservice_flask.py

The command line interface gives options to run the application. Type help for a list of available options.
> python microservice_flask.py help
usage: microservice_flask.py [-h] [–host HOST] [–settings SETTINGS] [–port PORT]

By default without adding arguments the swagger interface should be available at: http://localhost:8061/v2/

Inside the properties folder there is a file called predictor.R which is the internal script that runs the predictions and loads the RDS model. Developers may modify this file as necessary or pass any models/RDS objects that implement a function called predict which the predictor.R will use to run its predictions against. This is especially useful if any data transformations need to be done on the input.

Sample model creation

$ library(ggplot2)
$ library(caret)
$ library(leaps)
$ library(factoextra)
$ library(pmml)
$
$ #These are required for running in RDS Predictor
$ #library RTextTools
$ #library tm
$ #library SparseM
$
$
$ #Load the data
$ data(mtcars)
$
$ #Format the data the way we want them (Lable them)
$ mtcars$gear <- factor(mtcars$gear,levels=c(3,4,5),
 $ labels=c("3gears","4gears","5gears"))
$ mtcars$am <- factor(mtcars$am,levels=c(0,1),
$ labels=c("Automatic","Manual"))
$ mtcars$cyl <- factor(mtcars$cyl,levels=c(4,6,8),
 labels=c("4cyl","6cyl","8cyl"))
$
$
$ #This graph shows cluster groups
$ # MPG goes down by weight
$ # Heavier calls have more cylinders
$ # More cylinders may mean less MPG
$ ggplot(mtcars, aes(wt, mpg, color = cyl)) +
$ geom_point() +
$ geom_smooth(method = "lm", formula = y~x) +
$ labs(title = "Regression of MPG on Weight", x = "Weight", y = "Miles per Gallon")
$
$
$ #Box plots are useful for showing outliers
$ qplot(gear, mpg, data=mtcars, geom=c("boxplot", "jitter"),
$ fill=gear, main="Mileage by Gear Number",
$ xlab="", ylab="Miles per Gallon")
$
$ #Shows 1 outlier
$ boxplot(mpg ~ vs, data=mtcars, main="Displacement")
$
$
$ #Quick method for findign variable importance
$ modelFit <- train(mpg~.,data=mtcars, method="rf" ,importance = TRUE)
$ varImp(modelFit)
$
$ #Find weights of bariable importance using regsubsets
$ best.subset <- regsubsets(mpg~., mtcars, nvmax=5)
$
$ best.subset.summary <- summary(best.subset)
$
$ #This graph plots how adding more varaible adds to the adjusted R^2 value
$ # which is how well the model does. As you can see, after 3 vaiables it
$ # doesn't really improve
$ plot(best.subset.summary$adjr2, xlab="Number of Variables", ylab="Adjusted RSq", type="l")
$
$ #This shows qsec, weight and transmission are the most important variables
$ plot(best.subset)
$
$
$ #Relabel them for Linear model
$ data(mtcars)
$ mtcars$cyl <- factor(mtcars$cyl)
$ mtcars$vs <- factor(mtcars$vs)
$ mtcars$gear <- factor(mtcars$gear)
$ mtcars$carb <- factor(mtcars$carb)
$ #There are some issues using factors currenlty
 $ #mtcars$am <- factor(mtcars$am,levels=c(0,1))
$
$ #Create a linear regression model
$ mtmodel <- lm(mpg ~ qsec + wt + am, data=mtcars)
$ summary(mtmodel)
$
$ #Create a new set of data to predict
$ newdata <- data.frame("qsec" = c(22.2,10.12), "wt" = c(2.6, 3.1), "am" = c(1,0))
$ #newdata$am <- factor(newdata$am,levels=c(0,1))
$
$ newdata$predicted_mpg = predict(mtmodel, newdata = newdata)
$
$ #print predicted values
$ newdata
$
$
$ saveRDS(object = mtmodel, file = 'C:\\Users\\Ryan\\Documents\\R_Projects\\ACUMOS\\rdsmodel', compress = 'gzip')

Testing

The prerequisite for running unit testing is installing python and tox. It is recommended to use a virtual environment for running any python application. If using a virtual environment make sure to run “pip install tox” to install it

The unit testing doesn’t actually invoke RScript and run a predictions on the models.

For more detailed testing RScript which is the command line version of R must be installed on the system path.
We use a combination of tox, pytest, and flake8 to test
model_management. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd rds-model-runner
$ autopep8 -r --in-place --ignore E501 predictor/ test/

Run tox directly:

$ cd rds-model-runner
$ tox

You can also specify certain tox environments to test:

$ tox -e py34 # only test against Python 3.4
$ tox -e flake8 # only lint code

And finally, you can run pytest directly in your environment (recommended starting place):

$ pytest
$ pytest -s # verbose output

 RDS Model Runner

RDS Model Runner

Contents:

	RDS Model Runner Overview

	RDS Model Runner Release Notes
	v0.1.0 09-19-2018

	R Data Predictor Python Developer Guide
	Sample model creation

	Testing

	Search Page

 RDS Model Runner Overview

RDS Model Runner Overview

The RDS (R Data) Model Runner service scores datasets against a RDS file which is a
serialized R model object. RDS Model Runner service is a Flask application that provides
RESTFul endpoints, with a swagger spec detailing each endpoint.

The source is available from the Linux Foundation Gerrit server:

https://gerrit.acumos.org/r/gitweb?p=model-runner/rds-model-runner.git;a=summary

The CI/CD jobs are in the Linux Foundation Jenkins server:

https://jenkins.acumos.org/view/model-runner/

Issues are tracked in the Linux Foundation Jira server:

https://jira.acumos.org/secure/Dashboard.jspa

Further information is available from the Linux Foundation Wiki:

https://wiki.acumos.org/

 RDS Model Runner Release Notes

RDS Model Runner Release Notes

v0.1.0 09-19-2018

	Added initial code with swagger specs and unit test cases.

 <no title>

 Derived from HippoCMS at https://www.onehippo.org/

 Hippo CMS API

Hippo CMS API

Save Solution Revision Description

POST http://<host and optionally port>/site/api-manual/Solution/description/{workspace}

where “workspace” can be “public” or “org”

Request Body Example:

{
 "description":"<p>Test</p>",
 "solutionId":"e85f4c75-439f-4e4f-8362-6d75187f198f",
 "revisionId":"aae12a0c-ee4d-4494-b59d-493a0cc794ca"
}

Get Solution Revision Description

GET http://<host and optionally port>/site/api-manual/Solution/description/{workspace}/{solutionId}/{revisionId}

where “workspace” can be “public” or “org”

Response Body Example:

{
 "description":"<p>Test</p>",
 "solutionId":"e85f4c75-439f-4e4f-8362-6d75187f198f"
 ,"revisionId":"aae12a0c-ee4d-4494-b59d-493a0cc794ca"
}

Save Solution Image

POST : http://<host and optionally port>/site/api-manual/solutionImages/{solutionId}

Request Body: Image as attachment

Get Solution Image Name

GET http://<host and optionally port>/site/api-manual/solutionImages/{solutionId}

Response Body: [image.jpg]

Get Binary image

http://<host and optionally port>/site/binaries/content/gallery/acumoscms/solution/{solutionId}/{imageName}

Save Solution Revision Documents

POST http://<host and optionally port>/site/api-manual/Solution/solutionAssets/{solutionId}/{revisionId}?path={workspace}

Request Body: Document as attachment

Download Solution Revision Document

GET http://<host and optionally port>/site/binaries/content/assets/solutiondocs/solution/{solutionId}/{RevisionId}/{workspace}/{documentName}

Get Document Names

GET http://<host and optionally port>/site/api-manual/Solution/solutionAssets/{solutionId}/{revisionId}?path={workspace}

Response : [Document Names]

 Acumos Hippo CMS Developer Guide

Acumos Hippo CMS Developer Guide

Running locally

This project uses the Maven Cargo plugin to run Essentials, the CMS and site locally in Tomcat.
From the project root folder, execute:

mvn clean verify
mvn -P cargo.run

By default this includes and bootstraps repository content from the repository-data/content module,
which is deployed by cargo to the Tomcat shared/lib.
If you want or need to start without bootstrapping the local content module, for example when testing
against an existing repository, you can specify the additional Maven profile without-content to do so:

mvn -P cargo.run,without-content

This additional profile will modify the target location for the content module to the Tomcat temp/ folder so that
it won’t be seen and picked up during the repository bootstrap process.

Access the Hippo Essentials at http://localhost:8080/essentials.
After your project is set up, access the CMS at http://localhost:8080/cms and the site at http://localhost:8080/site.
Logs are located in target/tomcat8x/logs

Building distributions

To build Tomcat distribution tarballs:

mvn clean verify
mvn -P dist

OR

mvn -P dist-with-content

The ‘dist’ profile will produce in the /target directory a distribution tarball, containing the main deployable wars and
shared libraries.

The ‘dist-with-content’ profile will produce a distribution-with-content tarball, containing as well the
bootstrap-content jar in the shared/lib directory. This kind of distribution is meant to be used for deployments on
empty repositories, for instance deployment on a new environment.

See also src/main/assembly/*.xml if you need to customize the distributions.

Using JRebel

Set the environment variable REBEL_HOME to the directory containing jrebel.jar.

Build with:

mvn clean verify -Djrebel

Start with:

mvn -P cargo.run -Djrebel

Best Practice for development

Use the option -Drepo.path=/some/path/to/repository during start up. This will avoid
your repository to be cleared when you do a mvn clean.

For example start your project with:

mvn -P cargo.run -Drepo.path=/home/usr/tmp/repo

or with jrebel:

mvn -P cargo.run -Drepo.path=/home/usr/tmp/repo -Djrebel

Hot deploy

To hot deploy, redeploy or undeploy the CMS or site:

cd cms (or site)
mvn cargo:redeploy (or cargo:undeploy, or cargo:deploy)

Automatic Export

Automatic export of repository changes to the filesystem is turned on by default. To control this behavior, log into
http://localhost:8080/cms/console and press the “Enable/Disable Auto Export” button at the top right. To set this
as the default for your project edit the file
./repository-data/config/src/main/resources/configuration/modules/autoexport-module.xml

Monitoring with JMX Console

You may run the following command:

jconsole

Now open the local process org.apache.catalina.startup.Bootstrap start

 Acumos Hippo CMS

Acumos Hippo CMS

	Acumos Hippo CMS Release Notes
	Version 1.0.0, 16 November 2017

	Acumos Hippo CMS Developer Guide
	Running locally

	Building distributions

	Using JRebel

	Best Practice for development

	Hot deploy

	Automatic Export

	Monitoring with JMX Console

	Hippo CMS API
	Save Solution Revision Description

	Get Solution Revision Description

	Save Solution Image

	Get Solution Image Name

	Get Binary image

	Save Solution Revision Documents

	Download Solution Revision Document

	Get Document Names

 Acumos Hippo CMS Release Notes

Acumos Hippo CMS Release Notes

Hippo CMS is derived from https://www.onehippo.org/. This version will be deployed as Acumos Hippo CMS as dockerized version.

Version 1.0.0, 16 November 2017

	Added custom code to handle Images, Documents

	Added Springboot Application and Dockerized the Hippo CMS

 <no title>

 [image: docs/images/Acumos_logo_white.png]Acumoslogo

This repository holds the Acumos C Client (https://gerrit.acumos.org/r/acumos-c-client) which helps provide a way to use C++ AI models in the Acumos Platform.

 Acumos C++ client Developer Guide

Acumos C++ client Developer Guide

Overview

This developper guide is intended to provide information for developpers who want to contribute to the
acumos-c-client development.

Architecture and Design

In Acumos a model is packed as a dockerized microservice exposing which is specified using Google protobuf.
In order to achieve that, the modeler must write a short C++ program that attaches the trained model with
the generated gRPC stub in order to build an executable that contains the gRPC webserver as well as the
trained model. This executable will then be started in the docker container.

High-Level Flow

[image: ../../../_images/Architecture.png]

Class Diagrams

Class diagramm cpp client

[image: ../../../_images/Class_diagram_cpp_client.png]

Class diagramm run microservice

[image: ../../../_images/Class_diagramm_run_microservice.png]

Sequence Diagrams

Sequnce diagramm cpp client

[image: ../../../_images/Class_diagramm_run_microservice.png]

Technology and Frameworks

	C++ 11

	gcc 7.4

Project Resources

Provide gerrit, Jira info, JavaDoc (javadoc.acumos.org) if relevant, link to REST API documentation, etc.
For example:

	Gerrit repo: acumos-c-client https://gerrit.acumos.org/r/q/project:acumos-c-client

	Jira : Jira [https://jira.acumos.org] componenent name : acumos-c-client

Development Setup

Classical C++ development environment is required with at least C++ 11 and gcc 7.4

How to Run

Please have a look on Tutorial section of the Acumos C++ Client User Guide

How to Test

A test is available in the user guide

CLI Onboarding

For cli onboarding, you have to set two environment variables ACUMOS_HOST and ACUMOS_PORT.
In acumos_host you have to write name of your acumos instance. Rest of things for api url is inserted by python script
and your resultant url look like this.

Push URL: https://my.acumos.instance.org:443/onboarding-app/v2/models
Auth URL: https://my.acumos.instance.org:443/onboarding-app/v2/auth

Microservice generation and uploading license are also dependent on user. You provides the user response to option method.
In cpp cli onboarding, use _push_model because zip model bundle is already created and you have provide
the path to dump directory.

option = Options(create_microservice=_create_microservice, license=_license)
session_._push_model(self.dump_dir, self._push_api, self._auth_api, option, 2, None)

Design of CLI Onboarding

Onboarding Manager is responsible for creating bundle and for push model. This class consist of two public methods.
First method is create_bundle which takes the object of bundle_information as parameter and return zip bundle.
The bundle_information have following attributes. model_name is the name of model, proto_file path to the
protobuf file, data_dir it is directory where data is placed, lib_dir path to the library directory,
executable path to the executable file for microservice generation and dump it is directory where zip bundle is
present. If there exists no dump directory then system will generate it automatically. Second method is push_model, it
takes the object of model_information and bundle_information. The model_information have following attributes, host_name
is the name of host where we submit the model, port the port number, (You can find the right host_name and port in the
“ON-BOARDING MODEL” page of your Acumos instance) _USER_NAME and _PASSWORD is required for authentication. These UserName
and password are the same as you used to authenticate yourself on Acumos. create_microservice is a boolean variable to
control microservice generation during onboarding and license path of license (optional). The push_api and auth_api
is required for cli onboarding. The method push_model create an object of cli_onboarding and call the method submit_model with
both object bundle_information and model_information. All the information is taken separately via cpp_client and passed to the
module manager. Purpose of creating this design is to use it separately as module.
The input can also be fixed it in script so that the module can be run automatically.

 <no title>

	Release Notes

	Acumos C++ client Developer Guide

	Acumos C++ Client User Guide

 Acumos C++ Client User Guide

Acumos C++ Client User Guide

Target Users

The target users of this guide are modelers with sufficient C++ knowledge to write and build C++ applications.

Overview

This guide will describe the steps needed to onboard a c++ model. Basically the following steps are needed:

	Train the model

	Serialized trained model

	Create Microservice

	Define the gRPC service

	Use the onboaridng-cpp client to save model_bundle locally or to onboard it to Acumos by CLI

The model_bundle is a package that contains all the necessary materials required by Acumos to on-board the
model and use it in acumos. At the end you can follow a tutorial where the provided example iris-classifier
is prepared to be onboarded.

Architecture

In Acumos a model is packed as a dockerized microservice exposing which is specified using Google protobuf.

In order to achieve that, the modeler must write a short C++ program that attaches the trained model with
the generated gRPC stub in order to build an executable that contains the gRPC webserver as well as the
trained model. This executable will then be started in the docker container.

The minimum C++ standard level is C++11 and the recommended compiler is gcc 7.4

Prerequisites

The examples was developed in the following environment:

	Ubuntu 18.04

	g++ 7.4 (default version on Ubuntu 18.04)

	gRPC 1.20, should be installed from source (https://github.com/grpc/grpc) into /usr/local including all plugins

	python 3.6

	cmake

set the two following environment variables

export ACUMOS_HOST = my.acumos.instance.org
export ACUMOS_PORT = my acumos port

These values can be found in the installation folder of Acumos : system-integration/AIO/acumos_env.sh. Please look at the
following Acumos local environement variable : ACUMOS_DOMAIN, ACUMOS_PORT or ACUMOS_ORIGIN

Tutorial : Onboard the Iris Kmeans Classifier

To perform the following steps you have to clone the repository acumos-c-client from gerrit (https://gerrit.acumos.org).
Browse the repositories to acumos-c-client then retrieve the SSH or HTTPS commands. You can clone it also from Github
(https://github.com/acumos/acumos-c-client)

In acumos-c-client repository, the “examples” directory contains the complete steps to onboard the well known Iris
Classifier using a KMeans implementation.

Add Kmeans clustering in acumos-c-client repo

After cloning the acumos-c-client repository, do the following :

cd acumos-c-client
git submodule update --init

This will add the DKM algorithm (A generic K-means clustering written in C++) in /examples/iris-kmeans/dkm folder.

Then you have to build basic executables

cmake .
make

Train the model and save it in serialized format

The targeted microservice needs to load the serialized trained model at startup. It is completely up to the
developer how this is done. The example uses protobuf, because it fits in the technology lineup of the
whole example.

First, create the protobuf model definition that will be used to save and load the trained model

cd examples/iris-kmeans/step2_serialize_model/
protoc --cpp_out=. centroids.proto

Then build the training binary

cmake .
make

and finally Train the model ans save it in serialized format

cd ..
./step2_serialize_model/bin/save-iris-kmeans

The file iris-kmeans/src/iris-kmeans.cpp trains the iris classifier model by finding a centroid for each of the
three iris species. The classify method then finds the closest centroid to the given data point and returns
it as the most probable species. Thus in this case, the three centroids make up the trained model.

Now the model is serialized and the binary is saved in /iris-kmeans/data/

Create protobuf Microservice

To create the protobuf Microservice do the following :

cd step3_model_microservice/
cmake .
make

The microservice must be implemented and at first read the serialized model from step2. The example implementation can be found
in the file iris-kmeans/step3_model_microservice/run-microservice.cpp. Then, the service interface of the microservice
must be specified using protobuf. In our example, it is the classify method with its input and output parameters are defined in
iris-kmeans/step3_model_microservice/model.proto

launch the Acumos on-boarding cpp client

Create a lib directory

cd ..
mkdir lib

and launch the cpp client by command line if you want or with your prefered Python IDE. It is recommended to call the onboarding
script from /examples/iris-kmeans folder.

python3 ../../cpp-client.py

The Acumos on-boarding cpp client will ask you the follwing question :

	Name of the model

	Path to model.proto

	Path to data, lib and executable(bin) directories

	name of the dump directory (where you want to save the model bundle)

	CLI onboarding ? [yes/no]

	if no, the model bundle will be save locally in the dump directory and then you will be able to on-board it later by Web-onboarding

	if yes you must ask the following questions (if environment variable haven’t been set previously, as requested in prerequisites, the cpp client will ask you to fill the values at this step)

	Do you want to create a microservice ?

	Do you want to add license ?

	User Name (your Acumos login)

	Password (your Acumos password)

Then the on-boarding start, it will take more or less time depending if you choose to create the microservice during on-boaring or not.
Once the onboarding is finished you can retrieve your model in Acumos.

How to on-board your own model

In the follwing we describe all the steps we followed to build the previous tutorial. You must follow these steps to be able to on-board
in acumos your own C++ model.

Step 1: Train model

We assume that you have a cpp file like src/iris-kmeans.cpp to train you own model.

The src/iris-kmeans.cpp trains the iris classifier model by finding a centroid for each of the
three iris species. The classify method then finds the closest centroid to the given data point and returns
it as the most probable species. Thus in this case, the three centroids make up the trained model.

Step 2: Serialize trained model

The targeted microservice needs to load the serialized trained model at startup. It is completely up to the
developer how this is done. The example uses protobuf, because it fits in the technology lineup of the
whole example. To save and load the trained model, the tutorial use a protobuf definition the can be found in
step2_serialize_model/centroids.proto:

syntax = "proto3";
package cppsample;

message Centroid {
 float sepal_length = 1;
 float sepal_width = 2;
 float petal_length = 3;
 float petal_width = 4;
}

message CentroidList {
 repeated Centroid centroid = 1;
}

Then, generate the respective c++ code using the protobuf compiler:

protoc --cpp_out=. centroids.proto

An use a small code snippet to save the data to a file:

string model_file="data/iris-model.bin";
fstream output(model_file, ios::out | ios::binary);
centroids.SerializePartialToOstream(&output);

In the tutotrial, the two examples to load and save the iris model must be run from the iris-kmeans directory
to get all file paths right: they expect the data directory in the cwd and will write the model to data/iris-model.bin

Step 3: Create Microservice

The microservice must be implemented and at first read the serialized model from step2. The example
implementation can be found in the file run-microservice.cpp.

Then, the service interface of the microservice must be specified using protobuf. In our example, it is the
classify method with its input and output parameters must be defined in a file that should be named model.proto:

syntax = "proto3";
package cppservice;

service Model {
 rpc classify (IrisDataFrame) returns (ClassifyOut);
}

message IrisDataFrame {
 repeated double sepal_length = 1;
 repeated double sepal_width = 2;
 repeated double petal_length = 3;
 repeated double petal_width = 4;
}

message ClassifyOut {
 repeated int64 value = 1;
}

Step 4: Define gRPC service

From model.proto, the necessary code fragments and gRPC stubs can be generated like this:

protoc --cpp_out=. model.proto
protoc --grpc_out=. --plugin=protoc-gen-grpc=/usr/local/bin/grpc_cpp_plugin model.proto

After that, the gRPC service method has to be implemented:

Status classify(ServerContext *context, const IrisDataFrame *input, ClassifyOut *response) override {
 cout << "enter classify service" << endl;
 std::array<float, 4> query;
 query[0]=input->sepal_length(0);
 query[1]=input->sepal_width(0);
 query[2]=input->petal_length(0);
 query[3]=input->petal_width(0);
 auto cluster_index = dkm::predict<float, 4>(means, query);
 cout << "data point classified as cluster " << cluster_index << endl;
 response->add_value(cluster_index);

 return Status::OK;
}

And finally, the gRPC server has to be started:

string server_address("0.0.0.0:"+port);
ServerBuilder builder;
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
builder.RegisterService(&iris_model);
unique_ptr<Server> server(builder.BuildAndStart());
cout << endl << "Server listening on " << server_address << endl;
server->Wait();

To prepare for packaging, specific folders will be expected:

	the data folder, where all files of the serialized model are stored

	the lib folder that should contain the shared libraries that are not part of the g++ base installation

Step 5 : Use the onboarding-cpp client to save model_bundle locally or to onboard it to Acumos by CLI

Please refers to tutorial to use the onboarding-cpp client.

 Release Notes

Release Notes

These release notes cover the acumos-c-client for public use, which are released together.

version 1.3 20 July 2020

	display location of the model bundle : ACUMOS-4224 [https://jira.acumos.org/browse/ACUMOS-4224]

	repeat question when answers are mistyping : ACUMOS-4223 [https://jira.acumos.org/browse/ACUMOS-4223]

version 1.2 30 March 2020

	enhance CLI on-boarding for C ++ : ACUMOS-3969 [https://jira.acumos.org/browse/ACUMOS-3969]

version 1.1 27 February 2020

	CLI on-boarding for C++ : ACUMOS-3729 [https://jira.acumos.org/browse/ACUMOS-3729]

version 1.0, 15 October 2018

	Implement iris classifier example in C++ : ACUMOS-2927 [https://jira.acumos.org/browse/ACUMOS-2927/]

	Serialize C++ trained model using protobuf (version 3) : ACUMOS-2928 [https://jira.acumos.org/browse/ACUMOS-2928/]

	Implement the cpp-client to generate model bundle : ACUMOS-2929 [https://jira.acumos.org/browse/ACUMOS-2929/]

	Implement the microservice model : ACUMOS-3430 [https://jira.acumos.org/browse/ACUMOS-3430/]

 <no title>

 The MIT License (MIT)

Copyright (c) 2015 Nick Sarten gen.battle@gmail.com

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 DKM

DKM

A generic C++11 k-means clustering implementation

[image: ../../../../../_images/dkm.svg]Build Status [https://travis-ci.org/genbattle/dkm]

This is a generic k-means clustering algorithm written in C++, intended to be used as a header-only library. Requires C++11.

The algorithm is based on Lloyds Algorithm [https://en.wikipedia.org/wiki/Lloyd%27s_algorithm] and uses the kmeans++ [https://en.wikipedia.org/wiki/K-means%2B%2B] initialization method.

The library is located in the include directory and may be used under the terms of the MIT license (see LICENSE.md). The tests in the src/test directory are also licensed under the MIT license, except for lest.hpp, which has its own license (src/test/LICENSE_1_0.txt), the Boost Software License. The benchmarks located within the bench directory also fall under the MIT license. Benchmark data was obtained from the UCI Machine Learning Repository here [https://archive.ics.uci.edu/ml/datasets/Iris] and the University of Eastern Finland here [http://cs.joensuu.fi/sipu/datasets/].

dkm.hpp contains the standard serial implementation which depends only on C++11 support. dkm_parallel.hpp contains the parallel implementation which relies on OpenMP for acceleration; make sure to add -fopenmp (for GCC), -fopenmp=libiomp5 (for Clang) or equivalent to your compiler flags to enable OpenMP if you use this implementation.

A simple benchmark can be found in the bench folder. An example of the current results on an Intel i5-4210U @ 1.7GHz:

BEGINNING PROFILING

Dataset iris.data.csv
..............................
DKM: 0.0425224ms
DKM parallel: 0.0819724ms
OpenCV: 0.0532497ms

Dataset s1.data.csv
..............................
DKM: 7.19246ms
DKM parallel: 4.95625ms
OpenCV: 4.56927ms

Dataset birch3.data.csv
..............................
DKM: 5747.78ms
DKM parallel: 2985.93ms
OpenCV: 2367.55ms

Dataset dim128.data.csv
....................
DKM: 36.7438ms
DKM parallel: 15.6721ms
OpenCV: ---

DKM is at least as fast as OpenCV for small datasets (< 500 points) and can handle any amount of dimensions (OpenCV is limited to 1D/2D data). At larger data sizes the parallel DKM implementation is significantly faster, and only slightly slower than the OpenCV implementation (in my testing).

Benchmark Data Sets

iris.data.csv natural data taken from measurements of different iris plants. 150 points, 2 dimensions, 3 clusters. Source: UCI machine learning repository [https://archive.ics.uci.edu/ml/datasets/Iris].

s1.data.csv synthetic data. 5000 points, 2 dimensions, 15 clusters. Source: P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering problems”, Pattern Recognition, 39 (5), 761-765, May 2006.

birch3.data.csv synthetic data large set. 100000 points, 2 dimensions, 100 clusters. Source: Zhang et al., “BIRCH: A new data clustering algorithm and its applications”, Data Mining and Knowledge Discovery, 1 (2), 141-182, 1997

dim128.data.csv synthetic data with high dimensionality. 1024 points, 128 dimensions, 16 clusters. Source: P. Fränti, O. Virmajoki and V. Hautamäki, “Fast agglomerative clustering using a k-nearest neighbor graph”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (11), 1875-1881, November 2006

Usage

To use the DKM k-means implementation, simply include include/dkm.hpp and call dkm::kmeans_lloyd() with your data (std::vector<std::array<>>) and the number of cluster centers the algorithm should calculate for the data set. It is recommended that float or double are used for the input data types; with integer data types the algorithm may not converge.

Example:

std::vector<std::array<float, 2>> data{{1.f, 1.f}, {2.f, 2.f}, {1200.f, 1200.f}, {2.f, 2.f}};
auto cluster_data = dkm::kmeans_lloyd(data, 2);

The parallel implementation works in the same way, except the header to include is include/dkm_parallel.hpp and the function to call is dkm::kmeans_lloyd_parallel().

The return value of the kmeans_lloyd function is a std::tuple<std::array<T, N>, std::vector<uint32_t>> where the first element of the tuple is the cluster centroids (means) and the second element is a vector of indices that correspond to each of the input data elements. The indices returned in the second element of the tuple are cluster labels that map each corresponding element of the input data to a centroid in the first element of the tuple.

Printing the contents of the tuple for the example gives the following output:

Means:
	(1200,1200)
	(1.66667,1.66667)

Cluster labels:
	Point: (1,1) (2,2) (1200,1200) (2,2)
	Label: 1 1 0 1

We can see from the output that the means are at (1200, 1200) and (1.66667, 1.66667). The cluster labels show that the third data point is the only member of the first cluster. The first, second and fourth data points are members of the second cluster. The code used for this example is available in src/example/main.cpp.

Building (tests and benchmarks)

For tests and benchmarks DKM uses a standard CMake out-of-tree build model.

To make everything:

mkdir build
cd build
cmake .. && make

To build only the tests run make dkm_tests instead of make. To build only the benchmarks run make dkm_bench.

The tests can be run using the make test command or executing ./dkm_tests in the build directory, and the benchmarks can likewise be run with ./dkm_bench.

Compatability

The following compilers are officially supported on Linux and tested via Travis [https://travis-ci.org/genbattle/dkm]:

	Clang 3.8

	Clang 5.0

	GCC 4.9

	GCC 7.0

GCC/Clang versions prior to the above are intentionally unsupported due to poor C++11 support. Other versions between or after the supported versions should work: if they don’t, please create a bug report or pull request. Microsoft VC++ 12.0+ (Visual Studio 2013 or later) is intended to be supported, but does not currently have a CI build set up.

Dependencies (test)

	CMake

Dependencies (bench)

	OpenCV 2.4+

	OpenMP 3.1+

	CMake

 Runtime Orchestrator

Runtime Orchestrator

This repository holds the server of the Runtime Blueprint Orchestrator
for the Acumos machine-learning platform deployment.

Please see the documentation in the “docs” folder.

 Runtime Orchestrator Application Programming Interfaces

Runtime Orchestrator Application Programming Interfaces

API

1. Set the Splitter or Collator configuration

	Operation Name

	setConf

	Description

	Used to set the splitter Map or collator Map obtained from the Blueprint into the ProtobufService instance

	Trigger

	Blueprint Orchestrator triggers it when processing the Splitter node or the collator Node

Request/Usage

@Autowired
@Qualifier(“SplitterProtobufServiceImpl”)
private SplitterProtobufService protoService;
…

protoService.setConf(splitterMap);

or

protoService.setConf(collatorMap);

	Response

	returns void

	Behavior

	Set the splitter Map or the collator Map obtained from the Blueprint into the ProtobufService instance
This will be used to decide how to split or collate the incoming messages.

2. Split data

	Operation Name

	parameterBasedSplitData

	Description

	Used to actually split data based on Parameter based splitting scheme dictated by the splitter Map.

	Trigger

	Blueprint Orchestrator triggers it when processing the Splitter node.

	Request/Usage

	It accepts a byte[] stream of input protobuf serialized data

Map<String, Object> output = protoService.parameterBasedSplitData(byte[]);

	Response

	Map<String,byte[]>
Key - The name of the model
The protobuf message payload destined for the model.

	Behavior

	Accept incoming protobuf serialized binary data.
Based on the set splitter Map, split the data into different payloads destined for different models.
Send a Map of Models and their corresponding input payloads based on the splitting.

3. Array Based Collate data

	Operation Name

	arrayBasedCollateData

	Description

	Used to call the Array based Collation scheme

	Trigger

	Blueprint Orchestrator triggers it when processing the Collator node.

	Request/Usage

	It must be called with a list of protobuf messages.
protoService.arrayBasedCollateData(list<byte[]>);

	Response

	return byte[] which is the Collated output message

	Behavior

	Accepts incoming list of Protobuf messages
Collate the messages based on Array based collation scheme.
Return the collated message

4. Parameter Based Collate data

	Operation Name

	parameterBasedCollateData

	Description

	Used to call the parameter based collation scheme

	Trigger

	Blueprint Orchestrator triggers it when processing the Collator node.

	Request/Usage

	It accepts a Map<String, Object> which is a Map of Messages from all the connected models, where key is the model name and value is the protobuf message.

protoService.parameterBasedCollateData(Map<String, Object>);

	Response

	return byte[] which is the Collated output message

	Behavior

	Accept incoming list of Protobuf messages
Collate the messages based on Parameter based collation scheme.
Return the collated message

5. Put the Blueprint

	Operation Name

	PUT /putBlueprint

	Description

	Accepts the blueprint.json file. This call must be made to set the desired blueprint in the blueprint orchestrator.

	Trigger

	The deployer triggers /putBlueprint

	Request

	Content-Type: application/json

	Response

	Status : 200 OK

6. Put Dockerinfo

	Operation Name

	PUT /putDockerInfo

	Description

	Accepts the dockerinfo.json file. This supplies the infrastructure related information to the orchestrator. In case of Data Broker being present, this call is also used to trigger the functioning of the orchestrator. In cases, without the data source, we need to make a call to http://{hostname}:8555/{operation_of_the_first_model_in_the_solution} explicitly to trigger the orchestrator.

	Trigger

	The deployer triggers /putDockerInfo.

	Request

	Content-Type: application/json

	Response

	Status : 200 OK

7. Operation

	Operation Name

	POST /{operation}

	Description

	Accepts protobuf serialized binary data. Returns the output of the final model in the composite solution.

	Trigger

	The user/application using the compsite solution triggers /operation.

	Request

	Content-Type: /

	Response

	/

 Runtime Orchestrator Developer Guide

Runtime Orchestrator Developer Guide

Introduction

The Runtime Orchestrator (also called Blueprint Orchestrator or Model connector) is used to orchestrate between the different models in a Composite AI/ML solution.

Architecture and Design

There are three end points in the Blueprint Orchestrator, /putDockerInfo, /putBlueprint and /{operation}, the first two are PUT requests and the last one is a POST request.

The deployer will invoke /putBlueprint and /putDockerInfo APIs to push docker info JSON and blueprint.json to the orchestrator to start the execution flow of the composite solution.

After the deployer pushes the configuration JSON files, the data source will invoke /{operation} to pass the binary data stream in Protobuf format so that the orchestrator can start in turn passing the data to the first node from the blueprint.json by invoking the API as specified in the path variable {operation}. The orchestrator will wait for its response, which is also a data stream in Protobuf format, then continue to pass the response to the subsequent nodes from the blueprint.json until all the nodes are exhausted.

In case of the databroker being present, the deployer will invoke /putBlueprint and /putDockerInfo and the Blueprint Orchestrator will pull data from the Data Broker and pass data to subsequent nodes as defined by the blueprint.json.

[image: image0]

[image: image1]

Build Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central (for most jars)

Build and Package

Use maven to build and package the service into a single “fat” jar using this command:

mvn clean install

Launch Prerequisites

	Java version 1.8

2. A valid application.properties file.
The Runtime Orchestrator by default launches on port 8555.
This behaviour can be changed by changing the server port in src/main/resources/application.properties
You can also change the location and name of the logging file here.

 Runtime Orchestrator

Runtime Orchestrator

	Runtime Orchestrator Release Notes
	Version 2.0.13 5th May 2019

	Version 2.0.12 5th February 2019

	Version 2.0.11 14th September 2018

	Version 2.0.10 12th September 2018

	Version 2.0.9 29th August 2018

	Version 2.0.8 14th August 2018

	Version 2.0.7 14th August 2018

	Version 2.0.6 10th August 2018

	Version 2.0.5 7th August 2018

	Version 2.0.4 25th July 2018

	Version 2.0.3 19th July 2018

	Version 2.0.2 17th July 2018

	Version 2.0.1 16th July 2018

	Version 2.0.0 11th July 2018

	Version 1.0.14 28th June 2018

	Version 1.0.13 June 2018

	Version 1.0.12 June 2018

	Version 1.0.11 June 2018

	Version 1.0.10 May 21, 2018

	Version 1.0.9 April 2018

	Version 1.0.8 April 2018

	Version 1.0.7 March 2018

	Version 1.0.6 March 2018

	Version 1.0.5 March 2018

	Version 1.0.4 March 2018

	Version 1.0.3 March 2018

	Version 1.0.2 Feburary 2018

	Version 1.0.1 Feburary 2018

	Version 1.0.0 December 2017

	Runtime Orchestrator Developer Guide
	Introduction

	Architecture and Design

	Build Prerequisites

	Build and Package

	Launch Prerequisites

	Runtime Orchestrator User Guide

	Runtime Orchestrator Application Programming Interfaces
	API

 Runtime Orchestrator Release Notes

Runtime Orchestrator Release Notes

The server is deployed within a Docker image.

Version 2.0.13 5th May 2019

	Calls updated endpoints of the models

	ACUMOS-1561

Version 2.0.12 5th February 2019

	Change in the splitter to handle images

	ACUMOS-2457

Version 2.0.11 14th September 2018

	Added some more Junit tests

	ACUMOS-1720

Version 2.0.10 12th September 2018

	Added some Junit tests

	ACUMOS-1720

Version 2.0.9 29th August 2018

	Additions for Data Broker Support

Version 2.0.8 14th August 2018

	Bug fix 2 for incorrect output sent to some nodes.

	ACUMOS-1556

Version 2.0.7 14th August 2018

	Return headers of last model response to the Data source

	ACUMOS-1346

Version 2.0.6 10th August 2018

	Bug fix for incorrect output sent to some nodes.

	ACUMOS-1556

Version 2.0.5 7th August 2018

	Print data sent to every model before POST.

	Bug fix for incorrect traversal.

	ACUMOS-1523

Version 2.0.4 25th July 2018

	Bug fix for printing final output

	ACUMOS-1452

Version 2.0.3 19th July 2018

	Add Protobuf readable messages for connected to nodes of the Splitter.

	Better logs

Version 2.0.2 17th July 2018

	Probe Integration - MC will now send inputs of all models to the Probe. And also outputs for the last model to the probe.

Version 2.0.1 16th July 2018

	ACUMOS-1379

Version 2.0.0 11th July 2018

	Major upgrades to the Model connector to support Generic Directed Acyclic Graphs

	Supports Parameter based Splitter and Collation along with other use cases supported by previous versions.

	ACUMOS-1350

Version 1.0.14 28th June 2018

	More exception handling to send messages about connect timeout and null output received from models.

	Single Model Support available in the Model connector.

	ACUMOS-1265

Version 1.0.13 June 2018

	Better Logging and Exception Handling

	Integration with collator.

Version 1.0.12 June 2018

	Support for Split and Join using Array based Collation

	Introducing Array based Splitter

	Introducing Collator

	Probe calling code refactored

Version 1.0.11 June 2018

	Remove binary message from the logs.

Version 1.0.10 May 21, 2018

	Use http GET to contact Data Broker as per Data Broker API changes.

Version 1.0.9 April 2018

	Supports new Blueprint for Data Broker.

	Introduces usage of Executor framework for thread management.

Version 1.0.8 April 2018

	More tests and update release notes.

Version 1.0.7 March 2018

	Change to send reply to Data source.

Version 1.0.6 March 2018

	Supports 2xx responses from Models

Version 1.0.5 March 2018

	Supports Blueprint Probe changes to not include Probe node. The Probe node will always have container_name as “Probe

Version 1.0.4 March 2018

	Multithreading support for Async response to Data Source and also Polling Data Broker.

	Improved handling of Data Broker case.

Version 1.0.3 March 2018

	Bug fixes + Now supports script sending via POST to Data Broker

Version 1.0.2 Feburary 2018

	Supports databroker, parallel probe and also supports latest blueprint

Version 1.0.1 Feburary 2018

	Supports new blueprint JSON format which contains node_type, message_name, and proto_url

Version 1.0.0 December 2017

	Supports the three end points: /putBlueprint, /{operation}, /putDockerInfo

 Runtime Orchestrator User Guide

Runtime Orchestrator User Guide

The Runtime Orchestrator (also called Blueprint Orchestrator or Model connector) is used to orchestrate between the different models in a Composite AI/ML solution.

There are three end points in the Blueprint Orchestrator, /putDockerInfo, /putBlueprint and /{operation}, the first two are PUT requests and the last one is a POST request.

The deployer will invoke /putBlueprint and /putDockerInfo APIs to push docker info JSON and blueprint.json to the orchestrator to start the execution flow of the composite solution.

After the deployer pushes the configuration JSON files, the data source will invoke /{operation} to pass the binary data stream in Protobuf format so that the orchestrator can start in turn passing the data to the first node from the blueprint.json by invoking the API as specified in the path variable {operation}. The orchestrator will wait for its response, which is also a data stream in Protobuf format, then continue to pass the response to the subsequent nodes from the blueprint.json until all the nodes are exhausted.

In case of the databroker being present, the deployer will invoke /putBlueprint and /putDockerInfo and the Blueprint Orchestrator will pull data from the Data Broker and pass data to subsequent nodes as defined by the blueprint.json.

The Runtime Orchestrator by default launches on port 8555.

Any application can request predictions from a composite solution/ solution where the Orchestrator is involved in by sending a HTTP POST request to the endpoint http://{hostname}:8555/{operation_of_the_first_model_in_the_solution}

 vm-predictor

vm-predictor

An example model that can predict resource utilization at
a given timestamp based on the time and historical context.

	Overall Documentation

	Release Notes

	Tutorials

	Deployment and Running,

	Example Web Application

	Advanced Machine Learning Discussion

 VM Predictor

VM Predictor

	VM Predictor Release Notes
	0.8

	VM Predictor Guide
	INTRODUCTION

	WORKFLOW

	MACHINE LEARNING BASICS

	MODELS

	General runtime arguments

	Example Usages

	Release Notes

	Additional Background

	Metadata Examples

	Tutorial
	Wrapping Models for Deployment

	Web Demo

	Advanced Machine Learning Topics

 VM Predictor Release Notes

VM Predictor Release Notes

0.8

0.8.2

	Update requirements for matplotlib

0.8.1

	Documentation and package update to use install instructions instead of installing
this package directly into a user’s environment.

	Refactor documentation into sections and tutorials.

	Create this release notes document for better version understanding.

	Refactor to remote the demo bin scripts and rewire for direct call of the
script crome.py and crome_multi.py as the primary interaction mechanisms.

0.8.0

	Refactor for compliant dataframe usage following primary client library
examples for repeated columns (e.g. dataframes) instead of custom types
that parsed rows individually.

	Refactor web, api, main model wrapper code for corresponding changes.

	Migration from previous library structure to new acumos client library

	Refactor to not need this library as a runtime/installed dependency

 VM Predictor Guide

VM Predictor Guide

An example model that can predict resource utilization at a given timestamp
based on the time and historical context.

INTRODUCTION

Time series data is often cyclical in nature, with ups and downs dependent on
days of the week, holidays, morning vs afternoon, or whatever. The main idea
behind this project is to predict future values of a time series, as
represented by rows in a CSV file, using machine learning (ML) techniques.

As an example, the CROME data files contain VM (virtual machine) usage
statistics at 5-minute intervals, including cpu, memory, network, and others.
The hope is that by predicting future VM behavior we can more efficiently allocate resources.

This set of tools allows the user to simulate (and, potentially, implement) a
train/predict regimen over an extended period of time. It can help set up
scenarios such as: “let’s train on 31 days of data and predict usage for the
following day, repeated every day for 6 months”.

WORKFLOW

Given a set of FEAT (or other) CSV files containing time-series data, the process is fairly simple.

	Collect KPI data from a collector software. A simple columnar format is acceptable, with
the minum columns being KPI, timestamp, VM/uniqueid.

	Next, decide if a single-entity or multi-entitiy model is preferred. Generally, we
advocate for a multi- model because some insights from one VM may be conveyed to another.

	Either reformat data by hand, use the scripts provided here, or let it occur during
training and processing.

	Reformatting requires the collection of all time samples and resampling at the
specified intervals.

	Specifically, resampling history for 1D8H means that using the provided sample
time one should also include a sample from one day and eight hours ago.

	Train the model and export a binary artifact. Note that these models are currently
static and not online-updatable.

MACHINE LEARNING BASICS

Machine learning models are trained on “features” in order to predict the “target”.

	In CROME FEAT files the target is typically a column containing one of the
usage statistics: cpu_usage, mem_usage, or net_usage. The target is
specified on the command line with the -t option, e.g. -t net_usage.
Note that target defaults to cpu_usage.

	The features used are, by default, only time-based features such as ‘month’,
‘day’, ‘weekday’, ‘hour’, and ‘minute’. These do not require any other
information in the CSV file other than the date. Good performance can be
achieved using just those features.

	For enhanced ML performance however additional features may be required.
When the default is not used ALL features must be listed on the command line
with the “-f” switch.

	In some cases the data files themselves contain features of value. Just add
the name of the desired column to the feature list, for example “VM_ID”.
Additionally crome_multi.py provides specialized syntax to give access to
prior values of the target, as features. If a feature begins with “hist_”
it indicates such a ‘historical’ feature. The time displacement string
immediately follows, for example ‘hist_1D’ is the target value one day previous.
‘hist_1H’ is one hour previous; ‘hist_1D1H’ is one day plus one hour previous. And so on.

	Those historical values are point values (according to the base sample size)
so to sample over a longer period add a second parameter after a dash.
‘hist_2D-1H’ specifies the previous target value two days ago averaged over one hour.

See the training and deployment steps for more examples.

MODELS

Access to several ML model types are built in to crome_multi.py. The -M
command line option allows selecting the learning algorithm (model).
Current choices include:

	“RF” – Random Forest (default)

	“RF_SC” – Random Forest with Scaler

	“ET” – Extra Trees

	“ET_SC” – Extra Trees with Scaler

The set_param (-i) switch gives command-line access to one or more of the
model’s internal parameters. If “RF” is selected (the default), one can
for example set the number of estimators to 18 with: -i rf__n_estimators 18.

Code for choices “H2O” and “ARIMA” also exists but require a scikit
wrapper to function within crome_multi.py (not included).
Also, the base class can easily accomodate your own custom models
especially via the scikit interface.

Installation and Package dependencies

To install vm-predictor just clone this repository and use pip.

Note You must have installed acumos_client before this package can be installed.

git clone <vm-predictor repo url>
pip install .

Package dependencies for the core code and testing have been flattened into a single file
for convenience. Instead of installing this package into your your local
environment, execute the command below.

pip install -r requirments.txt

or, if you want ot install dependencies with a classic package place holder…

pip install . -v

General runtime arguments

The main script has these commandline arguments, which can also be evoked with the option -h.

VM Predictor training and testing

positional arguments:
 files list of CSV files to process

optional arguments:
 -h, --help show this help message and exit
 -t TARGET, --target TARGET
 target prediction column (default: cpu_usage)
 -c, --compound output compound charts (default: False)
 -s, --separate output separate charts (default: False)
 -r, --randomize randomize file list (default: False)
 -p PNG_DIR, --png_dir PNG_DIR
 destination directory for PNG files (default:)
 -n MAX_FILES, --max_files MAX_FILES
 process at most N files (default: 1000000)
 -m MIN_TRAIN, --min_train MIN_TRAIN
 minimum # samples in a training set (default: 300)
 -D DATE_COL, --date_col DATE_COL
 column to use for datetime index (default:
 DATETIMEUTC)
 -T TRAIN_DAYS, --train_days TRAIN_DAYS
 size of training set in days (default: 31)
 -P PREDICT_DAYS, --predict_days PREDICT_DAYS
 number of days to predict per iteration (default: 1)
 -S SAMPLE_SIZE, --sample_size SAMPLE_SIZE
 desired duration of train/predict units. See
 http://pandas.pydata.org/pandas-
 docs/stable/timeseries.html#offset-aliases (default:
 15min)
 -f FEATURES [FEATURES ...], --features FEATURES [FEATURES ...]
 list of features to use (default: ['day', 'weekday',
 'hour', 'minute'])
 -M ML_PLATFORM, --ML_platform ML_PLATFORM
 specify machine learning platform to use (default: SK)
 -a PUSH_ADDRESS, --push_address PUSH_ADDRESS
 server address to push the model (default:)
 -d DUMP_MODEL, --dump_model DUMP_MODEL
 dump model to a directory for local running
 (default:)

 (only for single-model mode)
 -R, --is_raw_data for the push and dump options, perform feature
 processing (default: False)

Advanced Variations

As you may have guessed by now there are a lot of choices in ML models and
their parameters. One way to zero in on “best practice” is to do a Grid
Search. The basic idea is that all the various options and their values
form a grid of possibilities, and to find the ideal choice we try all the
combinations. The script variations.py demonstrates one way of doing that.
Essentially each “run_variation” line instantiates a different scikit model
with assorted parameters. Though not an exhaustive search (each run is lengthy),
it is meant as example code which, when you get the hang of it, will serve as
a gateway to your own experiments.

Example Usages

Please consult the tutorials dirctory for usage examples
including training examples
and an in-place web page demonstration.

Release Notes

The release notes catalog additions and modifications
over various version changes.

Additional Background

Some additional information is provided in advanced backgrounds tutorial
for those readers with interest in general machine learning study for this problem.

FILE REFERENCE

File | Description
—–|————
add_FEAT_data.py | Extracts individual VM data from one or more FEAT data files. Use ‘-h’ for a list of options.
crome.py | Older version of crome_multi.py, can only process single-VM models. Includes H2O and ARIMA support.
crome_multi.py | Main CROME processing script builds multi-VM models and simulates train-predict cycles over an extended time period, outputting the results as charts or tables. Please consult the help page (-h) for a complete list of options.
df_col2float.py | Convert a column to floating point.
df_colnospc.py | Remove spaces from column names.
df_column.py | Display set of all values in a given column for a CSV file.
df_cols.py | Show names of columns in a dataframe.
df_concat.py | Concatenate dataframe CSVs with same column layout.
df_head.py | Display the first few rows of a CSV file.
df_sample.py | Subsample a CSV data file. Set ‘preserve_ones’ to keep EULR=1 rows.
df_shape.py | Display shape of CSV file(s) (rows, columns).
df_split.py | Randomly split a dataframe into 2 separate files by a given percentage (default=0.5).
df_tail.py | Display the last few rows of a CSV file.
df_trim.py | Remove leading and trailing blanks from string values.
ML_arima.py | Plug-in component for the ARIMA model. Not available in crome_multi.
ML_h2o.py | Plug-in component for using H2O models. Not available in crome_multi.
preds2charts.py | Builds charts from prediction JSON files. See the help page (-h) for additional options.
sample_FEAT.py | A utility script which allows taking a random sample of the VMs in FEAT*.csv data.
showFiles.py | This tool launches a little web server allowing viewing of local charts and other files via a web browser.
StringColumnEncoder.py | Encode a dataframe’s string columns as part of a pipeline.
train_test.py | Example code demonstrating training and testing from CSV files.
variations.py | Utility program which can run a “grid search” of model variations to find the best parameters. For most authoratative results should be used with a FEAT file containing a random sampling of VMs. Meant as a starting point for further experiments. Note: long run time.

Metadata Examples

	example catalog image

 Tutorial

Tutorial

	Wrapping Models for Deployment
	DATA

	Data Processing

	TOOLS

	SAMPLING

	CHARTS

	Model Deployment

	Web Demo
	Running Example

	Web Technologies

	Advanced Machine Learning Topics

 Wrapping Models for Deployment

Wrapping Models for Deployment

To utilize this transformer model set, it first creates a detect transformer
and then a pixelate transformer.
Continue to the next tutorial
to see how to utilize these models with a simple demo API server.

DATA

Data files can be large, and CROME’s so-called ‘FEAT’ files are no exception.
(Note: Another set of tools captures the raw data to create the FEAT files.
The workings of those tools are beyond the scope of this document.)

NOTE: If you wish to skip to actually building a model with included sample
data, please head to the “Model Deployment” subsection below.

The FEAT data may be delimited by month. For example, data/multi/raw-feature.csv.gz
contains data from February 2017 through the beginning of March 2017. The data is
“raw” in that it needs a substantial amount of preprocessing. That’s obvious just
by looking at the original column names:

 [' cpu _ usage ', ' cpu _ usagemhz ', ' mem _ active ', ' mem _ consumed ', ' mem _ granted ', ' mem _ usage ', ' net _ received ', ' net _ transmitted ', ' net _ usage ', 'DATETIMEUTC', 'DATEUTC', 'GLOBAL_CUSTOMER_ID', 'SUBSCRIBER_NAME', 'Unnamed: 0', 'VM_ID']

And many of the rows may require additional formatting, such as removing
padding before and after strings.

The FEAT files are typically over 1 GB in size. That makes processing them
unwieldy, especially when running simulations which span a large segment of
time (i.e. many months).

Data Processing

Given a set of FEAT (or other) CSV files containing time-series data, the process is fairly simple.

	First one needs to decide whether to build multi-entity (VM) models or single-entity models.

	Single-entity simulations process files that contain time-series data for
a single entity (VM) only. Since the FEAT csv files typically contain multiple
entities, they must first be broken up into per-entity files using the
tool util/add_FEAT_data.py.

It may be as simple as this:

 python vm_predictor/util/add_FEAT_data.py FEAT*.csv -o ./VM_data

Then processing the separate VM files, with compound charts, could be accomplished by:

 python vm_predictor/crome_multi.py ./VM_data/*.csv -c

	Multi-entity simulations can process the FEAT files directly. However, some care must be taken
if the files are sequential or very large. If the FEAT files are
sequential in time, you do not want to process them separately; instead
you want to process them as if they were concatenated. That can be
accomplished with the join_files (-j) option:

 python vm_predictor/crome_multi.py -j FEAT*.csv

	Depending on memory constraints, you may not be able to process all of the
concatenated FEAT files at once. What you can do instead is process 1 or 2
at a time and collect the results in intermediate JSON files using the
write_predictions (-p) option.

For example, if the train-predict regimen is 31 days and 1 day, at MINIMUM
two month-long files are required. So to cover a longer time span one
could proceed in steps as follows:

 python vm_predictor/crome_multi.py -p -o ./predict -j FEAT_Feb2017.csv FEAT_Mar2017.csv
 python vm_predictor/crome_multi.py -p -o ./predict -j FEAT_Mar2017.csv FEAT_Apr2017.csv
 python vm_predictor/crome_multi.py -p -o ./predict -j FEAT_Apr2017.csv FEAT_May2017.csv

	The final output of that will be a set of JSON prediction files, one per
entity/VM covering the entire (4-month) time range. To create charts from
those JSON files another tool is used: preds2charts.py. For example:

 python vm_predictor/preds2charts.py ./predict/*.json

TOOLS

The workhorse script for processing the FEAT (e.g.) files is crome_multi.py.
It does everything from reformatting columns to training models to building charts.

But the essence of crome_multi.py is to implement a train/predict regimen on
a given file using the concept of a “sliding window”.

Basically crome_multi.py sees the incoming data as a single time series,
sorted from earliest date to latest; in fact it pre-processes incoming CSV
files to conform to that view. It executes the indicated train/predict regimen
across the entire time series by: (A) training a model using a specified
training duration, e.g. 31 days; and (B) using that same model to predict
data for the specified prediction duration, e.g. 1 day, which
immediately follows the training data. This window is then advanced one
prediction period, and the cycle repeats until the data is exhausted.

For example, given data from January to December and current defaults of a
31-day training period and a 1-day prediction period, crome_multi.py will
first build a model using data from January 1st through January 31st, and make
predictions for February 1st. That gives one day’s worth of data. Then it
advances one day (the prediction period) and builds a new model with data from
January 2nd to February 1st, and predicts February 2nd. That’s the second
day’s data. And so on, until predictions are made through December 31st.

The results for the entire time period are saved as charts and/or prediction
data. See below for more details.

SAMPLING

Ordinarily the rows in the CSV data files represent data sampled at a certain
frequency, such as every 5 minutes. crome_multi.py has the ability to
resample this to another value, averaging all the values in that interval.
The default setting of 15 minutes may be changed using the ‘-S’ command
line option. (Obviously you can only use values that are a multiple of the
original sample interval.) Note that this value is enforced early during
preprocessing, and all subseqent computations use the re-sampled values.

CHARTS

crome_multi.py and its helper file preds2charts.py build charts displaying
the predicted target value vs. the actual value through the entire time
range contained in the input file(s).

There are six different individual charts (-s option), and one compound
chart (-c option) currently available.

Individual charts are:

	“Original”: displays the original data in the working sample size (-S option).

	“Percentile_95”: displays the daily 95th percentile of the target value.

	“STD”: displays the daily standard deviation of the target.

	“Variance”: displays the daily variance of the target.

	“Busy_Hour_4H”: displays the daily busiest hour from 0-23 (4-hour window).

	“Busy_Avg_4H”: displays the daily mean of the target during the busy hour.

As written, the -s option, when present, will write all 6 chart types, but
could easily be enhanced to select specific ones.

The compound chart is simply all 6 simple charts displayed on one page.

Model Deployment

To run the model training and push to a respective back-end server, use the installed
script run_vm-predictor_reference.py. As a convenience, to run the script locally
without installing (during development), use the commmand bin/run_local.sh.

This repo currently includes example training and testing data. You can create a model
and push it to a locally running Acumos mock server with the following example.

NOTE The examples pushing to a library are using the reference testing/upload/app.py
server in the main acumos package to simulate backend testing in these examples.

	multiple VM training - where the wisdom of the crowd can be utilized and
multiple VMs (that have not been seen before) can be predicted upon. This
is possible by learning general patterns from multiple VMs (not specific to one
identity) and applying those patterns to other VMs

training + dump for a multi-vm model in a directory (raw data)
python vm_predictor/crome_multi.py -t cpu_usage -o data/multi_feature -f day weekday hour minute hist_1D8H hist_1D4H hist_1D2H hist_1D1H hist_1D hist_1D15m hist_1D30m hist_1D45m VM_ID -c -P 2 -d model_multi data/multi/raw-feature.csv.gz

training + push for a multi-vm model in a directory (raw data) -- note, asssumes localhost testing server, user:foo, pass:bar
python vm_predictor/crome_multi.py -t cpu_usage -o data/multi_feature -f day weekday hour minute hist_1D8H hist_1D4H hist_1D2H hist_1D1H hist_1D hist_1D15m hist_1D30m hist_1D45m VM_ID -c -P 2 data/multi/raw-feature.csv.gz -a "http://localhost:8887/v2/upload" -A "http://localhost:8887/v2/auth"

	single VM training, preprocessed data - an example where a model is trained
for a single VM. These models may be higher performance than the multi-model
version, but they are smaller and more sensitive to training times.

training + dump for a single model in a directory (raw data)
python vm_predictor/crome.py -t cpu_usage -f day weekday hour minute hist_1D VM_ID -d model_single data/single/train.csv

training + push for a single model in a directory (raw data) -- note, asssumes localhost testing server, user:foo, pass:bar
python vm_predictor/crome.py -t cpu_usage -f day weekday hour minute hist_1D VM_ID -d model_single data/single/train.csv -a "http://localhost:8887/v2/upload" -A "http://localhost:8887/v2/auth"

Advanced multi-VM training examples

This example trains and predicts multi-VM models on dates in February and March
with target net_usage, outputs Simple and Compound charts to folder “FebMar”,
and uses a combination of datetime and historical features.

python vm_predictor/crome_multi.py -j ff/FEAT_VM_1702_1703.csv ff/FEAT_VM_1703_1704.csv -s -c -t net_usage -f day weekday hour minute hist_1D8H hist_1D4H hist_1D2H hist_1D1H hist_1D hist_1D15m hist_1D30m hist_1D45m -o ./FebMar

This example trains and predicts multi-VM models through December and January
on ‘cpu_usage’ (the default), but uses only the FIRST FIFTY entities (VMs)
found in the files. Predictions are not charted but are written as JSON files
to folder ‘./json’. Also, the VM_ID column is added as a feature.

python vm_predictor/crome_multi.py -j ff/FEAT_VM_1612_1701.csv ff/FEAT_VM_1701_1702.csv -p -o ./json -v 50 -f day weekday hour minute hist_1D8H hist_1D4H hist_1D2H hist_1D1H hist_1D hist_1D15m hist_1D30m hist_1D45m VM_ID

This example trains and predicts multi-VM models on target ‘net_usage’ using
only the first 10 VMs in the file FEAT_sampled.csv. The prediction interval
is 7 days. Compound charts are output. The ML model “Extra Trees With Scaling”
is selected and the number of trees is set to 5.

python vm_predictor/crome_multi.py FEAT_sampled.csv -c -t net_usage -v 10 -o sk_test_et_sc -i et__n_estimators 5 -P 7 -f day weekday hour minute hist_1D8H hist_1D4H hist_1D2H hist_1D1H hist_1D hist_1D15m hist_1D30m hist_1D45m VM_ID -M ET_SC

Grid search

One feature of the multi-VM code is to allow a grid search of a few different
parameters. Generally, this requires raw features as
input so that the various can be utilized in the feature aggregation process.
Note: There are still more paramters that can be tuned, but this script
explores those with the biggest potential gains in performance. (added 7/23)

train on raw features, produce performance plots across variants
TBD

 Web Demo

Web Demo

This web page visualizes reports for policy optimization of hosted
customer VMs. Interested readers in more background for the exploration of
this task can continue to the next lesson.

Running Example

This demonstration web page shows plots of predicted and historical resource
values for memory, CPU, and network throughput from actual customer VMs
running a firewall VNF.

Interact with the demo by selecting a different Customer VM,
changing the start or end date for analysis, or clicking on the
summarized graphs at the bottom of the page.

In future versions, these plotted graphs will be populated by a running
instance or by retrieving recent historical predictions and values from
a live database.

	[image: Example web application for resource prediction]example web application for resource prediction

Web Technologies

For interactions, this page uses open-source web technologies like
bootstrap-3.3.7 [http://getbootstrap.com/getting-started/#download],
AngularJS 1.6.1 [https://angularjs.org/],
jQuery 3.2.1 [https://jquery.com/download/],
and UI Bootstrap 2.5 [https://angular-ui.github.io/bootstrap/#%21#getting_started].

 Advanced Machine Learning Topics

Advanced Machine Learning Topics

This tutotial discusses more background information for the problem of
temporal pattern prediction as it applied to this model and its data.
Deployment and testing information can be found in the previous lesson.

 web_demo

web_demo

This directory provides a simple web page and demo content for
the vm_predictor demo.

Please consult the tutorial documentation for more information.

 Acumos Portal Marketplace

Acumos Portal Marketplace

This repository holds projects that together comprise the Marketplace Backend and Frontend for the Acumos platform.

Build Prerequisites

	JDK 1.8

	Spring STS 3.8.x (https://spring.io/tools/sts/all)

	Git Shell (https://git-for-windows.github.io/) or SourceTree (https://www.sourcetreeapp.com/) for Cloning & pushing the code changes.

	Maven 3.x

	Proxy setup to download dependencies from open source repositories

	Open Source or GitShell Command Line Interface

Build Instructions

	Browse to your preferred directory and run below command:

git clone https://@gerrit.acumos.org/portal-marketplace.git

 Change Log: bootstrap-star-rating

Change Log: bootstrap-star-rating

Version 4.0.2

Date: 03-Jul-2016

	(enh #108): Add French Translations.

	(enh #115): Add Romanian Translations.

	(enh #122): Add Spanish Translations.

	(enh #123): Add Italian Translations.

	(enh #124): Add License Headers.

	(enh #127): Add Chinese Translations.

	(enh #130): Better management of themes and locales.

Version 4.0.1

Date: 28-Feb-2016

	(bug #99): Correct documentation for refresh method.

	(bug #100): Correct caption and clear rendering methods.

	(bug #101): Correct caption setting when showCaption is false.

	(bug #102): Revamp generation of rating via refresh method.

	(enh #103): Implement method chaining and revamp private methods

	enhance public methods like create, destroy, refresh, clear, reset to return the rating element jQuery object

	Update package.json to include peerDependencies instead of dependencies.

Version 4.0.0

Date: 16-Feb-2016

	(enh #91): Add SVG Icon Support

	(enh #94): Add Theming Functionality.

	New property theme will assign a CSS class with the rating-<theme-name> to the rating container.

	Themes included

	The default (blank) theme (for displaying bootstrap glyphicons)

	krajee-svg (for displaying svg icons)

	krajee-uni (for displaying unicode symbols as stars)

	krajee-fa (for displaying font awesome icons)

	Add ability to override and add one’s own themes

Various new features and BC breaking enhancements

	REMOVED: symbol, glyphicon, ratingClass properties will be removed.

	The requirement for the above will be replaced with the theme property (and can also be implemented using the containerClass property).

	Stars now have a better padding and spacing that can be configured via CSS and themes

	New property filledStar - will allow one to set the markup for filledStar - will default to

	<i class="glyphicon glyphicon-star"></i>

	New property emptyStar - will allow one to set the markup for emptyStar - will default to

	<i class="glyphicon glyphicon-star-empty"></i>

	Exclusive support for SVG (and a prebuilt krajee-svg theme that contains two different ready to use SVG icons).

	(enh #95): Add display only capability.

	(enh #96): Add support for bootstrap-sass official repo via sass branch.

	(enh #97): Add animate property to enable / disable animation of star highlight on hover / change.

Version 3.5.8

Date: 16-Feb-2016

	(enh #88): Add German Translations.

	(enh #89): Add Portugese Brazilian Translations.

	(bug #90): Rename reserved word used as variable.

Version 3.5.7

Date: 22-Jan-2016

	(enh #84): Add Ukranian Translations.

	(enh #86): Refactor code for listening events and deep extend options correctly.

Version 3.5.6

Date: 29-Dec-2015

	(enh #76): Add Russian Translations.

	(bug #77): Correct touches and changedTouches validation.

	(enh #81): Simplify README docs.

	(enh #82): Added “main” key into NPM package.json.

Version 3.5.5

Date: 22-Nov-2015

	(enh #71): Fix Error: Cannot read property 'pageX' of undefined error on touch devices.

	(enh #74): Universal Module Definition for use with CommonJS, AMD or browser globals.

	(enh #75): Implement Locales and Translations.

Version 3.5.4

Date: 20-Sep-2015

	(enh #47): Styling enhancements for printed output (better star colors and hide clear button).

	(enh #59): Remove String.prototype.replaceAll and implement regex replace.

	(enh #63): Add package.json for npm install.

	Update bootstrap bower version to support only 3.x variants.

Version 3.5.3

Date: 18-Jun-2015

	(enh #58): Remove redundant tooltip title on hover of caption element.

	Fixes for composer.json dependencies.

Version 3.5.2

Date: 10-May-2015

	(enh #45): Validate on touchstart for devices that do not support click event.

	(enh #46): More correct init of clear and caption elements.

Version 3.5.1

Date: 13-Feb-2015

	(enh #44): Ability to integrate with other font icon CSS frameworks like Font Awesome.

	New property ratingClass added to allow configuring other icon framework css classes.

	Set copyright year to current.

Version 3.5.0

Date: 31-Jan-2015

	(enh #39): Prevent invalid star rating for numStars > 5 with default value & hoverChange enabled.

	(enh #42): Code cleanup and restructure for JS lint changes (using JSHint Code cleanup library).

Version 3.4.0

Date: 16-Dec-2014

	(enh #35): Added destroy method to destroy the rating plugin.

	(enh #36): Added create method to create the rating plugin (typically after a destroy).

Version 3.3.0

Date: 17-Nov-2014

	(bug #32): Prevent invalid star ratings if cursor is close to left/right edge of star array.

	(enh #33): Enhance touch methods for compatibility across more wider mobile device browsers.

Version 3.2.0

Date: 08-Nov-2014

	Set release to stable in composer.json.

	Updated CHANGE log to reflect user friendly date time formats.

Version 3.1.0

Date: 27-Oct-2014

	enh #26: Add touch device support to enable touch and slide across stars.

	enh #27: Reset events on the rating element before every refresh.

	enh #28: Add rating.refresh event.

Version 3.0.0

Date: 13-Oct-2014

	enh #20, #21: Included hover validation routine and rating state change on hover. Following new configurable properties added:

	hoverEnabled: boolean whether hover functionality is enabled. This will dynamically change the stars and caption on mouse hover. Defaults to true. This functionality will only work on desktop devices and if the input is not disabled or readonly.

	hoverChangeCaption: boolean control whether the caption should dynamically change on mouse hover. Defaults to true. Will be applicable only if hoverEnabled is true.

	hoverChangeStars: boolean control whether the stars should dynamically change on mouse hover. Defaults to true. Will be applicable only if hoverEnabled is true.

	enh #21: Following new events are added:

	rating.hover

	rating.hoverleave

	enh #22: More correct minimum value and clear value validation through new getWidthFromValue method.

	enh #24: Set clearValue to default to min if not set.

Version 2.6.0

Date: 23-Aug-2014

	enh #17: Dynamic configuration for starCaptions and starCaptionClasses using a function.

Version 2.5.0

Date: 27-May-2014

	Change to entire plugin code to eliminate dependency of HTML5 input. Plugin size reduced to 8KB minified.

	Uses special JQuery routines to trigger star rating changes.

	Plugin support is now extended to all browsers including pre IE10

	Plugin support is now extended to all Touch based and mobile devices like iOS, Android.

	Removed cloning of inputs to allow better refreshing of input across ajax and other scenarios.

	Caption and Clear elements parameters treated as identifiers rather than JQuery object elements.

Version 2.1.0

Date: 08-May-2014

	Bug #8,#9,#10: Correct cloning and con## Version of field to a range slider input.

Version 2.0.0

Date: 25-Apr-2014

	Revamp of entire plugin code. Cleverly leverages CSS3 styles, animations, and HTML5 input features
to render the plugin.

	Render and display fractional star ratings. Configure number of stars, min, max, step, and theoretically
support any fractional rating.

	Right to left (RTL) support enhancement. Optimally uses the dir attribute of the range input.

	Bootstrap style is made optional and configurable. Can override CSS to use any style.

	Any star symbol (unicode or icon font) can be embedded instead of Glyphicon.

	Uses HTML 5 range input to change ratings. Polyfills for range input in case JQuery/Javascript is disabled.

	Automatically degrades to a normal SELECT dropdown input for browsers that do not support
HTML 5 range input.

Version 1.2.0

Date: 04-Apr-2014

	Widget is customizable for using any CSS markup to override Bootstrap styles.

	Clear button class customization added.

Version 1.1.0

Date: 10-Mar-2014

Revamped the methods for usage across wider scenarios:

	Included update method to set a value of a rating via javascript.

	Revamped the refresh method to enable refreshing all plugin options at runtime via parameters.

Version 1.0.0

Date: 01-Oct-2013

Initial release. The following features are included in this release:

	Convert any HTML input to a star rating control. Recommended input is of type = number, which will help fallback to a number input for browsers not supporting JQuery or Javascript.

	The plugin automatically converts an input with type = number to a star rating control if you set its class = rating. All options to the input can be passed as HTML5 data attributes.

	Involves pure CSS3 styling of the stars. Say goodbye to image sprites or playing with image backgrounds. Offers clean scalable vector icons for consistent display across devices.

	Specifically uses Bootstrap 3.x styles & glyphs. Can be combined to work better for Bootstrap styled projects (or input group addons).

	Ability to clear values and options for the stars. Control where the clear button element can be shown.

	Reset star rating to the initial value when the form is reset.

	Ability to control and display caption of the selected stars. Each rated star can have its own caption. Control where the caption element can be shown.

	Ability to size the rating control including the stars, caption, and clear button. Five prebuilt size templates are available xl, lg, md, sm, and xs.

	Support for RIGHT TO LEFT (RTL) input. Automatically changes star styling for RTL.

	Triggers JQuery events for advanced development. Events currently available are rating.change, rating.clear, and rating.reset.

	Disabled and readonly input star rating support.

	Size of the entire plugin is less than 9KB (about 6KB for the minified JS and 3KB for the minified CSS).

 <no title>

 Copyright (c) 2013 - 2016, Kartik VisweswaranKrajee.comAll rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

	Neither the names of Kartik Visweswaran or Krajee nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Portal Marketplace Developer Guide

Portal Marketplace Developer Guide

What is MarketPlace?

Acumos provides a toolkit-independent ‘App Store’, called
a Marketplace for:

	Data-powered decision making and artificial intelligence software
models.

	It provides a means to securely share AI microservices along with
information on how they perform, such as ratings, popularity statistics
and user-provided reviews to apply crowd sourcing to software
development..

	The platform provides integration between model developers and
applications in order to automate the process of user feedback,
exception handling and software updates..

Target Users

This guide is targeted towards the open source user community that intends to understand the functionality of the MarketPlace.

MarketPlace - High level Architecture

[image: MarketPlace High level Architecture]
[image: MarketPlace High level Architecture]

MarketPlace Backend APIs

	Admin Service

	Auth Service

	Market Place Catalog Service

	Notification Services

	Oauth User Service

	Publish Request Service

	Publish Solution Service

	Push And Pull Solution Service

	User Role Services

	User Service Services

	Validation Status Services

	Web Based Onboarding Services

MarketPlace Flow Structure

	Page Name: Acumos Home Screen

	User Authentication Required: NO

	Page Visibility to User: ALL

	Navigation Menu: Market Place, Manage Models, Docs, SIGN IN ,
SIGN UP

	Page Content: Featured Machine Learning Models/Solutions along
with option to view all Solutions.

	When User open Acumos Page, He/she will be presented with Acumos Home
Screen with Featured Machine Learning Solutions in catalog Format
(Tiles)

	Admin Role is created with name as Admin inside Role tables in CDS DB.

	Page Name: Model/Solution Landing Page

	Navigation: Acumos Home -> Market Place -> Model/Solution
Landing Page

	User Authentication Required: NO (Read Only), Yes (For
Downloads, Deploy and to add Review Comment)

	Page Visibility: ALL

	Navigation Menu: Market Place, Manage Models, Docs, SIGN
IN, SIGN UP

	Page Content: Machine Learning Solution Landing Page with
Title, Description, API Usage (Input & Output swagger UI
format to test API), Images/Videos. Bottom of the screen
should display ratings, reviews from other users and options
to add review. Buttons needed <Download> & <Deploy to
Cloud>. Social Media Sharing options also need to be
displayed. Deploy to Cloud should only provide MS Azure
option.

	Clicking on either of <Download>,<“Deploy to Clou> ” or<“Add
review> should prompt user to SIGN IN.

	If User is already signed in, then clicking on:

	<Download> should download the Machine Learning Solution to
user laptop/computer.

	<Deploy to Cloud> should prompt details about MS Azure (Inputs
TBD)

	<Add Review Comment> with text in the comment field should add
the new comment.

	Page Name: My Models

	Under Manage Models Menu, Options available are: <Add new
Model>,<“My Model> <Delete a Model>

	Navigation: Acumos Home -> Manage Models -> My Models

	User Authentication Required: Yes

	Navigation Menu: Market Place, Manage Models, Docs,
Notification, My Profile, Log Out

	Page Content: Machine Learning Solutions and Composite
Solutions are displayed in a catalog format. Icons on these
solutions should allow to distinguish Single Modelled
Solutions, Composite Solutions, Unpublished, published (Public
Market Place & Company Market Place) as well as newly created
Solutions which does not have any title/description etc.

	Page Name: Manage Models - My Models - Model Landing Page

	Under Manage Models Menu, Options available are: <Add new
Model>,<“My Model> <Delete a Model>

	User Authentication Required: Yes

	Navigation Menu: Market Place, Manage Models, Docs,
Notification, My Profile, Log Out

	Page Content: If User has clicked on newly added Machine
Learning Solution that does not have any Title/Description etc
then Machine Learning Solution Landing Page with fields for
Title, Description, API Usage (Input & Output swagger UI
format to test API), Images/Videos will be displayed where
User can add all the information using WYSIWYG editor.

4.1. User can save and view the preview of the Solutions like it would
display on the Market Place.

4.2 Once Saved, User can then Submit the Solution for publishing to
Public Market Place or Company Market Place by clicking buttons
<Publish to Public Market Place> and <Publish to Company Market
Place>. Clicking on these two buttons will kick off the
Certification Process which would allow the Solution to be able
to publish on Company Market Place i.e local Market Place and it
would also be allowed to be published on Public Market Place.

4.3 User would also be able to Share the Solutions with individuals
or group or communities within the local Acumos instance i.e Company
Acumos by clicking on <Share with Team> which will open a pop up to
lookup for the User/Group/Communities.

4.4 Certification Process requirements is TBD and once available ,
the user experience/Wireframes can be discusses later.

1.6 User Account Signup Flow :

[image: User Account Signup Flow]

1.7 User Account Login Flow :

[image: User Account Login Flow]

1.8 Market Place Catalog Flow :

[image: Market Place Catalog Flow]

1.9 Model Detail Page Flow :

[image: Model Detail Page Flow]

Market Place Catalog Service API

Get Solution Details

GET http://<host and optionally port>/solutions/{solutionId}

Fetches Solution Detail for the given SolutionId.

Response Body Example:

{
 "accessType": "string",
 "active": true,
 "commentId": "string",
 "commentsCount": 0,
 "companyModelCount": 0,
 "created": "2018-10-17T19:23:59.773Z",
 "deletedModelCount": 0,
 "description": "string",
 "downloadCount": 0,
 "errorDetails": "string",
 "latestRevisionId": "string",
 "loginName": "string",
 "metadata": "string",
 "modelType": "string",
 "modelTypeName": "string",
 "modified": "2018-10-17T19:23:59.773Z",
 "name": "string",
 "onboardingStatusFailed": true,
 "ownerId": "string",
 "ownerListForSol": [
 {
 "active": "string",
 "admin": true,
 "apiTokenHash": "string",
 "bulkUpdate": "string",
 "created": "2018-10-17T19:23:59.773Z",
 "emailId": "string",
 "firstLogin": true,
 "firstName": "string",
 "jwtToken": "string",
 "jwttoken": "string",
 "lastLogin": "2018-10-17T19:23:59.773Z",
 "lastName": "string",
 "loginName": "string",
 "loginPassExpire": true,
 "modified": "2018-10-17T19:23:59.773Z",
 "orgName": "string",
 "password": "string",
 "picture": [
 "string"
],
 "publisher": true,
 "role": "string",
 "roleId": "string",
 "status": "string",
 "tags": [
 {
 "tag": "Classification"
 }
],
 "updatedRole": "string",
 "updatedRoleId": "string",
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-17T19:23:59.773Z",
 "modified": "2018-10-17T19:23:59.773Z",
 "name": "My role",
 "roleId": "12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId": "string",
 "userIdList": [
 "string"
],
 "userNewRoleList": [
 "string"
],
 "userRolesList": {},
 "username": "string",
 "verifyToken": "string"
 }
],
 "ownerName": "string",
 "pageNo": 0,
 "pendingApproval": true,
 "picture": [
 "string"
],
 "privateModelCount": 0,
 "publicModelCount": 0,
 "publisher": "string",
 "ratingAverageTenths": 0,
 "ratingCount": 0,
 "refreshInterval": 0,
 "revisions": [
 {
 "accessTypeCode": "PB",
 "authors": "My name\tMy contact",
 "created": "2018-10-17T19:23:59.773Z",
 "description": "string",
 "metadata": "string",
 "modified": "2018-10-17T19:23:59.773Z",
 "origin": "http://acumos.remote.com/a/b/c",
 "publisher": "My company",
 "revisionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "solutionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "sourceId": "12345678-abcd-90ab-cdef-1234567890ab",
 "userId": "12345678-abcd-90ab-cdef-1234567890ab",
 "validationStatusCode": "NV",
 "version": "v1.0"
 }
],
 "selector": "string",
 "size": 0,
 "solutionId": "string",
 "solutionRating": 0,
 "solutionRatingAvg": 0,
 "solutionTag": "string",
 "solutionTagList": [
 {
 "tag": "Classification"
 }
],
 "sortingOrder": "string",
 "threadId": "string",
 "threadList": [
 {
 "revisionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "solutionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "threadId": "12345678-abcd-90ab-cdef-1234567890ab",
 "title": "string"
 }
],
 "tookitType": "string",
 "tookitTypeName": "string",
 "validationStatusCode": "string",
 "viewCount": 0
}

Update Solution

PUT http://<host and optionally port>/solutions/{solutionId}

Update Solution Detail for the given SolutionId.

Request Body Example:

{
 "request_body": {
 "accessType": "string",
 "active": true,
 "description": "string",
 "modelType": "string",
 "modelTypeName": "string",
 "name": "string",
 "ownerId": "string",
 "picture": [
 "string"
],
 "solutionId": "string",
 "tookitType": "string",
 "validationStatusCode": "string",
 },
 "request_from": "string",
 "request_id": "string"
}

Response Body Example:

{
 "accessType": "string",
 "active": true,
 "commentId": "string",
 "commentsCount": 0,
 "companyModelCount": 0,
 "created": "2018-10-17T19:23:59.773Z",
 "deletedModelCount": 0,
 "description": "string",
 "downloadCount": 0,
 "errorDetails": "string",
 "latestRevisionId": "string",
 "loginName": "string",
 "metadata": "string",
 "modelType": "string",
 "modelTypeName": "string",
 "modified": "2018-10-17T19:23:59.773Z",
 "name": "string",
 "onboardingStatusFailed": true,
 "ownerId": "string",
 "ownerListForSol": [
 {
 "active": "string",
 "admin": true,
 "apiTokenHash": "string",
 "bulkUpdate": "string",
 "created": "2018-10-17T19:23:59.773Z",
 "emailId": "string",
 "firstLogin": true,
 "firstName": "string",
 "jwtToken": "string",
 "jwttoken": "string",
 "lastLogin": "2018-10-17T19:23:59.773Z",
 "lastName": "string",
 "loginName": "string",
 "loginPassExpire": true,
 "modified": "2018-10-17T19:23:59.773Z",
 "orgName": "string",
 "password": "string",
 "picture": [
 "string"
],
 "publisher": true,
 "role": "string",
 "roleId": "string",
 "status": "string",
 "tags": [
 {
 "tag": "Classification"
 }
],
 "updatedRole": "string",
 "updatedRoleId": "string",
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-17T19:23:59.773Z",
 "modified": "2018-10-17T19:23:59.773Z",
 "name": "My role",
 "roleId": "12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId": "string",
 "userIdList": [
 "string"
],
 "userNewRoleList": [
 "string"
],
 "userRolesList": {},
 "username": "string",
 "verifyToken": "string"
 }
],
 "ownerName": "string",
 "pageNo": 0,
 "pendingApproval": true,
 "picture": [
 "string"
],
 "privateModelCount": 0,
 "publicModelCount": 0,
 "publisher": "string",
 "ratingAverageTenths": 0,
 "ratingCount": 0,
 "refreshInterval": 0,
 "revisions": [
 {
 "accessTypeCode": "PB",
 "authors": "My name\tMy contact",
 "created": "2018-10-17T19:23:59.773Z",
 "description": "string",
 "metadata": "string",
 "modified": "2018-10-17T19:23:59.773Z",
 "origin": "http://acumos.remote.com/a/b/c",
 "publisher": "My company",
 "revisionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "solutionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "sourceId": "12345678-abcd-90ab-cdef-1234567890ab",
 "userId": "12345678-abcd-90ab-cdef-1234567890ab",
 "validationStatusCode": "NV",
 "version": "v1.0"
 }
],
 "selector": "string",
 "size": 0,
 "solutionId": "string",
 "solutionRating": 0,
 "solutionRatingAvg": 0,
 "solutionTag": "string",
 "solutionTagList": [
 {
 "tag": "Classification"
 }
],
 "sortingOrder": "string",
 "threadId": "string",
 "threadList": [
 {
 "revisionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "solutionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "threadId": "12345678-abcd-90ab-cdef-1234567890ab",
 "title": "string"
 }
],
 "tookitType": "string",
 "tookitTypeName": "string",
 "validationStatusCode": "string",
 "viewCount": 0
}

Get Solution Revisions

GET http://<host and optionally port>/solutions/{solutionId}/revisions

Gets a list of Solution Revision from the Catalog of the local Acumos Instance.

Response Body Example:

{
 "status": true,
 "status_code": 0,
 "response_detail": "string",
 "response_code": "200",
 "response_body": [
 {
 "accessTypeCode": "PB",
 "authors": "My name\tMy contact",
 "created": "2018-10-17T19:23:59.801Z",
 "description": "string",
 "metadata": "string",
 "modified": "2018-10-17T19:23:59.801Z",
 "origin": "http://acumos.remote.com/a/b/c",
 "publisher": "My company",
 "revisionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "solutionId": "12345678-abcd-90ab-cdef-1234567890ab",
 "sourceId": "12345678-abcd-90ab-cdef-1234567890ab",
 "userId": "12345678-abcd-90ab-cdef-1234567890ab",
 "validationStatusCode": "NV",
 "version": "v1.0"
 }
],
 "content": null,
 "error_code": null
}

Get Solution Revisions Artifacts

GET http://<host and optionally port>/solutions/{solutionId}/revisions/{revisionId}

Gets a list of Solution Revision Artifacts from the Catalog of the local Acumos Instance.

Response Body Example:

{
 "status": true,
 "status_code": 0,
 "response_detail": "success",
 "response_code": "200",
 "response_body": [
 {
 "artifactId": "12345678-abcd-90ab-cdef-1234567890ab",
 "artifactTypeCode": "MS",
 "created": "2018-10-17T19:23:59.807Z",
 "description": "string",
 "metadata": "string",
 "modified": "2018-10-17T19:23:59.807Z",
 "name": "My artifact",
 "size": 65536,
 "uri": "http://archive.company.com/artifacts/my_artifact_name",
 "userId": "12345678-abcd-90ab-cdef-1234567890ab",
 "version": "v1.0"
 }
],
 "content": null,
 "error_code": null
}

Get Shared Users of Solution

GET http://<host and optionally port>/solution/userAccess/{solutionId}

Gets a user access Detail for the given SolutionId.

Response Body Example:

{
 "status":null,
 "status_code":0,
 "response_detail":"Users for solution fetched Successfully",
 "response_code":null,
 "response_body":{
 "content":[
],
 "jwtToken":null,
 "responseObject":null,
 "async":null,
 "allTagsSet":null,
 "tags":null,
 "prefTags":null,
 "filteredTagSet":null,
 "userList":[
 {
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.683Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.683Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.683Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.683Z",
 "modified":"2018-10-17T19:23:59.683Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 }
],
 "threads":null,
 "commentsList":null,
 "commentsCount":0,
 "threadCount":0,
 "totalElements":0,
 "modelsSharedWithUser":null,
 "requestList":null,
 "pageCount":0,
 "privateModelCount":0,
 "publicModelCount":0,
 "companyModelCount":0,
 "deletedModelCount":0,
 "totalPages":1,
 "last":true,
 "size":0,
 "number":0,
 "sort":null,
 "first":true,
 "numberOfElements":0
 },
 "content":null,
 "error_code":"100"
}

Add Shared User for Solution

POST http://<host and optionally port>/solution/userAccess/{solutionId}/add

Adds user access Detail for the given SolutionId.

Request Body Example:

{
 "request_body": [
 "<String userId>"
],
 "request_from": "string",
 "request_id": "string"
}

Response Body Example:

{
 "content":{
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.691Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.691Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.691Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.692Z",
 "modified":"2018-10-17T19:23:59.692Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 },
 "error_code":"string",
 "response_body":{
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.692Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.692Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.692Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.692Z",
 "modified":"2018-10-17T19:23:59.692Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 },
 "response_code":"string",
 "response_detail":"string",
 "status":true,
 "status_code":0
}

Find POrtal Solutions

POST http://<host and optionally port>/portal/solutions

Search the solutions according to the parameters.

Request Body Example:

{
 "request_body":{
 "accessTypeCodes":[
 "string"
],
 "active":true,
 "authorKeyword":"string",
 "descriptionKeyword":[
 "string"
],
 "modelTypeCodes":[
 "string"
],
 "nameKeyword":[
 "string"
],
 "ownerIds":[
 "string"
],
 "pageRequest":{
 "fieldToDirectionMap":{
 },
 "page":0,
 "size":0
 },
 "sortBy":"string",
 "sortById":"string",
 "tags":[
 "string"
],
 "userId":"string",
 "validationStatusCodes":[
 "string"
]
 },
 "request_from":"string",
 "request_id":"string"
}

Response Body Example:

{
 "content":{
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.691Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.691Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.691Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.692Z",
 "modified":"2018-10-17T19:23:59.692Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 },
 "error_code":"string",
 "response_body":{
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.692Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.692Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.692Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.692Z",
 "modified":"2018-10-17T19:23:59.692Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 },
 "response_code":"string",
 "response_detail":"string",
 "status":true,
 "status_code":0
}

Find User’s Solutions

POST http://<host and optionally port>"/user/solutions

Search the solutions for a user filtered according to the parameters.

Request Body Example:

{
 "request_body":{
 "accessTypeCodes":[
 "string"
],
 "active":true,
 "authorKeyword":"string",
 "descriptionKeyword":[
 "string"
],
 "modelTypeCodes":[
 "string"
],
 "nameKeyword":[
 "string"
],
 "ownerIds":[
 "string"
],
 "pageRequest":{
 "fieldToDirectionMap":{
 },
 "page":0,
 "size":0
 },
 "sortBy":"string",
 "sortById":"string",
 "tags":[
 "string"
],
 "userId":"string",
 "validationStatusCodes":[
 "string"
]
 },
 "request_from":"string",
 "request_id":"string"
}

Response Body Example:

{
 "content":{
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.691Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.691Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.691Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.692Z",
 "modified":"2018-10-17T19:23:59.692Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 },
 "error_code":"string",
 "response_body":{
 "active":"string",
 "admin":true,
 "apiTokenHash":"string",
 "bulkUpdate":"string",
 "created":"2018-10-17T19:23:59.692Z",
 "emailId":"string",
 "firstLogin":true,
 "firstName":"string",
 "jwtToken":"string",
 "jwttoken":"string",
 "lastLogin":"2018-10-17T19:23:59.692Z",
 "lastName":"string",
 "loginName":"string",
 "loginPassExpire":true,
 "modified":"2018-10-17T19:23:59.692Z",
 "orgName":"string",
 "password":"string",
 "picture":[
 "string"
],
 "publisher":true,
 "role":"string",
 "roleId":"string",
 "status":"string",
 "tags":[
 {
 "tag":"Classification"
 }
],
 "updatedRole":"string",
 "updatedRoleId":"string",
 "userAssignedRolesList":[
 {
 "active":false,
 "created":"2018-10-17T19:23:59.692Z",
 "modified":"2018-10-17T19:23:59.692Z",
 "name":"My role",
 "roleId":"12345678-abcd-90ab-cdef-1234567890ab"
 }
],
 "userId":"string",
 "userIdList":[
 "string"
],
 "userNewRoleList":[
 "string"
],
 "userRolesList":{
 },
 "username":"string",
 "verifyToken":"string"
 },
 "response_code":"string",
 "response_detail":"string",
 "status":true,
 "status_code":0
}

Get Authors of Solutions Revision

GET http://<host and optionally port>/solution/{solutionId}/revision/{revisionId}/authors

Get Authors of Solution Revision.

Response Body Example:

{
 "status": null,
 "status_code": 0,
 "response_detail": "Author fetched Successfully",
 "response_code": null,
 "response_body": [
 {
 "contact": "string",
 "name": "string"
 }
],
 "content": null,
 "error_code": "100"
}

Add Authors to Solutions Revision

PUT http://<host and optionally port>/solution/{solutionId}/revision/{revisionId}/authors

Add Authors to Solution Revision.

Request Body Example:

{
 "request_body": {
 "contact": "string",
 "name": "string"
 },
 "request_from": "string",
 "request_id": "string"
}

Response Body Example:

{
 "status": null,
 "status_code": 0,
 "response_detail": "Author Added Successfully",
 "response_code": null,
 "response_body": [
 {
 "contact": "string",
 "name": "string"
 }
],
 "content": null,
 "error_code": "100"
}

Add Authors to Solutions Revision

PUT http://<host and optionally port>/solution/{solutionId}/revision/{revisionId}/removeAuthor

Remove Author from Solution Revision.

Request Body Example:

{
 "request_body": {
 "contact": "string",
 "name": "string"
 },
 "request_from": "string",
 "request_id": "string"
}

Response Body Example:

{
 "status": null,
 "status_code": 0,
 "response_detail": "Author Added Successfully",
 "response_code": null,
 "response_body": [
 {
 "contact": "string",
 "name": "string"
 }
],
 "content": null,
 "error_code": "100"
}

Get Documents for a solution Revision

GET http://<host and optionally port>/solution/{solutionId}/revision/{revisionId}/{accessType}/document

Get Solution Revision Documents.

Response Body Example:

{
 "status":null,
 "status_code":0,
 "response_detail":"Fetched Documents Successfully",
 "response_code":null,
 "response_body":[
 {
 "created":"2018-10-17T19:23:59.729Z",
 "documentId":"12345678-abcd-90ab-cdef-1234567890ab",
 "modified":"2018-10-17T19:23:59.729Z",
 "name":"user-guide.rst",
 "size":65536,
 "uri":"http://nexus.company.com/group/version/document_name",
 "userId":"12345678-abcd-90ab-cdef-1234567890ab",
 "version":"v1.0"
 }
],
 "content":null,
 "error_code":"100"
}

Add Document for a solution Revision

POST http://<host and optionally port>/solution/{solutionId}/revision/{revisionId}/{accessType}/document

Add Solution Revision Documents.

Request Body Example: Binary File

Response Body Example:

{
 "status":null,
 "status_code":0,
 "response_detail":"Document Added Successfully",
 "response_code":null,
 "response_body":{
 "created":"2018-10-17T19:23:59.734Z",
 "documentId":"12345678-abcd-90ab-cdef-1234567890ab",
 "modified":"2018-10-17T19:23:59.734Z",
 "name":"user-guide.rst",
 "size":65536,
 "uri":"http://nexus.company.com/group/version/document_name",
 "userId":"12345678-abcd-90ab-cdef-1234567890ab",
 "version":"v1.0"
 },
 "content":null,
 "error_code":"100"
}

Add/Update Solutions Revision Description

POST http://<host and optionally port>/solution/revision/{revisionId}/{accessType}/description

Add/Update Solution Revision Description.

Request Body Example:

{
 "request_body": {
 "accessTypeCode": "string",
 "description": "string",
 "revisionId": "string"
 },
 "request_from": "string",
 "request_id": "string"
}

Response Body Example:

{
 "status": null,
 "status_code": 0,
 "response_detail": "Description Fetched Successfully",
 "response_code": null,
 "response_body": {
 "description": "string",
 "revisionId": "string",
 "accessTypeCode": "string"
 },
 "content": null,
 "error_code": "100"
}

Get Solution Revision Description

GET http://<host and optionally port>/solution/revision/{revisionId}/{accessType}/description

GET Solution Revision Description.

Response Body Example:

{
 "status": null,
 "status_code": 0,
 "response_detail": "Description Fetched Successfully",
 "response_code": null,
 "response_body": {
 "description": "string",
 "revisionId": "string",
 "accessTypeCode": "string"
 },
 "content": null,
 "error_code": "100"
}

Remove Document for a solution Revision

DELETE http://<host and optionally port>/solution/{solutionId}/revision/{revisionId}/{accessType}/document/{documentId}

Remove Solution Revision Documents.

Request Body Example: Binary File

Response Body Example:

{
 "status":null,
 "status_code":0,
 "response_detail":"Document Added Successfully",
 "response_code":null,
 "response_body":{
 " ":"2018-10-18T19:23:59.739Z",
 "documentId":"string",
 "modified":"2018-10-18T19:23:59.739Z",
 "name":"user-guide.rst",
 "size":65536,
 "uri":"http://nexus.company.com/group/version/document_name",
 "userId":"string",
 "version":"string"
 },
 "content":null,
 "error_code":"100"
}

Push And Pull Solution Service API

Download Solution Artifact

GET http://<host and optionally port>/downloads/{solutionId}

Download the dockerized Image Artifact of the Machine Learning Solution

Request Body Example:

{
 "request_body": {
 "solutionId" : "d1ef3a94-a5e0-482b-983f-ed4f25420b00",
 "artifactId" : "8f5bfb9f-c6ff-4860-a402-56c02fed040d",
 "revisionId" : "dd1c3fba-2ddb-4f0a-b864-da70642be71c",
 "userId" : "<userId>"
 }
}

Response Body Example:

Binary file will be downloaded.

Upload the Model/Solution

POST http://<host and optionally port>/model/upload/{userId}

Upload the model to the server

Request Body Example:

Binary zip file

Response Body Example:

Response Code : 200 Ok

Model will be uploaded.

If the file is not in zip format or does not contain required files we will get error like below.

Zip File does not contain required files D:Docssolution.zip

Zip File Required. Original File : D:DocsBLUEPRINT-E55671D6-A40E-4137-86FC-EDAE372AAAD3-1.0.1.json

Download the Solution Revision Document

GET http://<host and optionally port>/solution/revision/document/{documentId}

Download the documents of the Solution.

Response Body Example:

The Supporting document of ML Solution will be downloaded.

Publish Solution Service API

Publish Solution

PUT http://<host and optionally port>/publish/{solutionId}

Publishes a given SolutionId for userId with selected visibility.

Request Body Example:

{
 "request_body": {
 "solutionId" : "345949aa-ecd4-418f-9257-88ed008ec303",
 "visibility" : "PB",
 "userId" : "<userId>",
 "revisionId" : "2cd69738-9d03-4c43-9c65-9f7d65abee23"
 }
}

Response Body Example:

{
 "status": null,
 "status_code": 0,
 "response_detail": "<trackingId>",
 "response_code": null,
 "response_body": null,
 "content": null,
 "error_code": "100"
}

Admin Service API

Get User Carousal Configuration

Gets list of Site configuration filtered with user’s preferred tags.

GET http://<host and optionally port>/admin/user/carouseConfig

Response Body Example:

{
 "status":null,
 "status_code":0,
 "response_detail":"getUserCarousalConfiguration fetched Successfully",
 "response_code":null,
 "response_body":[
 {
 "0":{
 "name":"Test Slide",
 "headline":"Test Slide ok",
 "supportingContent":"<p>Just for test</p>",
 "textAling":"left",
 "number":"0",
 "slideEnabled":"true",
 "tagName":"13",
 "bgImageUrl":"ML_solution.jpg",
 "InfoImageUrl":"Layer_2.png",
 "links":{
 "enableLink":"true",
 "primary":{
 },
 "secondary":{
 }
 }
 }
 },
 {
 "1":{
 "name":"Test",
 "headline":"Testing",
 "supportingContent":"<p>TEst</p>",
 "textAling":"left",
 "number":"1",
 "slideEnabled":"false",
 "tagName":"1234",
 "links":{
 "enableLink":true,
 "primary":{
 },
 "secondary":{
 }
 }
 }
 },
 {
 "2":{
 "name":"test14Sep18",
 "headline":"test",
 "supportingContent":"<p>test14Sep18</p>",
 "textAling":"left",
 "number":"2",
 "slideEnabled":"false",
 "tagName":"1WA_tag",
 "links":{
 "primary":{
 "label":"test",
 "address":"marketPlace"
 },
 "secondary":{
 }
 }
 }
 },
 {
 "3":{
 "name":"slide 5",
 "headline":"slide 5",
 "supportingContent":"<p>dfsdfdfsdf</p>",
 "textAling":"right",
 "number":"3",
 "slideEnabled":"false",
 "tagName":"1ww",
 "links":{
 "primary":{
 "address":"modelerResource"
 },
 "secondary":{
 "address":"marketPlace"
 }
 }
 }
 }
],
 "content":null,
 "error_code":"100"
}

Enabling SignUp Service

GET http://<host and optionally port>/admin/signup/enabled

Get SignUp Enabled and verify and return Success

Response Body Example:

{
 "status": true,
 "status_code": 200,
 "response_detail": "Success",
 "response_code": null,
 "response_body": "true",
 "content": null,
 "error_code": null
}

Authentication Service

POST http://<host and optionally port>/auth/jwtToken

This api is used to validate user by accepting there emailid or username.return success & JWT token if account created successfully else an error message is returned:

Request Body Example:

{
 "request_body": {
 "password": <"Password">
 "username": "<"Username">
 }
}

Response Body Example:

{
 "loginPassExpire": false,
 "userAssignedRolesList": [
 {
 "created": 1536367599000,
 "modified": 1538142743000,
 "roleId": "497ddcfb-a15c-4729-8bf7-41a6ea4a33ed",
 "name": "Publisher",
 "active": true
 },
 {
 "created": 1513691459000,
 "modified": 1538142622000,
 "roleId": "8c850f07-4352-4afd-98b1-00cbceca569f",
 "name": "Admin",
 "active": true
 }
],
 "firstLogin": false,
 "jwtToken": <"Jwttoken">,
 "admin": true,
 "publisher": true
}

Login service using Authentication token

POST http://<host and optionally port>/auth/login

Allows User to login to the Platform using emailId or username. Returns Success & JWT Token if Account created successfully; else an error message is returned.

Request Body Example:

{
 "request_body": {
 "password": <"Password">
 "username": "<"Username">
 }
}

Response Body Example:

 {
 "loginPassExpire":false,
 "userAssignedRolesList":null,
 "firstLogin":false,
 "firstName":"Test",
 "lastName":"User",
 "emailId":"user@acumos.com",
 "username":<"username">,
 "password":null,
 "active":"true",
 "lastLogin":1539774948356,
 "created":1520526238000,
 "modified":null,
 "userId":"<userID>",
 "loginName":null,
 "orgName":null,
 "picture":null,
 "jwttoken":null,
 "role":null,
 "roleId":null,
 "updatedRole":null,
 "updatedRoleId":null,
 "userIdList":null,
 "userNewRoleList":null,
 "userRolesList":null,
 "bulkUpdate":null,
 "apiTokenHash":null,
 "verifyToken":null,
 "status":null,
 "tags":null,
 "jwtToken":null,
 "admin":false,
 "publisher":false
}

Operation Name - Add User

Add User from Admin

Request Body Example:

{

 "request_body": {
 "admin": "true"
 "emailId": "<emailid>",
 "firstName": "<firstname>",
 "jwtToken": "<jwttoken>",
 "jwttoken": "<jwttoken>",
 "lastLogin": "2018-10-19T13:52:25.104Z",
 "lastName": "<lastname>",
 "loginName": "<loginname>",
 "loginPassExpire": true,
 "password": "<password>",
 "userId": "<userid>"
 "username": "<username>",
 }
}

Response Body Example:

{
 "active": false,
 "created": "2018-10-19T13:52:25.097Z",
 "modified": "2018-10-19T13:52:25.097Z",
 "name": "My role",
 "roleId": "12345678-abcd-90ab-cdef-1234567890ab"
}

Operation Name - create Config

Create site configuration

Request Body Example:

{
 "request_body": {
 "configKey": "site_config_key_1",
 "configValue": "{ \"tag\" : \"value\" }",
 "userId": "<userid>"
 }
}

Response Body Example:

{
 "configKey": "site_config_key_1",
 "configValue": "{ \"tag\" : \"value\" }",
 "created": "2018-10-19T13:52:25.117Z",
 "modified": "2018-10-19T13:52:25.117Z",
 "userId": "<userid>"
}

Operation Name - Remove Config

Remove Site Configuraion

Request Body Example:

{
"request_body": {
"configKey": "<configKey>"
}

Response Body Example:

{
"content": {},
"error_code": "No Pages Found",
"response_body": {},
"status": true,
"status_code": 0

}

Operation Name - List of Config

Gets list of Site configuration

Request Body Example:

{
 "request_body": {
 "configKey": "<configKey>"
}

}

Response Body Example:

 [
 {
 "configKey": "<configKey",
 "configValue": "<configValue>",
 "created": "2018-10-19T13:52:25.130Z",
 "modified": "2018-10-19T13:52:25.130Z",
 "userId": "<userId>"
 }
]

Operation Name - Update Config

Update site configuration

Request Body Example:

{

"request_body": {

}
}

Response Body Example:

{
"status": true,
"status_code": 200,
"response_detail": "Success",
"response_code": null,
"response_body": "http://www.mycompany.com/",
"content": null,
"error_code": null
}

Operation Name - Get Dashboard

Get Dashboard URL

Request Body Example:

{
 "request_body": {
 "fieldToDirectionMap": {},
 "page": 0,
 "size": 0
}

}

Response Body Example:

{
"status": null,
"status_code": 0,
"response_detail": "Peers fetched Successfully",
"response_code": null,
"response_body": {
 "content": [
 {
 "created": 1533653577000,
 "modified": 1533670420000,
 "peerId": "<peerId>",
 "name": "<name>",
 "subjectName": "sss",
 "description": "test",
 "apiUrl": "<apiURL>",
 "webUrl": "<webURL>",
 "contact1": "<Contact1>",
 "statusCode": "DC",
 "validationStatusCode": "PS",
 "local": false,
 "self": false
 },
 {
 "created": 1537798150000,
 "modified": 1538387700000,
 "peerId": "<peerID>",
 "name": "<name>",
 "subjectName": "www.NeerajTestPeer001.com",
 "description": "",
 "apiUrl": "<apiURL>",
 "webUrl": "<webURL>",
 "contact1": "<Contact1>",
 "statusCode": "DC",
 "validationStatusCode": "PS",
 "local": false,
 "self": false
 },
 {
 "created": 1533661440000,
 "modified": 1533670411000,
 "peerId": "<peerid>",
 "name": "Test",
 "subjectName": "http://test.com",
 "description": "",
 "apiUrl": "<apiURL>",
 "webUrl": "<webURL>",
 "contact1": "<contact1>",
 "statusCode": "DC",
 "validationStatusCode": "PS",
 "local": false,
 "self": false
 },
"content": null,
"error_code": "100"
 }

Operation Name - Get Paginated List

Gets paginated list of All Peers

Request Body Example:

{
 "request_body": {
 "fieldToDirectionMap": {},
 "page": 5,
 "size": 0
}
}

Response Body Example:

{
 "apiUrl": "<apiURL>",
 "contact1": "<Contact1>",
 "created": "2018-10-19T13:52:12.070Z",
 "description": "Page created SuccessFully",
 "local": true,
 "modified": "2018-10-19T13:52:12.070Z",
 "name": "<name>",
 "peerId": "<PeerID>",
 "self": true,
 "statusCode": "AC",
 "subjectName": "peer.company.com"
 "validationStatusCode": "NV",
 "webUrl": "<WebURL>"
}

]

Operation Name - Add Peer

Add a new peer

Request Body Example:

{

"request_body": {
 "apiUrl": "<apiurl>",
 "contact1": "<contact1>",
 "created": "2018-10-19T13:52:25.201Z",
 "modified": "2018-10-19T13:52:25.201Z",
 "name": "<name>",
 "peerId": "<peerId>",
 "self": true,
 "statusCode": "AC",
 "subjectName": "peer.company.com",
 "validationStatusCode": "NV",
 "webUrl": "string"
}

}

Response Body Example:

{
 "apiUrl": "<apiurl>",
 "contact1": "<contact1>",
 "created": "2018-10-19T13:52:25.198Z",
 "description": "Peers created",
 "local": true,
 "modified": "2018-10-19T13:52:25.198Z",
 "name": "<name>",
 "peerId": "<peerId>",
 "self": true,
 "statusCode": "AC",
 "subjectName": "peer.company.com",
 "validationStatusCode": "NV",
 "webUrl": "<webUrl>"
}

Operation Name - Delete Peer

Remove Peer Subscription

Request Body Example:

{
 "request_body": {
 "subID":"<subID>"
 }
 }

Response Body Example:

{
"content": {},
"error_code": "Not created ID",
"response_body": {},
"response_code": "<response Code>",
"response_detail": "<response Details>",
"status": true,
"status_code": 0

}

Operation Name - Get Requests

Gets a list of Requests

Request Body Example:

 {
 "request_body": {
 "fieldToDirectionMap": {},
 "page": <pageNo>,
 "size": <size>
 }
}

Response Body Example:

{
 "allTagsSet": [
 "string"
],
 "async": {
 "cancelled": true,
 "done": true
 },
 "commentsCount": 0,
 "commentsList": [
 {
 "commentId": "<commentID>",
 "created": "2018-10-19T13:52:12.152Z",
 "modified": "2018-10-19T13:52:12.152Z",
 "parentId": "<parentID>",
 "text": "Best model ever",
 "threadId": "12345678-abcd-90ab-cdef-1234567890ab",
 "userId": "<userID>"
 }
],
 "companyModelCount": 0,
 "content": [
 {}
],
 "deletedModelCount": 0,
 "filteredTagSet": [
 "string"
],
 "first": true,
 "jwtToken": "string",
 "last": true,
 "modelsSharedWithUser": [
 {
 "active": false,
 "created": "2018-10-19T13:52:12.152Z",
 "description": "string",
 "metadata": "string",
 "modelTypeCode": "CL",
 "modified": "2018-10-19T13:52:12.152Z",
 "name": "My solution",
 "origin": "string",
 "picture": [
 "string"
],
 "solutionId": "<SolutionID>",
 "sourceId": "<SourceID>",
 "tags": [
 {
 "tag": "Classification"
 }
],
 "toolkitTypeCode": "SK",
 "userId": "<userID>",
 "webStats": {
 "downloadCount": 0,
 "featured": true,
 "lastDownload": "2018-10-19T13:52:12.152Z",
 "ratingAverageTenths": 0,
 "ratingCount": 0,
 "solutionId": "string",
 "viewCount": 0
 }
 }
],
 "number": 0,
 "numberOfElements": 0,
 "pageCount": 0,
 "prefTags": [
 {}
],
 "privateModelCount": 0,
 "publicModelCount": 0,
 "requestList": [
 {
 "action": "string",
 "date": "2018-10-19T13:52:12.152Z",
 "requestId": "string",
 "requestType": "string",
 "requestedDetails": "string",
 "sender": "string",
 "status": "string"
 }
],
 "responseObject": {
 "admin": true,
 "firstLogin": true,
 "jwtToken": "string",
 "loginPassExpire": true,
 "publisher": true,
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-19T13:52:12.152Z",
 "modified": "2018-10-19T13:52:12.153Z",
 "name": "My role",
 "roleId": "12345678-abcd-90ab-cdef-1234567890ab"
 }
]
 },
 "size": 0,
 "sort": {},
 "tags": [
 "string"
],
 "threadCount": 0,
 "threads": [
 {
 "revisionId": "<revisionID>",
 "solutionId": "<solutionID>",
 "threadId": "<threadID>",
 "title": "<title>"
 }
],
 "totalElements": 0,
 "totalPages": 0,
 "userList": [
 {
 "active": "string",
 "admin": true,
 "apiTokenHash": "<apitoken",
 "bulkUpdate": "<bulkUpdate>",
 "created": "2018-10-19T13:52:12.153Z",
 "emailId": "string",
 "firstLogin": true,
 "firstName": "string",
 "jwtToken": "string",
 "jwttoken": "string",
 "lastLogin": "2018-10-19T13:52:12.153Z",
 "lastName": "string",
 "loginName": "string",
 "loginPassExpire": true,
 "modified": "2018-10-19T13:52:12.153Z",
 "orgName": "string",
 "password": "string",
 "picture": [
 "string"
],
 "publisher": true,
 "role": "string",
 "roleId": "string",
 "status": "string",
 "tags": [
 {
 "tag": "Classification"
 }
],
 "userRolesList": {},
 "username": "<username>",
 "verifyToken": "<token>"
 }
]
}

Operation Name - Logout Service

Allows Users to logout to the Platform . Returns Success & JWT Token if Account created successfully; else an error message is returned

Request Body Example:

 {
"request_body": {
 "password": "<password>",
 "username": "<username>"
 }
}

Response Body Example:

{
 "admin": true,
 "firstLogin": true,
 "jwtToken": "<jwttoken>",
 "loginPassExpire": true,
 "message": "Successfull logged out",
 "publisher": true,
 "resultCode": 0,
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-22T09:35:54.399Z",
 "modified": "2018-10-22T09:35:54.399Z",
 "name": "<name>",
 "roleId": "<roleID>"
 }
]

}

Operation Name - check validation Status

Provide the Validation status for the application

Request Body Example:

 {
"request_body": {

 }
}

Response Body Example:

{
 "content": {},
 "error_code": "string",
 "response_body": {},
 "response_code": "<response>",
 "response_detail": "<detail>",
 "status": true,
 "status_code": 0

}

Operation Name - Logout Service

Allows Users to logout to the Platform . Returns Success & JWT Token if Account created successfully; else an error message is returned

Request Body Example:

{
"request_body":{
 "password": "<password>",
 "username": "<username>"
}
}

Response Body Example:

{
 "admin": true,
 "firstLogin": true,
 "jwtToken": "<jwttoken>",
 "loginPassExpire": true,
 "message": "Successfull logged out",
 "publisher": true,
 "resultCode": 0
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-22T09:35:54.399Z",
 "modified": "2018-10-22T09:35:54.399Z",
 "name": "<name>",
 "roleId": "<roleID>"
 }
]
}

Operation Name - Validation Status

Provide the Validation status for the application

Request Body Example:

{
"request_body": {

}
}

Response Body Example:

{
 "content": {},
 "error_code": "string",
 "response_body": {},
 "response_code": "<response>",
 "response_detail": "<detail>",
 "status": true,
 "status_code": 0
 }

Gateway Service

Ping Gateway

GET http://<host and optionally port>/gateway/ping/{peerId}

Checks the connection to a gateway instance.

Response Body Example:

{
 "content": {},
 "error_code": "string",
 "response_body": {},
 "response_code": "string",
 "response_detail": "string",
 "status": true,
 "status_code": 400
}

Gateway Solutions

POST http://<host and optionally port>/gateway/solutions

Fetches all solutions from a gateway given provided categories or toolkit type.

Request Body Example:

{
 "peerSubscription" : {
 "request_body": {
 "accessType": "PB",
 "created": "2018-10-17T19:34:23.633Z",
 "maxArtifactSize": 0,
 "modified": "2018-10-17T19:34:23.633Z",
 "options": "{ \"jsonTag\" : \"jsonValue\" }",
 "peerId": "<peer id>",
 "processed": "1521202458867",
 "refreshInterval": 60,
 "scopeType": "RF",
 "selector": "{ \"modelTypeCode\" : \"CL\" }",
 "subId": 0,
 "userId": "<user id>"
 },
 "request_from": "string",
 "request_id": "string"
 }
}

Response Body Example:

{
 [
 {
 "accessType": "string",
 "active": true,
 "commentId": "string",
 "commentsCount": 0,
 "companyModelCount": 0,
 "created": "2018-10-17T19:34:23.749Z",
 "deletedModelCount": 0,
 "description": "string",
 "downloadCount": 0,
 "errorDetails": "string",
 "latestRevisionId": "string",
 "loginName": "string",
 "metadata": "string",
 "modelType": "string",
 "modelTypeName": "string",
 "modified": "2018-10-17T19:34:23.749Z",
 "name": "string",
 "onboardingStatusFailed": true,
 "ownerId": "string",
 "ownerListForSol": [
 {
 "active": "string",
 "admin": true,
 "apiTokenHash": "string",
 "bulkUpdate": "string",
 "created": "2018-10-17T19:34:23.749Z",
 "emailId": "string",
 "firstLogin": true,
 "firstName": "string",
 "jwtToken": "string",
 "jwttoken": "string",
 "lastLogin": "2018-10-17T19:34:23.749Z",
 "lastName": "string",
 "loginName": "string",
 "loginPassExpire": true,
 "modified": "2018-10-17T19:34:23.749Z",
 "orgName": "string",
 "password": "string",
 "picture": [
 "string"
],
 "publisher": true,
 "role": "string",
 "roleId": "string",
 "status": "string",
 "tags": [
 {
 "tag": "Classification"
 }
],
 "updatedRole": "string",
 "updatedRoleId": "string",
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-17T19:34:23.750Z",
 "modified": "2018-10-17T19:34:23.750Z",
 "name": "My role",
 "roleId": "<role id>"
 }
],
 "userId": "string",
 "userIdList": [
 "string"
],
 "userNewRoleList": [
 "string"
],
 "userRolesList": {},
 "username": "string",
 "verifyToken": "string"
 }
],
 "ownerName": "string",
 "pageNo": 0,
 "pendingApproval": true,
 "picture": [
 "string"
],
 "privateModelCount": 0,
 "publicModelCount": 0,
 "publisher": "string",
 "ratingAverageTenths": 0,
 "ratingCount": 0,
 "refreshInterval": 0,
 "revisions": [
 {
 "accessTypeCode": "PB",
 "authors": "My name\tMy contact",
 "created": "2018-10-17T19:34:23.750Z",
 "description": "string",
 "metadata": "string",
 "modified": "2018-10-17T19:34:23.750Z",
 "origin": "<origin url>",
 "publisher": "My company",
 "revisionId": "<revision id>",
 "solutionId": "<solution id>",
 "sourceId": "<source id>",
 "userId": "<user id>",
 "validationStatusCode": "NV",
 "version": "v1.0"
 }
],
 "selector": "string",
 "size": 0,
 "solutionId": "string",
 "solutionRating": 0,
 "solutionRatingAvg": 0,
 "solutionTag": "string",
 "solutionTagList": [
 {
 "tag": "Classification"
 }
],
 "sortingOrder": "string",
 "threadId": "string",
 "threadList": [
 {
 "revisionId": "<revision id>",
 "solutionId": "<solution id>",
 "threadId": "<thread id>",
 "title": "string"
 }
],
 "tookitType": "string",
 "tookitTypeName": "string",
 "validationStatusCode": "string",
 "viewCount": 0
 }
]
}

Get Gateway Solution

GET http://<host and optionally port>/gateway/{solutionId}/solution/{peerId}

Fetches a specific solution from a gateway.

Request Body Example:

{
 "solutionId" : "<solution id>",
 "peerId" : "<peer id>"
}

Response Body Example:

{
 "accessType": "string",
 "active": true,
 "commentId": "string",
 "commentsCount": 0,
 "companyModelCount": 0,
 "created": "2018-10-17T19:34:23.749Z",
 "deletedModelCount": 0,
 "description": "string",
 "downloadCount": 0,
 "errorDetails": "string",
 "latestRevisionId": "string",
 "loginName": "string",
 "metadata": "string",
 "modelType": "string",
 "modelTypeName": "string",
 "modified": "2018-10-17T19:34:23.749Z",
 "name": "string",
 "onboardingStatusFailed": true,
 "ownerId": "string",
 "ownerListForSol": [
 {
 "active": "string",
 "admin": true,
 "apiTokenHash": "string",
 "bulkUpdate": "string",
 "created": "2018-10-17T19:34:23.749Z",
 "emailId": "string",
 "firstLogin": true,
 "firstName": "string",
 "jwtToken": "string",
 "jwttoken": "string",
 "lastLogin": "2018-10-17T19:34:23.749Z",
 "lastName": "string",
 "loginName": "string",
 "loginPassExpire": true,
 "modified": "2018-10-17T19:34:23.749Z",
 "orgName": "string",
 "password": "string",
 "picture": [
 "string"
],
 "publisher": true,
 "role": "string",
 "roleId": "string",
 "status": "string",
 "tags": [
 {
 "tag": "Classification"
 }
],
 "updatedRole": "string",
 "updatedRoleId": "string",
 "userAssignedRolesList": [
 {
 "active": false,
 "created": "2018-10-17T19:34:23.750Z",
 "modified": "2018-10-17T19:34:23.750Z",
 "name": "My role",
 "roleId": "<role id>"
 }
],
 "userId": "string",
 "userIdList": [
 "string"
],
 "userNewRoleList": [
 "string"
],
 "userRolesList": {},
 "username": "string",
 "verifyToken": "string"
 }
],
 "ownerName": "string",
 "pageNo": 0,
 "pendingApproval": true,
 "picture": [
 "string"
],
 "privateModelCount": 0,
 "publicModelCount": 0,
 "publisher": "string",
 "ratingAverageTenths": 0,
 "ratingCount": 0,
 "refreshInterval": 0,
 "revisions": [
 {
 "accessTypeCode": "PB",
 "authors": "My name\tMy contact",
 "created": "2018-10-17T19:34:23.750Z",
 "description": "string",
 "metadata": "string",
 "modified": "2018-10-17T19:34:23.750Z",
 "origin": "<origin url>",
 "publisher": "My company",
 "revisionId": "<revision id>",
 "solutionId": "<solution id>",
 "sourceId": "<source id>",
 "userId": "<user id>",
 "validationStatusCode": "NV",
 "version": "v1.0"
 }
],
 "selector": "string",
 "size": 0,
 "solutionId": "string",
 "solutionRating": 0,
 "solutionRatingAvg": 0,
 "solutionTag": "string",
 "solutionTagList": [
 {
 "tag": "Classification"
 }
],
 "sortingOrder": "string",
 "threadId": "string",
 "threadList": [
 {
 "revisionId": "<revision id>",
 "solutionId": "<solution id>",
 "threadId": "<thread id>",
 "title": "string"
 }
],
 "tookitType": "string",
 "tookitTypeName": "string",
 "validationStatusCode": "string",
 "viewCount": 0
}

LF CAS Service API

Get cas/enabled

GET http://<host and optionally port>/cas/enabled

This GET API is used to check if CAS (Linux Foundation) login is enabled or not.

Response Body Example:

{
 "status": true,
 "status_code": 200,
 "response_detail": "Success",
 "response_code": null,
 "response_body": "true",
 "content": null,
 "error_code": null
}

Get cas/enabled

GET http://<host and optionally port>/cas/serviceValidate

Gets the User Object from CAS api.

Response Body Example:

{
 "status":null,
 "status_code":200,
 "response_detail":"Validation status updated Successfully",
 "response_code":null,
 "response_body":null,
 "content":{
 "loginPassExpire":false,
 "userAssignedRolesList":null,
 "firstLogin":false,
 "firstName":"<firstName>",
 "lastName":"<lastName>",
 "emailId":"<emaiilid@email.com>",
 "username":"<username>",
 "password":null,
 "active":"true",
 "lastLogin":null,
 "created":1539959157000,
 "modified":null,
 "userId":"<userId>",
 "loginName":null,
 "orgName":null,
 "picture":null,
 "jwttoken":"jwtToken",
 "role":null,
 "roleId":null,
 "updatedRole":null,
 "updatedRoleId":null,
 "userIdList":null,
 "userNewRoleList":null,
 "userRolesList":null,
 "bulkUpdate":null,
 "apiTokenHash":"450756ad8e40467caeaef008ac988544",
 "verifyToken":null,
 "status":"Active",
 "tags":[
],
 "jwtToken":null,
 "admin":false,
 "publisher":false
 },
 "error_code":null
}

Project Tools

This micro service is a Spring-Boot application that for
Portal Market Backend on the Acumos platform.
The first version listens only on localhost (127.0.0.1) & port 8080.

Tools required

	JDK 1.8

	Spring STS 3.8.x (https://spring.io/tools/sts/all)

	Git Shell (https://git-for-windows.github.io/) or SourceTree (https://www.sourcetreeapp.com/) for Cloning & pushing the code changes.

	Maven 3.x

	Proxy setup to download dependencies from open source repositories

How to Clone

	Open Source or GitShell Command Line Interface

	Browse to your preferred directory and run below command:

git clone https://<userid>@gerrit.acumos.org/portal-marketplace.git

Note: replace with your user id.
3. Once the repository is cloned.
You would be able to build the branch Locally by running below command:

mvn clean install

 Portal Marketplace

Portal Marketplace

	Portal Marketplace Release Notes
	Version 4.0.15 28th August 2020

	Version 4.0.14 31th July 2020

	Version 4.0.13 10th July 2020

	Version 4.0.12 26th May 2020

	Version 4.0.11 22th May 2020

	Version 4.0.10 15th May 2020

	Version 4.0.9 8th May 2020

	Version 4.0.8 24th April 2020

	Version 4.0.7 17th April 2020

	Version 4.0.6 10th April 2020

	Version 4.0.5 3rd April 2020

	Version 4.0.4 13th March 2020

	Version 4.0.3 26th Feb 2020

	Version 4.0.2 24th Feb 2020

	Version 4.0.1 3rd Feb 2020

	Version 4.0.0 24th Jan 2020

	Version 3.0.28 10th Jan 2020

	Version 3.0.27 7th Jan 2020

	Version 3.0.26 30th December 2019

	Version 3.0.25 23th December 2019

	Version 3.0.24 16th December 2019

	Version 3.0.23 09th December 2019

	Version 3.0.22 28th November 2019

	Version 3.0.20 04th November 2019

	Version 3.0.18 25th October 2019

	Version 3.0.17 25th October 2019

	Version 3.0.16 18th October 2019

	Version 3.0.15 10th October 2019

	Version 3.0.14 01st October 2019

	Version 3.0.13 20th September 2019

	Version 3.0.11 10th September 2019

	Version 3.0.10 3rd September 2019

	Version 3.0.8 19th August 2019

	Version 3.0.7 12th August 2019

	Version 3.0.4 1st August 2019

	Version 3.0.2 29th July 2019

	Version 3.0.0 12th June 2019

	Version 2.2.16 31st May 2019

	Version 2.2.15 30th May 2019

	Version 2.2.14 21st May 2019

	Version 2.2.13 21st May 2019

	Version 2.2.12 13th May 2019

	Version 2.2.11 06th May 2019

	Version 2.2.10 26th April 2019

	Version 2.2.9 22nd April 2019

	Version 2.2.8 11th April 2019

	Version 2.2.7 29th March 2019

	Version 2.2.6 22nd March 2019

	Version 2.2.5 7th March 2019

	Version 2.2.3 1st March 2019

	Version 2.2.1 25th February 2019

	Version 2.2.0 14th February 2019

	Version 2.1.7 7th February 2019

	Version 2.1.6, 29th January 2019

	Version 2.0.5, 11th January 2019

	Version 2.0.4, 20th December 2018

	Version 2.0.3, 7th December 2018

	Version 2.0.2, 30th November 2018

	Version 1.16.2, 11th October 2018

	Version 1.16.1, 4th October 2018

	Version 1.16.0, 28th September 2018

	Version 1.15.48, 25th September 2018

	Version 1.15.47, 21th September 2018

	Version 1.15.45, 9th September 2018

	Version 1.15.44, 7 th September 2018

	Version 1.15.43, 24 th August 2018

	Version 1.15.42, 17 th August 2018

	Version 1.15.40, 9 th August 2018

	Version 1.15.39, 3 rd August 2018

	Version 1.15.37, 19 th July 2018

	Version 1.15.36, 11 th July 2018

	Version 1.15.35, 6 th July 2018

	Version 1.15.33, 28 th June 2018

	Version 1.15.32, 21 th June 2018

	Version 1.15.30, 18 th June 2018

	Version 1.15.29, 14 th June 2018

	Version 1.15.28, 11 th June 2018

	Version 1.15.26, 07 th June 2018

	Version 1.15.25, 01 th June 2018

	Version 1.15.23, 24 th May 2018

	Version 1.15.21, 22nd May 2018

	Version 1.15.20, 17th May 2018

	Version 1.15.18, 10th May 2018

	Version 1.15.17, 9th May 2018

	Version 1.15.16 4th May 2018

	Portal Marketplace Developer Guide
	What is MarketPlace?

	Target Users

	MarketPlace - High level Architecture

	MarketPlace Backend APIs

	MarketPlace Flow Structure

	Market Place Catalog Service API
	Get Solution Details

	Update Solution

	Get Solution Revisions

	Get Solution Revisions Artifacts

	Get Shared Users of Solution

	Add Shared User for Solution

	Find POrtal Solutions

	Find User’s Solutions

	Get Authors of Solutions Revision

	Add Authors to Solutions Revision

	Add Authors to Solutions Revision

	Get Documents for a solution Revision

	Add Document for a solution Revision

	Add/Update Solutions Revision Description

	Get Solution Revision Description

	Remove Document for a solution Revision

	Push And Pull Solution Service API
	Download Solution Artifact

	Upload the Model/Solution

	Download the Solution Revision Document

	Publish Solution Service API
	Publish Solution

	Admin Service API
	Get User Carousal Configuration

	Enabling SignUp Service

	Authentication Service

	Login service using Authentication token

	Operation Name - Add User

	Operation Name - create Config

	Operation Name - Remove Config

	Operation Name - List of Config

	Operation Name - Update Config

	Operation Name - Get Dashboard

	Operation Name - Get Paginated List

	Operation Name - Add Peer

	Operation Name - Delete Peer

	Operation Name - Get Requests

	Operation Name - Logout Service

	Operation Name - check validation Status

	Operation Name - Logout Service

	Operation Name - Validation Status

	Gateway Service
	Ping Gateway

	Gateway Solutions

	Get Gateway Solution

	LF CAS Service API
	Get cas/enabled

	Get cas/enabled

	Project Tools

	Portal and Marketplace Admin Guide
	1. Introduction

	2. Site Monitoring

	3. Role Management

	4. User Management

	5. Site Content

	6. Site Configuration

	7. Federation

	8. Maintained Backup Logs

	Portal and Marketplace User Guide
	Platform Overview

	Creating and Using an Account on Acumos

	The Marketplace - For Consumers

	The Portal - For Modelers

	Portal and Marketplace Publisher Guide
	Publishing Models

	Manage Catalogs Overview

	Delete Catalog

	ManagePeer(s) Access

	Portal and Marketplace Lisence Admin User Guide
	License Admin User Role

	Managing License Profile

 Portal Marketplace Release Notes

Portal Marketplace Release Notes

Version 4.0.15 28th August 2020

	ACUMOS-4089 - Email Header fields hardcoded for notifications

	ACUMOS-4264 - proto file available for Model docker URI and ONNX model

	ACUMOS-4228 - add C++ in “Language and toolkits category” of the “ONBOARDING BY COMMAND LINE” PANEL

	ACUMOS-4151 - Select Favorite Catalog Issues

Version 4.0.14 31th July 2020

	ACUMOS-3591 - <IST><Portal Marketplace> Throughout application, column headers are clickable for sorting but still displaying cursor on hovering.

	ACUMOS-4167 - Manage My Model: Publish to Marketplace: Modify License is not opening the selected license from dropdown

	ACUMOS-4228 - add C++ in “Language and toolkits category” of the “ONBOARDING BY COMMAND LINE” PANEL

Version 4.0.13 10th July 2020

	ACUMOS-4169 - Change Password popup: Cancel is showing in the tool tip of Confirm button

	ACUMOS-4167 - Manage My Model: Publish to Marketplace: Modify License is not opening the selected license from dropdown

	ACUMOS-4154 - <IST><Marketplace Tab><Filter By Category>The tick inside the checkbox is not in place.

	ACUMOS-4116 - IST2- Error when attaching a document

Version 4.0.12 26th May 2020

	ACUMOS-4150 - License Admin: Modify License popup is opening when user click on create new buttonp

Version 4.0.11 22th May 2020

	ACUMOS-4162 - Site Admin: On clicking on site admin giving 404 error when user open application on https by default user

	ACUMOS-4152 - License Profile Icon is showing truncated on model description screen

	ACUMOS-4150 - License Admin: Modify License popup is opening when user click on create new buttonp

Version 4.0.10 15th May 2020

	ACUMOS-4151 - Select Favorite Catalog Issues

	ACUMOS-4149 - Notification: For failed onboarding notification is getting misaligned

	ACUMOS-4148 - Portal Documentation: Update the docs for ETE Sprint 4

Version 4.0.9 8th May 2020

	ACUMOS-4138 - Replace entries with screen title on pagination screen

	ACUMOS-4137 - License Admin: Modify License Profile: Loader is not displaying when user modify license and save

	ACUMOS-4136 - License Admin icon is not matching with the VD

	ACUMOS-4135 - License Admin: Create New License: Success Message is not displaying when user create/modify license

	ACUMOS-4130 - Notification Screen: Time format is not consistent in the application

	ACUMOS-4116 - IST2- Error when attaching a document

	ACUMOS-4107 - There is not submit button in the Select Favorite Catalog screen

	ACUMOS-4083 - Search functionality is not displaying models when searching with model names

Version 4.0.8 24th April 2020

	ACUMOS-4125 - On-boarding Screen: Upload License Profile text is displaying unnecessary for select profile option

	ACUMOS-4122 - Upload Revision : Login user able to add revision for other’s user model

	ACUMOS-4121 - <IST> After creating a new role by selecting all the catalogs and then while editing it, the 1st catalog remains unchecked and update button remains enabled by default

	ACUMOS-4120 - Success Message and green tick color is different

	ACUMOS-4118 - Password Change: Success Message is disappearing in a very less span

	ACUMOS-4117 - ON-BOARD DOCKERIZED MODEL: In Upload Revision Search Icon is misplaced from original position

	ACUMOS-4108 - IST: Manage my model button remain enable for few secs for other user’s model

	ACUMOS-4101 - ON-BOARD DOCKERIZED MODEL URI UI Issues:

	ACUMOS-4063 - As a License Admin I want to be able to launch the RTU editor in order to fill out RTU Agreement

	ACUMOS-3828 - As a data scientist when I view the notifications I would like the last event that happened to show up at the top

Version 4.0.7 17th April 2020

	ACUMOS-4098 - ON-BOARD DOCKERIZED MODEL URI:Browse option of protobuf file should be disabled until user fill mandatory field

	ACUMOS-4091 - Model Name validation is not consistent on DOCKERIZED MODEL URI and DOCKERIZED MODEL screen

	ACUMOS-4088 - SSO CAS config: server is hard coded

	ACUMOS-4099 - ON-BOARD DOCKERIZED MODEL/ON-BOARD DOCKERIZED MODEL URI: Modify license is opening the create new license i-frame

Version 4.0.6 10th April 2020

	ACUMOS-4098 - ON-BOARD DOCKERIZED MODEL URI:Browse option of protobuf file should be disabled until user fill mandatory field

	ACUMOS-4091 - Model Name validation is not consistent on DOCKERIZED MODEL URI and DOCKERIZED MODEL screen

	ACUMOS-4088 - SSO CAS config: server is hard coded

	ACUMOS-4099 - ON-BOARD DOCKERIZED MODEL/ON-BOARD DOCKERIZED MODEL URI: Modify license is opening the create new license i-frame

Version 4.0.5 3rd April 2020

	ACUMOS-4091 - Model Name validation is not consistent on DOCKERIZED MODEL URI and DOCKERIZED MODEL screen

	ACUMOS-4089 - Email Header fields hardcoded for notifications

	ACUMOS-4085 - Wrong link in ON-BOARDING DOCKERIZED MODEL

	ACUMOS-4065 - Replace “Upload licence file” by” Add licence Profile” for pre-dockerized model

	ACUMOS-4026 - Add protobuf file for ON-BOARDING DOCKERIZED MODEL URI

	ACUMOS-3990 - Model Artifacts: Docker Image (tar file) is getting zero kb download after the message

	ACUMOS-3974 - Api : “/access/user/{userId}/catalog” is not returning user specific catalogs

	ACUMOS-3144 - Enrich pre-dockerized models

Version 4.0.4 13th March 2020

	ACUMOS-4052 - IST: Text and Icon color mismatch in successful Validate

	ACUMOS-4041 - IST: Select Favorite Catalog: Showing in the footer is not consistent with application

	ACUMOS-4040 - IST: Notification Pagination: Incomplete pagination is displaying on first load

	ACUMOS-4039 - IST: ON-BOARD DOCKERIZED MODEL: Issues List

	ACUMOS-4037 - IST: View Comment is non clickable for the model whose request is declined/approved in the publish request

	ACUMOS-4036 - <IST> While on-boarding (through web on-boarding) a model with license, then on-board button is not getting enabled.

	ACUMOS-4035 - <IST> While publishing a model, when user is approving a publish request then getting an error as “Fail to publish the solution,please try again later.” The icon for message is not correct.

	ACUMOS-4029 - Publish Request: Sorting Icon getting overlapped on label name

	ACUMOS-3974 - Api : “/access/user/{userId}/catalog” is not returning user specific catalogs

	ACUMOS-3966 - <IST> Manage my model:- Model License Profile:- UI and few button functionality is not as per expectation.

	ACUMOS-3942 - Remove artifacts that are only used for internal Acumos needs : TOSCAGIF.json, TOSCAPROTOBUF.json (TOSCA artifacts are only intended to be used by Design studio)

	ACUMOS-3863 - IST: Role Management: Different Icon should display for role management

Version 4.0.3 26th Feb 2020

	ACUMOS-4030 - All Catalog List is not displaying for publisher and admin role

Version 4.0.2 24th Feb 2020

	ACUMOS-4008 - IST: Email Update is not working

	ACUMOS-4007 - IST: First name, last name and delete token not saving in the database

	ACUMOS-3981 - Publish Request: New Pagination Issues

	ACUMOS-3976 - IST: Preview Model: Default Model Image is not displaying on model details

	ACUMOS-3975 - Search across pagination | Notifications/Catalog/SELECT FAVORITE CATALOGS

	ACUMOS-3968 - IST: Manage My Model : Preview Model: Preview model view using older template of license profile

	ACUMOS-3967 - <IST> License :- While clicking on ‘update’ button from model description page create new screen is displaying along with schema error message.

	ACUMOS-3966 - <IST> Manage my model:- Model License Profile:- UI and few button functionality is not as per expectation.

	ACUMOS-3965 - IST: ManageMyModel: Deploy to Cloud: Quit/Cancel/Ok button not working on deploy to cloud popup

	ACUMOS-3952 - Manage new kind of file of the model bundle

	ACUMOS-3916 - IST: Expand(-) symbol is not displaying on model tiles after click on Expand(+)on marketplace if model have multiple tag

	ACUMOS-3829 - Deployment notification in portal when there is a link to deployed model with a url but it is not linked to the swagger? URL Should be clickable?

	ACUMOS-3824 - add protobuf and license file for upload revision of pre-dockerized model

	ACUMOS-3823 - Add protobuf and license file for upload new pre-dockerized model

Version 4.0.1 3rd Feb 2020

	ACUMOS-3749 - As a model user, I would like to view the license profile in a human readable format

	ACUMOS-3426 - IST: Publish Request/Notifications/On-boarding History/ Catalog/SELECT FAVORITE CATALOGS: Pagination Fails in case of search data

	ACUMOS-3889 - Search across pagination

	ACUMOS-3955 - Unable to publish model based on weekly build CDS version/cache issue/new not backward compatible api created for /catalogs

Version 4.0.0 24th Jan 2020

	ACUMOS-3916 - IST: Expand(-) symbol is not displaying on model tiles after click on Expand(+)on marketplace if model have multiple tag

	ACUMOS-3901 - Error message is displaying the warning icon in the k8s deployment failed message

	ACUMOS-3899 - <IST> While on-boarding a model with license, after successfully on-boarded when user clicks on ‘upload new’ the * pre-selected ‘add license’ check box is displaying as disabled.

	ACUMOS-3872 - IST: Role Management: Select Favorite Catalog is not displaying the updated catalog list

	ACUMOS-3850 - <Portal Marketplace>Model Details: Page headers/ Menu names display format should be consistent

	ACUMOS-3849 - <IST>Error message info shows inverted symbol if adding already existing author

	ACUMOS-3838 - Wrong Icon is displaying for Username/ Email ID already exist in sign up process

	ACUMOS-3790 - <IST><Portal Marketplace> Model Details: Deploy to Local window tile is not consistent.

	ACUMOS-3768 - enhance UX when downloading the docker image (tar file)

	ACUMOS-3638 - [Portal] As a publisher not able to approve publication requests for Models in a restricted catalog

	ACUMOS-3180 - From Portal deploy to cloud button should not be enable for non-valid composite solution

Version 3.0.28 10th Jan 2020

	ACUMOS-3894 - Hide Module/Component permission while creating/editing Role

	ACUMOS-3871 - ISt: Role Management: All dropdown values should display in same color

	ACUMOS-3875 - IST: Role Management: User Permission is not working

	ACUMOS-3883 - <Automation> Create New Role> Module Permissions> Select dropdown is not visible after selecting the modules.

Version 3.0.27 7th Jan 2020

	ACUMOS-3884 - IST- Model in Role based restricted catalog is visible in public view

	ACUMOS-3871 - ISt: Role Management: All dropdown values should display in same color

	ACUMOS-3868 - IST: Role Management: Error Message is not displaying if user delete a role which is assigned to a user

Version 3.0.26 30th December 2019

	ACUMOS-3864 - IST: Role Management: White Spaces should remove from table

	ACUMOS-3868 - IST: Role Management: Error Message is not displaying if user delete a role which is assigned to a user

	ACUMOS-3869 - IST: Role Management: Sorting Icons are not displaying on the column headers

	ACUMOS-3867 - IST: Role Management: Module Permission is not displaying as per VD

	ACUMOS-3874 - IST: Role Management: My Catalog should display instead of My Company

	ACUMOS-3870 - IST: Role Management: Select All should be display selected if I close the popup after selecting it all

	ACUMOS-3876 - IST: Role Management: Catalog dropdown is not displaying on manage my model screen when user have created role assigned

	ACUMOS-3866 - IST: Role Management: Search is not working for valid data

	ACUMOS-3871 - ISt: Role Management: All dropdown values should display in same color

	ACUMOS-3873 - IST: Role Management: Edit and Delete option for Admin role should display in grey out color

	ACUMOS-3865 - IST: Role Management: Create New Role: User Permission: Select All checkbox is not selected when user use it first time

Version 3.0.25 23th December 2019

	ACUMOS-3680 - New Portal screen to allow admin to assign access role to each catalog.

	ACUMOS-3682 - Portal update the “Select Favorite Catalogs” screen by using above CDS role based catalogs query to show the accessible catalogs to logged-in user

	ACUMOS-3751 - Show role based catalogs to select in drop down while publishing model

	ACUMOS-3683 - Portal update the “Marketplace” screen to filter the list of models by using the above CDS role based models query to retrieve models based on accessible catalogs and user’s role

Version 3.0.24 16th December 2019

	ACUMOS-3699 - Co-Brand Logo: Please wait is showing for very long time.

	ACUMOS-3837 - Portal marketplace public model viewing is blocked, requires login

	ACUMOS-3836 - IST - Logging Debug message constantly filling up logs

Version 3.0.23 09th December 2019

	ACUMOS-3783 - <IST> Once we are creating new license, and clicking on save button, the ‘Modify’ button is getting enabled without selecting any value from drop-down.

	ACUMOS-3588 - As a publisher of a model, display the model description before approval to allow description to be part of the approval criteria of the model

	ACUMOS-3646 - <IST2> On-boarding through Docrized URI << Once on-boarded model successfully, only ‘Upload New’ button should be enabled not ‘On-board model’.

	ACUMOS-3794 - <Portal Marketplace>Manage My Model > Publish to Marketplace: On changing catalog, rating under description is not getting set to the default value.

	ACUMOS-3733 - License should be optional during web-on boarding

Version 3.0.22 28th November 2019

	ACUMOS-3719 - <IST> Selection issue on on-boarding dockerized URI model / Web on-boarding

	ACUMOS-3692 - IST | MLWB | Navigation to Acu-compose from home page of mlwb is failing

	ACUMOS-3721 - <IST2><Marketplace/OA&M><Maintained Backup Logs>Backup Logs/Archived Logs: Proper validation message is not displayed on clicking Archive/Restore/Delete button

	ACUMOS-3703 - <IST><Portal Marketplace> Added license not displayed for models onboarded through ‘On-Boarding Dockerized model uri’ and ‘On-board dockerized model’

	ACUMOS-3673 - <IST> Model description screen << Mouse-hover on Description rating stars * hand icon is displaying.

	ACUMOS-3655 - Acu Compose: Deploy to Cloud: Text is overlapping on the cloud options

	ACUMOS-3693 - Web-onboarding: After on-boarding process starts, the page doesn’t go up automatically showing the on-boarding status

	ACUMOS-3686 - <IST> While selecting check box in user management tab, the color of the box should be purple but it is in no color.

	ACUMOS-3701 - License Profile: Error Message going out of screen for invalid license upload

	ACUMOS-3607 - <IST> Manage Peer(s) Access Screen:-When search result is not found, and user is checking the check-box the both “Grant Peer Access” & “Remove” button should be disable.

	ACUMOS-3685 - Delete Api token is not working in the account setting for newly signup user

	ACUMOS-3698 - Manage My Model: Status change to Not started of Description when user update the model category and toolkit type

	ACUMOS-3706 - When selecting license option as “Select License Profile”, without selecting any value from drop-down the ‘Modify’ button is getting enabled.

	ACUMOS-3704 - <IST> At the time of on-boarding, when we are creating the license then it is not saving and on-board button is also not enabled.

	ACUMOS-3702 - <IST> <Web Onboarding>On-board dockerized model : Model searching not working on hitting Enter key

	ACUMOS-3694 - <IST2><Portal Marketplace><Maintained Backup Logs> Create Backup: Created repository is not displayed in repository drop down unless we refresh the page

	ACUMOS-3671 - <IST><Portal Marketplace>Manage My Model > Export/Deploy to Cloud: Page title issues.

	ACUMOS-3733 - License should be optional during web-on boarding

Version 3.0.20 04th November 2019

	ACUMOS-3635 - IST2: Pending for approval is not displaying when user republished a already published model in a catalog with Self publish NO

	ACUMOS-3646 - <IST2> On-boarding through Docrized URI << Once on-boarded model successfully, only ‘Upload New’ button should be enabled not ‘On-board model’.

	ACUMOS-3653 - Notifications: Notifications is not displaying date wise

	ACUMOS-3574 - Mock class in production code

	ACUMOS-3607 - <IST> Manage Peer(s) Access Screen:-When search result is not found, and user is checking the check-box the both “Grant Peer Access” & “Remove” button should be disable.

	ACUMOS-3612 - IST: Proper Error message should display when user try to delete a model without nexus image

	ACUMOS-3556 - <IST2><Portal Marketplace>Site Admin > Maintained Backup Logs: Archive functionality is not working with red error box displayed on screen

	ACUMOS-3527 - <IST2> License Profile screen is having cosmetic, alignment and button functionality issue

	ACUMOS-3557 - <IST2> <Portal Marketplace> Backup Logs /Archived Logs Issues

	ACUMOS-3655 - Acu Compose: Deploy to Cloud: Text is overlapping on the cloud options

	ACUMOS-3370 - <IST> Wrong sentence in Sign In pop-up

	ACUMOS-3595 - Cleaning up GatewayClient Code

	ACUMOS-3651 - LMCL 1.4.1 - pre onboarded download/deploy action allow, cds client is required by rtu verification

	ACUMOS-3645 - OOM during web-onboarding in portal

	ACUMOS-3644 - Portal 3.0.16 incorrectly changed call to SV interface securityVerificationScan - fixes post review

Version 3.0.18 25th October 2019

	ACUMOS-3644 - Portal 3.0.16 incorrectly changed call to SV interface securityVerificationScan

Version 3.0.17 25th October 2019

	ACUMOS-3601 Bump LMCL to 1.4.0 to support LUM 0.28.0 improved denial messages

	ACUMOS-3082 Bump LMCL to 1.3.0 - to support LUM 0.27.1,0.27.2

	ACUMOS-3596 <IST> License is not getting updated on model description page, when the license upload option will be ‘select license profile’.

	ACUMOS-3626 <IST> Error is displaying when user is uploading valid license

	ACUMOS-3594 <IST> Manage my mode & Preview screen have few issues

	ACUMOS-3526 No Result Found color changing when user hover the cursor

	ACUMOS-3452 IST2 - Unable to create a subscription

	ACUMOS-3612 IST: Proper Error message should display when user try to delete a model without nexus image

	ACUMOS-3590 k8 deployment NullPointerException

	ACUMOS-3555 <IST2> When we upload license at the time of on-boarding then that license is not displaying on ‘model description’ page, when license upload option is “Select license Profile”.

	ACUMOS-3586 on-boarding license profile is not correctly shown

	ACUMOS-3607 <IST> Manage Peer(s) Access Screen:-When search result is not found, and user is checking the check-box the both “Grant Peer Access” & “Remove” button should be disable.

	ACUMOS-3592 <IST> On-boarding dockerized model URI:- When we select license option as ‘select license profile’, then at the top of the on-boarding screen, all on-boarding option is not visible.

	ACUMOS-3533 <IST2> View on-boarding history screen should have sorting icon for tabulation field.

	ACUMOS-3611 Portal - Dropdown missing left border

	ACUMOS-3613 <IST> Model name is getting overlapped with ‘new’ when model name is large in select favorite catalog screen.

	ACUMOS-3516 While publishing model:- Model description << after typing one word if copying and pasting it then its placing in new line.

	ACUMOS-3514 <Portal Marketplace><Web Onboarding> Proper validation not provide on On-board Model button

	ACUMOS-3633 <IST> By default ‘micro-services’ check-box is not getting checked once user clicks on ‘upload new model’.

Version 3.0.16 18th October 2019

	ACUMOS-3452 IST2 - Unable to create a subscription

	ACUMOS-3581 IST : Not able to login with the updated password after password expiry

	ACUMOS-2465 <IST2> Not able to delete the unpublished models.

	ACUMOS-3559 Error is not displaying while updating the description when SV flag is ON

	ACUMOS-3557 <IST2> <Portal Marketplace> Backup Logs /Archived Logs Issues

	ACUMOS-3527 <IST2> License Profile screen is having cosmetic, alignment and button functionality issue

	ACUMOS-3587 Model Preview - License tab should be License profile tab

	ACUMOS-3552 VD need to be update for on-boarding page

	ACUMOS-3561 IST: Description Rating: Status is showing completed without clicking on OK button

	ACUMOS-3514 <Portal Marketplace><Web Onboarding> Proper validation not provide on On-board Model button

	ACUMOS-3513 <IST2><Portal Marketplace><Web Onboarding><My Models/Preview Model> Create New profile/ Modify profile window is getting closed in unexpected manner

	ACUMOS-3528 <IST2> Grant Peers Access, when search result is ‘No Result Found’ and user select the check-box then ‘Grant Access’ button is getting enabled.

	ACUMOS-3571 On-Boarding History: In progress text need to display in orange color and in the status field space is missing in In Progress

	ACUMOS-3563 IST/IST2 Portal Error when logging in in

	ACUMOS-3519 <IST2> Maintained Backup Logs Side menu icon is getting trimmed and loader is not consistent with the application

	ACUMOS-3533 <IST2> View on-boarding history screen should have sorting icon for tabulation field.

	ACUMOS-3526 No Result Found color changing when user hover the cursor

	ACUMOS-3545 Notification: Icon is displaying wrong when user mark as read on already read notification

	ACUMOS-3505 Move RTU check directly into portal (currently inside security verification)
- Update tests to use SecurityContext / MockMLUser
- Use non blocking call for verify using CompletableFuture/ AsyncConfiguration
- new optional configuration options for @Async service calls

“concurrency.async.core-pool-size=10”
“concurrency.async.max-pool-size=50”
“concurrency.async.queue-capacity=10000”

Version 3.0.15 10th October 2019

	ACUMOS-3503 add acumos-c-client link to model obdr page

	ACUMOS-1437 As a User , I want Portal set and use expiration date on instances with passwords

	ACUMOS-3535 User not able to be created by portal

	ACUMOS-3536 Use security verification 1.1.0 jar in portal

	ACUMOS-3495 [Licensing] License Profile validation error message update

	ACUMOS-1743 As a User , I want Portal to show information about federated solution provenance in Marketplace

	ACUMOS-2994 IST: Pending for approval is not displaying on model tile on manage my model screen when a published model is published in a catalog which have self publish no

	ACUMOS-3530 Modify on-boarding portal for java spark

	ACUMOS-3499 Documenation: Federation user guide need to update for CLIO Release

	ACUMOS-3521 Description Rating: Publish to Marketplace button enable without clicking on OK Button

	ACUMOS-3403 <IST> Gramatical mistake is showing on page numbers and model numbers in favorite catalog screen on the bottom left corner.

	ACUMOS-3525 <IST2><Portal Marketplace><Web Onboarding>’License Profile’ header font format should be proper and consistent

	ACUMOS-3511 Alignment of Introduction word is incorrect on model description screen

	ACUMOS-3439 IST: Peer(s) Access : Issue in the Grant Peers Access Popup

	ACUMOS-3532 <IST2> Catalogs page:- Action icon as manage peer, the tool-tip should have space in between manage & peer.

	ACUMOS-3533 <IST2> View on-boarding history screen should have sorting icon for tabulation field.

	ACUMOS-3515 while publishing model:- without selecting any category clicking on done success message is displaying.

	ACUMOS-3519 <IST2> Maintained Backup Logs Side menu icon is getting trimmed and loader is not consistent with the application

Version 3.0.14 01st October 2019

	ACUMOS-3433 “deploy to K8s” option

	ACUMOS-3340 Portal - Use LicenseAsset.registerAsset when a solution is published

	ACUMOS-3461 hide rtu admin view in portal (waiting on decision for re-purpose)

	ACUMOS-3470 Forgot Password: Message need to corrected in forgot password popup

	ACUMOS-3158 Sharing Model: Message is not displaying anywhere which user is giving at the time of sharing of model

	ACUMOS-3226 Portal FE - displays Acumos Admin for federated models

	ACUMOS-3438 IST: Peer(s) Access : Issue in the Manage Peer(s)Access screen

	ACUMOS-3022 <IST2> <Onboarding> <Asynchronous Microservice> Errored model is getting onboarded successfully

	ACUMOS-3439 IST: Peer(s) Access : Issue in the Grant Peers Access Popup

Version 3.0.13 20th September 2019

	ACUMOS-3441 Security-Verification failed and reported back to portal at first attempt

	ACUMOS-3420 <IST> SV is on but unable to publish the model, while publishing its throwing an error message.

	ACUMOS-2345 Platform maintenance support UI/System Clean Up

	ACUMOS-3421 <IST> At the time of on-boarding, when we upload license the uploaded license is not displaying on model description page.

	ACUMOS-3373 IST: Green Tick is not displaying when user select one catalog from multiple catalog

	ACUMOS-3425 IST: Site word is missing before map in 403 error page.

	ACUMOS-3403 <IST> Gramatical mistake is showing on page numbers and model numbers in favorite catalog screen on the bottom left corner.

	ACUMOS-3266 Create Repository - UI

	ACUMOS-3270 Archive Logs - UI

	ACUMOS-3271 Archive Logs - BE

	ACUMOS-3267 Create Backup - UI

	ACUMOS-3268 Create Backup - BE

	ACUMOS-3269 Create Repository - BE

	ACUMOS-3265 O&M System Clean Up Portal changes

	ACUMOS-3446 ON-BOARD DOCKERIZED MODEL: Upload revision is not working for shared model

	ACUMOS-3452 IST2 - Unable to create a subscription

	ACUMOS-3349 As a user, I want Acumos to automatically add a star rating while I publish my model from private to the Marketplace.

	ACUMOS-3388 Portal team to integrate with LicenseProfile.getTemplates, getTemplate apis

	ACUMOS-3447 <IST><Portal Marketplace>Tooltip should be properly displayed for ON-BOARDING MODEL and footer link should be renamed from Modeler Resources to On-Boarding Model.

	ACUMOS-3444 Publisher user guide is missing information and needs to be corrected

	ACUMOS-3437 IST: Validation Message need to improve for ACUMOS-2119

	ACUMOS-3439 IST: Peer(s) Access : Issue in the Grant Peers Access Popup

	ACUMOS-3438 IST: Peer(s) Access : Issue in the Manage Peer(s)Access screen

	ACUMOS-3432 IST: Submit To Publication button enable when user click on cancel button during skip step

	ACUMOS-3391 Portal team to upgrade to CDS 3.0 to use new LicenseProfile api

	ACUMOS-3445 IST: Download Popup: Incorrect text is displaying on the popup

	ACUMOS-3338 Portal-BE - Call LicenseProfile.validate api

	ACUMOS-3030 As owner of the asset, I will need to attach a license profile to the asset in the catalog.

Version 3.0.11 10th September 2019

	ACUMOS-3395 Ability to run SV license scan when User updates model

	ACUMOS-3143 Manage (view, add and remove) the peers that may access a restricted catalog

	ACUMOS-3421 <IST> At the time of on-boarding, when we upload license the uploaded license is not displaying on model description page.

	ACUMOS-3404 IST: Rewording the content of error popup when user unable to delete the catalog

	ACUMOS-3402 IST: Created By and Version is displaying wrong when user click from Other Category Model option on left hand side

	ACUMOS-3362 Deploy to Azure | Fields for deploy to azure not there on model edit screen

	ACUMOS-3361 Deploy to Azure | Composite solution details are not displaying on model edit screen for first instance on click deploy to Azure if user navigate from design studio screen

	ACUMOS-3358 IST: ACUMOS-2119 implementation is not done according to VD

	ACUMOS-3350 IST: Success Status is displaying in red color View Result for successful on-boarding

Version 3.0.10 3rd September 2019

	ACUMOS-3324 Upgrade to OpenJ9 JRE 11 on Alpine based image

	ACUMOS-2806 IST: Adding documents and images during publishing does not allow “_” or spaces

	ACUMOS-3363 IST: New is displaying on the first catalog displaying in next pages

	ACUMOS-3348 IST: Model is pending for approval but ‘withdrawal request’ is not displaying.

	ACUMOS-3374 On model details page ‘Author/Publisher details’ icon is getting trimmed, specific for fire-fox browser.

	ACUMOS-3242 Publisher unable to delete a catalog

	ACUMOS-3373 IST: Green Tick is not displaying when user select one catalog from multiple catalog

	ACUMOS-3375 Hand Symbol is displaying on overall application where tabulation is present.

	ACUMOS-3368 <IST> <Marketplace/My Models> Tag functionality is not consistent across the application

	ACUMOS-3364 <IST>For specific unpublished models, the model is visible as successfully published in publish to marketplace tab.

	ACUMOS-3356 All the error messages for catalog screen should be error specific

	ACUMOS-3361 Deploy to Azure | Composite solution details are not displaying on model edit screen for first instance on click deploy to Azure if user navigate from design studio screen

	ACUMOS-3285 IST2 - Copy description for publishing not working

	ACUMOS-3263 IST: Catalog name going out of the box if name length exceeded to certain limit

	ACUMOS-3355 <IST> Gramatical mistake in showing page numbers and model numbers in some screens on the bottom left corner

	ACUMOS-3319 <IST>Names of modules are not visible in discover acumos section.

	ACUMOS-3121 IST: Unpublished Model of other user is displaying on model description screen

	ACUMOS-3365 <IST>For restricted catalogs, there is spacing issue in the model publication status boxes in publish to marketplace page

	ACUMOS-3370 <IST> Wrong sentence in Sign In pop-up

	ACUMOS-3352 Hand Symbol is displaying on Dynamic image in the design studio tab

	ACUMOS-3350 IST: Success Status is displaying in red color View Result for successful on-boarding

	ACUMOS-3353 IST: After publishing the model with self publish no, the success message is displayed as solution published

Version 3.0.8 19th August 2019

	ACUMOS-2995 <IST> <Portal Marketplace > Microservice start message is displayed in “Green” and Microservice successful message displayed immediately

	ACUMOS-3276 IST: AcuCompose Name is not consistent in the application

	ACUMOS-1189 DS horizontal and vertical bars show drag handles but cannot be moved

	ACUMOS-3341 Admin: Carousel: Select Color functionality is not working

	ACUMOS-2945 Pagination is required in the SELECT FAVORITE CATALOGS screen

	ACUMOS-3322 IST : ML Learning Path showing image path not valid and icon is also not displaying

Version 3.0.7 12th August 2019

	ACUMOS-3263 IST: Catalog name going out of the box if name length exceeded to certain limit

	ACUMOS-3317 IST: Licenses need to replace with License in preview model

	ACUMOS-3314 IST - Subscription count is not updated

	ACUMOS-3318 <IST>Tab contents not visible for management options section in Manage My Model page

	ACUMOS-3156 Federated subscriptions silently fail to be updated if local and remote catalogs have same name

	ACUMOS-3316 IST: Not able to add tag during publishing of model

	ACUMOS-3259 Published On Date is displaying for the unpublished model

	ACUMOS-3243 IST: Anchor Message Issue

	ACUMOS-3300 IST2 - Changing versions does not show difference

Version 3.0.4 1st August 2019

	ACUMOS-3245 Portal Auth API develop (cookie)

	ACUMOS-3260 IST: Licences is displaying in place of license

	ACUMOS-3272 Onboarding is completing through ‘ON-BOARDING DOCKERIZED MODEL URI’ but getting error in bell notification

	ACUMOS-3294 <IST2> 403 Error displayed on clicking model on Home page without logging into application

	ACUMOS-3273 IST: Preview Model: Model Image is displaying wrong before the model name

	ACUMOS-3261 Publish Request: Hand Symbol is not displaying on model name hyperlink

	ACUMOS-3164 User should get the notification when model is unpublished successfully

	ACUMOS-3296 Dynamic image for DS tiles

	ACUMOS-3180 From Portal deploy to cloud button should not be enable for non-valid composite solution

	ACUMOS-3153 New wireframe for RTU

	ACUMOS-3237 IST: Restricted Catalog: Self Publish-No: Model is getting published directly in restricted catalog with self publish No

Version 3.0.2 29th July 2019

	ACUMOS-3157 Approve/Decline Publication button enabled for already approve/decline publish request

	ACUMOS-3240 IST: Preview Model: Tag value is not displaying

	ACUMOS-3277 DS should append first four digits of Revision Id (UUID) only for duplication Solutions (viz., Solution with same name and version)

	ACUMOS-3239 IST: On-Boarding Icon: Icon is not same for On-Boarding

	ACUMOS-3255 IST: Old icon is displaying for Not Yet On-boarded Box

	ACUMOS-3262 Publish Request: Non-clickable icon is not displaying for already approve and decline option

	ACUMOS-3245 Portal Auth API develop (cookie)

	ACUMOS-2118 Portal implement paginated display of user notifications

	ACUMOS-3105 <IST><Web Onboarding> Create Microservice checkbox displayed not selected by default after completing onboarding process through ‘On-Boarding Dockerized model uri’

	ACUMOS-3203 Remove duplicate header

	ACUMOS-2763 IST: Add Infographics in not working on carousel

	ACUMOS-2119 Portal incorporate author entry when publishing to any catalog

	ACUMOS-3241 Reduce the size of the popup displaying in Site Admin(Activate User / Update Role)

	ACUMOS-3238 IST: Model Details: Signatures should be replace by Signature

	ACUMOS-3095 IST: Wireframe/VD is not available for Export To Local Screen at share point

	ACUMOS-2995 <IST> <Portal Marketplace > Microservice start message is displayed in “Green” and Microservice successful message displayed immediately

	ACUMOS-3057 wrong link in on-board pre-dockerized model

	ACUMOS-3098 IST: Deploy to Azure Agreement popup is not displaying when user click on deploy to cloud from manage my model screen

	ACUMOS-2713 As a model builder I would like to view on-boarding history of successful jobs

	ACUMOS-3141 Hide the Request and Configuration workflows menus from site admin

	ACUMOS-3170 Portal - Sidebar menu item is not configurable through properties

	ACUMOS-2951 Multiple NPE errors showing in console

	ACUMOS-3223 IST: Update Success Message and Text consistency for Co-Brand Screen

	ACUMOS-3122 IST: Icon is incorrect in the error message of model name uniqueness

	ACUMOS-3139 IST: Calalog name displaying in upper case in View Catalog Popup

	ACUMOS-3106 RTU: Checkbox , Created and Last Updated Date is not displaying in the single line

	ACUMOS-3169 Portal FE: Default Acumos Home Page: Padding is missing between the home page image and paragraph text.

	ACUMOS-3049 IST: RTU: Loading message is not consistent with the application

	ACUMOS-2996 <IST><Portal Marketplace><Web Onboarding>Upload button remains disabled if we add back to back two files for onboarding and license

	ACUMOS-3140 IST: Error Icon is incorrect when user update catalog name with existing one

	ACUMOS-3013 <IST2><Marketplace/My Models> Tag display format not consistent

	ACUMOS-2978 <Portal Marketplace><Web Onboarding>Browse button remains enabled on completing onboarding process

	ACUMOS-3120 <IST><Portal Marketplace> My Models > Manage My Model: Tag not accepting special characters like #@%&+

	ACUMOS-3150 IST: Action Column name is missing on the header on View/Add Subscriptions popup

	ACUMOS-3149 IST: Breadcrumb is incorrect for SITE CONTENT screen

	ACUMOS-3091 On-Boarding History: No Result found should display if data is not available

	ACUMOS-3119 <IST><Portal Marketplace>My Models > Manage My Model: Space is accepted as a last character in model name

	ACUMOS-2724 Use stackoverflow tag “acumos” in Q&A link to improve user experience

Version 3.0.0 12th June 2019

	RTU creation/ removal ACUMOS-3003

	miss url on onboarding page ACUMOS-3016

	on-boarding doc not updated in portal ACUMOS-3011

	IST2: Top Carousel: Main Backgroud: if image height is more info text going out of the box ACUMOS-3017

	Wrong link in “ON-BOARDING BY COMMAND LINE” ACUMOS-3009

	<IST2><Onboarding> Signatures not displayed properly for ONNX,PFA and DOCKERIZED MODEL URI models ACUMOS-2784

	<IST2><Marketplace>”Model” miss-spelled in error message displayed while onboarding. ACUMOS-3019

	Portal management of co-brand logo does not show current logo nor max size ACUMOS-2725

	IST2: Validation Message is not displaying on the profile pic when file size exceed the limit ACUMOS-2989

	IST2: Incorrect icon is displaying on Security verification status popup ACUMOS-2999

	IST2: Anchor Messages Icon Issues ACUMOS-2987

	<IST2><Onboarding><ON-BOARDING BY COMMAND LINE> Links not working properly with displaying 404 Error ACUMOS-2968

	IST2: Model name is showing available if we are using model name on-boarded by other user ACUMOS-2959

	Wrong link in “ON-BOARDING BY Web” ACUMOS-3010

	<IST2><Marketplace/My Models> Hand symbol not displayed for tags eventhough those are clickable ACUMOS-3014

	Update Marketplace user guide and admin with the front end changes made to the UI for Catalogs ACUMOS-2914

	IST: Not able to select the same file again during upload license ACUMOS-2993

	<IST><Security and Verification/Portal Marketplace> Error displayed deploy to azure/downloading license and onboarding artifacts ACUMOS-3000

	portal marketplace - trying to publish model unable to publish ACUMOS-2952

	<IST2><Manage My Model> Red box unnecessarily displayed while adding tag. ACUMOS-2967

Version 2.2.16 31st May 2019

	IST2: Anchor Messages Icon Issues ACUMOS-2987

	IST2: Upload License Issues ACUMOS-2961

	<IST2><Manage My Model> Red box unnecessarily displayed while adding tag. ACUMOS-2967

	IST2: Select Favorite Catalog: Description box is getting cut down for the last catalog in each row ACUMOS-2969

	IST | Find more details link from design studio not showing details of respective model ACUMOS-2932

	IST2: Access Type showing restricted and self publish as no for every catalog on the View Catalog popup ACUMOS-2963

Version 2.2.15 30th May 2019

	<IST2>Everytime a new model undergoes publishing methods, after updating the name the catalog name changes automatically ACUMOS-2972

	<IST> <ONNX&PFA><MicroserviceGeneration> Validation not provided when microservicegeneration is selected yes while ONNX and PFA onboarding ACUMOS-2956

	<IST2><Marketplace><Web Onboarding>: Progress tracker is not completed while ONNX and PFA onboarding. ACUMOS-2977

	<IST2> <Onboarding/Portal Marketplace> Although onboarding completed successfully, progress tracker is remaining in progress at dockerization step ACUMOS-2936

	IST: RTU Isssue List ACUMOS-2896

	IST2: Not able to publish the model in the restricted Catalog ACUMOS-2965

	Portal bad FE request, browser console shows 404 on initial load of composition screen ACUMOS-2947

	IST: Sorting with the icons is not working on the catalog screen ACUMOS-2966

	IST2: View On-Boarding History button is enable without login ACUMOS-2970

	IST2: ML Learning Path is displaying in upper case on mouse hover ACUMOS-2922

	IST2: On-boarding History: Always All hyperlink is display in black color ACUMOS-2964

	typo in ON-BOARDING MODEL page ACUMOS-2908

	<IST> <Portal Marketplace> My Models > Licenses: License details are not properly displayed on screen ACUMOS-2797

	<IST>The first catalog is getting selected alphabetically while publishing any model to marketplace. ACUMOS-2934

Version 2.2.14 21st May 2019

	Update new Acumos Logs in header and footer ACUMOS-2958

	IST: For single character new label is not displaying in the tag ACUMOS-2938

	Portal marketplace public model viewing is blocked, requires login ACUMOS-2888

	<IST>The first catalog is getting selected alphabetically while publishing any model to marketplace. ACUMOS-2934

	IST: License Icon is not displaying as per VD ACUMOS-2802

	<IST> <Portal Marketplace> Manage My Model: For some models, microservice start alert message is not displayed on screen on clicking Create Microservice button ACUMOS-2897

	User can replace license artifact via Portal ACUMOS-2613

	IST2: Create Microservice and download button is enable for deleted model ACUMOS-2921

	IST2: Dropdown is not required in the Select Catalog label ACUMOS-2918

	IST2: Access Level is displaying in the drop down value ACUMOS-2919

	IST: Onboarding naming is not consistent in the application ACUMOS-2937

	<IST><Portal Marketplace> Bell notifications are not refreshing when web onboarding is successfully completed ACUMOS-2769

	IST2: When user write again in the model name box available/not available Button status is not changing ACUMOS-2917

	IST2: Hand symbol display in place of mouse cursor when user click on search icon in the Upload Revision box ACUMOS-2916

	IST2: Notification is overlapping with X in the notification bell icon when model name have more characters ACUMOS-2912

	typo in ON-BOARDING MODEL page ACUMOS-2908

	IST2: Green tick is displaying in the error message ACUMOS-2920

	<IST> <Portal Marketplace> My Models > Licenses: License details are not properly displayed on screen ACUMOS-2797

	IST2: ML Learning Path is displaying in upper case on mouse hover ACUMOS-2922

Version 2.2.13 21st May 2019

	IST | Alignment issue for Property section ACUMOS-2538

	DS missing resource, browser shows 404 on initial load of composition screen ACUMOS-2645

	IST | Splitter and Collator | Tag for drop down (‘ Target Tag Mapping - Map a source field to target field’ Source Tag Mapping - Map a source field to target field)is missing * ACUMOS-2369

	Need a newer version of the applicable code that uses a standard open source license ACUMOS-2431

	IST2 - add subscription give no feedback ACUMOS-2904

	<IST2><Onboarding> Signatures not displayed properly for ONNX,PFA and DOCKERIZED MODEL URI models ACUMOS-2784

	IST2: Favorite Icon is not align with other icon in the tiles ACUMOS-2915

	IST2: Catalogs : When a catalog is selected circle is going out of the box ACUMOS-2913

	Artifacts accessible without Acumos account ACUMOS-2702

	<IST> All the names of modules are not visible in home page in discover acumos section after CMS removal ACUMOS-2738

	<IST><Portal Marketplace> Docker image is getting downloaded with 0KB size for model onboarded using ‘Onboard Dockerized Model URI’ ACUMOS-2811

	<IST> <Portal Marketplace> My Model > View Details : Able to click on Create Microservice button when microservice creation is in progress for same model. ACUMOS-2816

	Portal extend site config screen to allow removal of the co-brand logo shown at top ACUMOS-2547

	IST unable to search based on tag ACUMOS-2900

	<IST> Status of unpublished model is not visible in model description ACUMOS-2895

	Need to change the label under profile to remove the word Theme ACUMOS-2634

	IST: SignIn Popup displaying in the continuous loop when click on ok button ACUMOS-2879

	<IST> Withdraw request not visible after submitting the model for publication ACUMOS-2893

	Deploy to Local showing Deploy to Azure dialog ACUMOS-2838

	Portal-Marketplace README.md description change ACUMOS-2733

	IST: Event Carousel is not working ACUMOS-2762

	Manage My Models Page Tag field does not work in Chrome ACUMOS-2644

	Portal catalog table omits column self-publish ACUMOS-2853

	Portal publish-to-marketplace screen too little space for catalog drop-down ACUMOS-2854

	IST: License Icon is not displaying as per VD ACUMOS-2802

Version 2.2.12 13th May 2019

	<IST><Portal Marketplace> Docker image is getting downloaded with 0KB size for model onboarded using ‘Onboard Dockerized Model URI’ ACUMOS-2811

	Portal publish-to-marketplace screen too little space for catalog drop-down ACUMOS-2854

	Portal catalog table omits column self-publish ACUMOS-2853

	<Portal Marketplace><Web Onboarding> Not accepting .ONNX and .PFA files while onboarding ACUMOS-2746

	Documentation: Publisher Guide: Approval Comment is displaying as optional in the screenshot ACUMOS-2478

	Documentation: User Guide Missing for Delete API Token ACUMOS-2477

	IST: RTU Issues ACUMOS-2807

	IST: Select Favourite Catalog Issues ACUMOS-2798

	Model preview - tabs height are not correct ACUMOS-2846

	IST-Portal federation Admin wrt enabling and disabling ACUMOS-2881

	<IST> All the names of modules are not visible in home page in discover acumos section after CMS removal ACUMOS-2738

	Add endpoint for fetching username from authorization token ACUMOS-2882

	Portal reduce page load time by sending send links to solution images ACUMOS-2040

	IST: ONBOARD DOCKERIZED MODEL Issues ACUMOS-2810

	When data is loading on my models no indication to user ACUMOS-2862

	IST2: Catalog Tab Issue list version 2 ACUMOS-2842

	Portal extend site config screen to allow removal of the co-brand logo shown at top ACUMOS-2547

	Portal - Not able specify Model description ACUMOS-2839

	<IST> <Portal Marketplace> My Models > Licenses: License details are not properly displayed on screen ACUMOS-2797

	<IST> <Web Onboarding> ‘Onboard a dockerized model URI’ link not re-directing the user to the required page. ACUMOS-2734

	Portal publish to catalog with self-publish flag enabled still goes for approval ACUMOS-2855

	Sensitization of pathVariables missing in MarketPlaceCatalogServiceController ACUMOS-2707

	<IST> <Portal Marketplace> Manage My Model: Upload image acceptance criteria is not working properly ACUMOS-2539

	IST2: Publish Request: Column getting truncated ACUMOS-2840

Version 2.2.11 06th May 2019

	IST | On-boarding history| Search functionality is not working for Date & Time, Status column ACUMOS-2653

	<IST><Portal Marketplace> Progress tracker not displayed properly on selecting/deselecting ‘Create Microservice’ checkbox ACUMOS-2799

	IST: ONBOARD DOCKERIZED MODEL Issues ACUMOS-2810

	IST2: Not able to add description during the publishing of the model ACUMOS-2821

	Resolve few Medium Issues from Sprint5 ACUMOS-2788

	Technical Dept on Minor issues from Latest code drop ACUMOS-2812

	Portal marketplace catalog drop-down contents for authenticated user ACUMOS-2808

	Upgrade to CDS 2.2.2 in Portal ACUMOS-2829

	Top Carousel - Default Image size is showing as thumbnail on home page ACUMOS-2529

	IST | While deploying composite solution to azure, on click ‘Deploy’ button nothing happens if user navigates from design studio screen ACUMOS-2689

	Portal allows unauthenticated users to fetch OR (company) models and shows JWT values ACUMOS-2757

	IST: Fedration: Error message going out of the box. ACUMOS-2813

	IST: Adding documents and images during publishing does not allow “_” or spaces ACUMOS-2806

	IST: Upload button is enable while onboarding is in process. ACUMOS-2801

	IST: On mouse hover a white strip is displaying on RTU Icon ACUMOS-2814

	On Boarding is failing when on-boarding with license.json ACUMOS-2809

	Portal on deploy must first show policy dialog, THEN details dialog ACUMOS-2617

Version 2.2.10 26th April 2019

	IST | Alignment issue for Property section ACUMOS-2538

	In DS UI, for Deploy Model button functionality include new parameter RevisionId while invoking Portal API deploy model ACUMOS-2710

	IST: Catalog Publish Unpublish Issue ACUMOS-2803

	IST: Alignment is not proper for footer information ACUMOS-2681

	IST: RTU Issues ACUMOS-2807

	BE changes for on-boarding process for pre-dockerized model URI ACUMOS-2627

	IST | Sorting is incorrect for notifications in Manage Notifications ACUMOS-2565

	PortalUtil Null pointer exception in convertToMLSolution method ACUMOS-2679

	IST | View on-boarding history | Model name and step code are overlapping ACUMOS-2658

	IST | View on-boarding history | Pop-up showing hard coded name on-click on View results ACUMOS-2657

	IST | View on-boarding history | on-boarding model link on view on-boaring history page is in-active ACUMOS-2656

	IST | On-boarding History | While on-boarding is in-progress , View Result tab is actively visible ACUMOS-2655

	IST | Nomenclature for the fields are not as per the VD or wireframe ACUMOS-2654

	IST | On-boarding history| Search functionality is not working for Date & Time, Status column ACUMOS-2653

Version 2.2.9 22nd April 2019

	Portal provide DML script with basic web content for CDS install on empty DB (ACUMOS-2420)

	Portal deployment UI changes for Azure enhancements (ACUMOS-2138)

	Add Competition navigation element to the Acumos side nav bar (ACUMOS-2605)

	As a user I need to attach a model license when publishing from private to public (ACUMOS-2290)

	As a user I need to attach a model license when publishing from private to company (ACUMOS-2291)

	As a user I need to attach a model license when publishing from company to public (ACUMOS-2292)

	Model License Viewing (ACUMOS-2632)

	FE changes for On-boarding process (desyncronised MS) (ACUMOS-2467)

	BE changes for On-Boarding process (desynchronised MS) (ACUMOS-2469)

	UX changes for On-boardign process (desyncronised MS) (ACUMOS-2468)

	portal code modification to take into account pre-dockerised model onboarding (ACUMOS-2637)

	Support Platform RTU/Entitlement (ACUMOS-2309)

	Support User License RTU/Entitlement (ACUMOS-2105)

	Catalog Management Admin Changes (ACUMOS-2643)

	Catalog Management Workflow Changes (ACUMOS-2642)

	As a User , I want to have License Management Integrated with Portal UI (ACUMOS-2010)

	FE changes for On-Boarding process. (ONNX, PFA) (ACUMOS-2351)

	To assist with retiring the Hippo-CMS, provide document to help migrate CMS content over to CDS (ACUMOS-2494)

	BE changes for On-Boarding process (ONNX, PFA) (ACUMOS-2354)

	Portal Onboarding Changes (ACUMOS-2090)

	UX changes for On-Boarding process (ONNX, PFA) (ACUMOS-2352)

	Sensitization of pathVariables missing in MarketPlaceCatalogServiceController (ACUMOS-2708)

	IST: Rating is not displaying till one decimal point (ACUMOS-2612)

	Retire Hippo-CMS (ACUMOS-2418)

	As a User , I want to have security-verification performed in Portal Workflow (ACUMOS-1378)

	Portal backends run containerized process as unprivileged user (ACUMOS-2778)

	front end changes for pre-dockerized onboarding model (ACUMOS-2671)

	BE changes for on-boarding process for pre-dockerized model URI (ACUMOS-2627)

	Portal extend screens for user-selectable catalog (ACUMOS-2286)

	Portal federation peer subscription field does not show selector content (ACUMOS-1744)

	IST: Alignment is not proper for footer information (ACUMOS-2681)

Version 2.2.8 11th April 2019

	Add License tab to Acumos Platform Before Signature tab (ACUMOS-2633)

Version 2.2.7 29th March 2019

	As a User , I want add editable Publisher field for use by modelers per Authorship proposal (ACUMOS-1595)

	Portal create user screen to edit contact details shown in page footer (ACUMOS-2548)

	Modify Web on-boarding UI to allow user to copy paste docker URI and type a name (ACUMOS-2245)

	IST: Federation: Add Peer Details :Error message is not displaying in user understandable format (ACUMOS-2522)

	<IST> <Portal Marketplace> Manage My Model: Upload image acceptance criteria is not working properly (ACUMOS-2539)

	Portal allows users to browse private models of other users (ACUMOS-2137)

	Portal cannot clear web on-boarding results (ACUMOS-2317)

	IST | Incorrect option selection shows for deploy to local on modelEdit screen when user selects deploy to local from design studio screen. (ACUMOS-2527)

Version 2.2.6 22nd March 2019

	Dev: User is not able to delete the uploaded document from manage my model when file name contain special character and spaces (ACUMOS-2274)

	<IST> <Portal Marketplace> Text not properly displayed on bell notification (ACUMOS-2576)

	Portal cannot clear web on-boarding results (ACUMOS-2317)

	As a model builder I would like to view and manage on-boarding history with detailed results (ACUMOS-1128)

	Portal reduce page load time by sending send links to solution images (ACUMOS-2040)

	As a User , I need different Flag for publishing validation (ACUMOS-1753)

	Components use revised CDS data model for Onboarding History (ACUMOS-2387)

	Logging Standardization- Portal (ACUMOS-2325)

	Detect automatically ONNX, PFA models in Web-on-boarding (ACUMOS-2244)

	Modify web on-boarding UI page to take into account licence (ACUMOS-2288)

	Portal use CDS back-end to manage web-site content like Carousel etc (ACUMOS-2419)

	Portal use CDS 2.1 task and step result objects to manage onboarding history (ACUMOS-2511)

Version 2.2.5 7th March 2019

	Dev: User is not able to delete the uploaded document from manage my model when file name contain special character and spaces (ACUMOS-12680)

	IST: Sort By: Values of drop down on the filter is different in the marketplace and manage my model. (ACUMOS-12980)

	IST: Pagination is displaying incorrect in the my model section when user select values from showing dropdown (ACUMOS-13021)

	IST: Top Carousel : Edit of slide is not working (ACUMOS-13031)

	<IST> <Portal Marketplace> Tag functionality is not working properly after searching the values (ACUMOS-12725)

	Portal cannot clear web on-boarding results (ACUMOS-12723)

Version 2.2.3 1st March 2019

	IST: Sort By: Values of drop down on the filter is different in the marketplace and manage my model.(ACUMOS-2523)

	IST: Federation: Drop Down value is displaying wrong on View add subscription popup (ACUMOS-2537)

	Portal reduce page load time by sending send links to solution images (ACUMOS-2040)

	Portal cannot clear web on-boarding results (ACUMOS-2317

	Portal cannot edit/upload carousel slide image (ACUMOS-2530)

	Top Carousel - Unable to remove top section from the Top carousel (ACUMOS-2479)

	Allow sharing private solution created from DesignStudio with other users (ACUMOS-1670)

Version 2.2.1 25th February 2019

	Portal refine left navigation bar icons to match user expectations (ACUMOS-2400)

	IST: Notification Screen: Search Bar is not working (ACUMOS-2521)

	IST: Mozilla Browser: Search Bar on header is overlapping with bell icon (ACUMOS-2525)

	<IST> <Portal Marketplace> Tag functionality is not working properly after searching the values (ACUMOS-2319)

	<IST><Portal Marketplace> Manage My Model: model onboarding date not getting refreshed as per the default selected version. (ACUMOS-2526)

	Portal page title forever shows “Loading..” (ACUMOS-2531)

	Manage Authors - Created by field does not display the author of a model (ACUMOS-2514)

Version 2.2.0 14th February 2019

	CDS clients pass request ID from front-end thru in client calls (ACUMOS-1801)

	As a admin user I want to have subscriptions publish to private or company (ACUMOS-2435)

	As a User , I want Portal Migrate from CMS to CDS for web-site admin content like carousel, images etc. (ACUMOS-1992)

	IST: Submitted Rating and count is not displaying on model description page. (ACUMOS-2450)

	IST: Notification: Checkbox is getting selected when user click on refresh (ACUMOS-2475)

	<IST><Portal Marketplace> Notifications: Bell notifications are not refreshing when model onboarding is failed (ACUMOS-2322)

	Sort By / Most Downloaded is broken (ACUMOS-2081)

	IST - Model Builder -Jupyter shows no connection - broken link (ACUMOS-2448)

	<IST> For every model’s description ‘R’ in coming in the heading line. (ACUMOS-2466)

Version 2.1.7 7th February 2019

	IST: Sort By ID: Issues on the filter given under sort by ID (ACUMOS-1652)

	IST: Error message is not displaying in proper format after FQDN is not verified (ACUMOS-2152)

	Portal reduce page load time by sending send links to solution images (ACUMOS-2040)

	As a User , I want to View Model Signature for composite solution model (ACUMOS-1554)

	Portal extend getVersion endpoint to benefit proprietary portal implementations (ACUMOS-2427)

	<IST> Not able to delete the unpublished models. (ACUMOS-2465)

	<IST> Pop-ups are getting highlited everywhere in the page. (ACUMOS-2464)

	<IST>Not able to browse and upload the model documents while publishing the model in public marketplace (ACUMOS-2401)

	Dev: User is not able to delete the uploaded document from manage my model when file name contain special character and spaces (ACUMOS-2274)

	Documents not available for model published to company (ACUMOS-2462)

	IST: Created Date field value getting blank after the publisher approval, when user refresh the screen value get displayed (ACUMOS-2375)

	IST: Pagination is displaying incorrect in the My Model Section (ACUMOS-2444)

	IST: Please should display in one line on dialog re policy popup (ACUMOS-2445)

	IST: Publish Request: Approval Button getting disable when user uses enter while writing the approval comment (ACUMOS-2452)

	IST: Status circle color is incorrect in publish to public tab when a publish to public model is published to company (ACUMOS-2113)

	Portal allows creation of multiple publish requests for exact same model (ACUMOS-2441)

	Portal cannot clear web on-boarding results (ACUMOS-2317)

	Portal publication request approve/decline dialog textbox carries old text (ACUMOS-2442)

	metadata file incorrectly lists “ISC” as the license (ACUMOS-2429)

Version 2.1.6, 29th January 2019

	IST2: Publish request entry is displaying for a deleted model.(ACUMOS-1904)

	legacy federated models can’t be changed (ACUMOS-1810)

	As a User , I want to Remove generated artifacts (docker etc.) when deleting a model (ACUMOS-1196)

	Azure deployer must accept user-specified username and password for VM (ACUMOS-1351)

	As a User , I want pagination consistency in Marketplace and My Models (ACUMOS-1355)

	Improve usability of Federation Add Peer screen in Portal (ACUMOS-1550)

	Portal on deploy show user a dialog re policy that requires confirmation (ACUMOS-2120)

	Publisher User Guide missing from documentation (ACUMOS-2148)

	Portal Change for CDS 2.0.0 (ACUMOS-2357)

	IST: Complete Model Name is not displaying in single line on model description screen (ACUMOS-2135)

	IST: FedrationUI:Full/Partial dropdown display at wrong place (ACUMOS-2373)

	IST: Long Model name cause distorted model description screen (ACUMOS-2374)

	IST: Approve button getting disable when user enter something after spaces e.g. good to go (ACUMOS-2376)

	<IST>|AUTOMATION| No unique id for textarea for comments section in approve publish request pop-up (ACUMOS-2378)

Version 2.0.5, 11th January 2019

	Portal show name below icon for models shared with other users (ACUMOS-2116)

	Incorrect Protobuf.json and TGIF.json generated for nested messages (ACUMOS-2272)

	IST: Preview Model Tab is displaying wrong (ACUMOS-2249)

	As a User , I should be able to remove API token entirely (ACUMOS-1577)

	Portal publish approve/decline dialog must REQUIRE a comment, not optional (ACUMOS-2364)

	IST: Complete Model Name is not displaying in single line on model description screen (ACUMOS-2135)

	<IST><Portal Marketplace> Marketplace/My Models: Unwanted text displayed on Model details page (ACUMOS-2321)

	IST: JPG File icon is not displaying on the document section on model description screen (ACUMOS-2306)

	IST2: When onboarding of a model fail user is not getting both logs by the link provided on the notification bell icon (ACUMOS-1903)

	Portal publish to public Copy Docs button should not be enabled if none avail (ACUMOS-1758)

	IST: Checkbox is not getting unchecked when user cancel the filter (ACUMOS-2318)

	Portal federation peer subscription field shows full/partial for peer, not sub (ACUMOS-1900)

	Portal show long publish approve/decline comments in dialog (ACUMOS-2273)

Version 2.0.4, 20th December 2018

	Remove the not yet published bar for publish to company option (ACUMOS-2146)

	As a User , I want Marketplace model detail page show CATEGORY (ACUMOS-1160)

	DS show info to user why models cannot be connected esp split, collate (ACUMOS-1451)

	As an Admin , I want Portal federation admin screen show number of subscription records (ACUMOS-1688)

	CDS controllers should log additional data to enable error diagnosis (ACUMOS-1697)

	As a User , I want User notifications screen show read/unread difference prominently (ACUMOS-1762)

	As a User , I want to see Warning message when UI fails to reach back-end server (ACUMOS-1380)

	Remove Sender name column from Manage Notifications Page (ACUMOS-2025)

	Filter By Category: Deleted Model Filter is not working on my model screen (ACUMOS-2076)

	IST: Color of grid content is getting change across the application (ACUMOS-2115)

	Portal publish to public Copy Docs button should not be enabled if none avail (ACUMOS-1758)

	Portal publish-approve screen does not allow viewing comments after approve/decline (ACUMOS-1775)

	Web onboarding does not report failure on malformed bundle (ACUMOS-1835)

	Show on-boarding error in UI element that allows view and copy of complete message (ACUMOS-1970)

	Portal fails to report auth failure in web onboarding (ACUMOS-1990)

	Portal BE throws exception if On-boarding fails without leaving an error log (ACUMOS-2038)

	Portal does not check for missing user API token during web-onboarding request (ACUMOS-2041)

	Portal federation admin table screen cannot scroll right some columns hidden (ACUMOS-2193)

	Missing check box for Manage Notifications (ACUMOS-2139)

	IST: Complete Model Name is not displaying in single line on model description screen (ACUMOS-2135)

	IST: Success / Error message display at wrong place on the Federation screen after click on verify button (ACUMOS-2153)

	<Portal Marketplace> <Manage My Model> Cursor displayed in Model Documents box and added text not saved anywhere (ACUMOS-2075)

Version 2.0.3, 7th December 2018

	IST: Spacing is incorrect of counts of comment , view and download on tiles on marketplace and my model screen(list view) (ACUMOS-2114)

	IST: Confirmation Popup is not coming while un-sharing the model (ACUMOS-2134)

	Portal federation peer dialog verification behaviors buggy (ACUMOS-1721)

	Gateway client builder fails to check for missing gateway.url configuration (ACUMOS-2024)

	Portal publish author name field validation rejects period, cannot enter an initial (ACUMOS-2032)

	As a User , I want to have Preview displayed when clicking on a Word doc file. (ACUMOS-1706)

	IST- missing part of model label (ACUMOS-2149)

Version 2.0.2, 30th November 2018

	Federation peer FQDN field should validate that entry is valid host name (ACUMOS-1923)

	Publish Requests List: Add Date Field if possible (ACUMOS-1826)

	Portal: can modelers in Publisher role approve their own public requests? (ACUMOS-1797)

	Liked Filter is not required if there are no liked button on comment (ACUMOS-1915)

	PM provide un-share capability in Manage My Models (ACUMOS-1258)

	Portal shall allow delete of model that failed on-boarding (ACUMOS-1392)

	Extend P/M notifications screen to allow sort on column esp date (ACUMOS-1508)

	Improve notifications screen when user has none in table (ACUMOS-1509)

	Portal remember Marketplace view customization like size and sort on BACK (ACUMOS-1612)

	Portal show complete model name set by user (ACUMOS-1708)

	Portal publish request table extend to show submitted date (ACUMOS-1726)

	Portal improve viewing of publish approve/decline comments (ACUMOS-1833)

	need more descriptive errors and interaction path (ACUMOS-964)

	IST2: Manage My Model: Document: Same Document is not getting selected if user cancel first time (ACUMOS-1531)

	IST2: Site Content : Supporting content : Character count on login displaying incorrect. (ACUMOS-1548)

	IST: Author Name is not displaying when user added the success story (ACUMOS-1626)

	IST2: View Comment box(tool tip) getting cut down for blank text on publish request screen (ACUMOS-1803)

	IST2: Published by text is cut down on model tiles when publisher have long name (ACUMOS-1819)

	Portal manage-my-models page shows status Not Started altho deploy to cloud process is completed (ACUMOS-1882)

	IST2: Web Onboarding: Quit(X) is not working during and after uploading of files (ACUMOS-1889)

	IST2: Comment Count is getting zero from tiles when user change the view on marketplace screen (ACUMOS-1912)

	IST2: Comment count width(distance) is displaying wrong on the tiles for company and public section on Manage my model screen (ACUMOS-1913)

	IST2: Tiles size is displaying different for model with pending for approval with other model. (ACUMOS-1914)

	IST: Solution name is not displaying in the notification when user published the model to company marketplace (ACUMOS-1932)

	IST2: Different name is displaying on the model tile on marketplace and manage my model screen for multiple user (ACUMOS-2102)

	<IST2> <Marketplace> Error displayed for Version field (ACUMOS-1555)

	Portal publish to public Copy Docs button should not be enabled if none avail (ACUMOS-1758)

	Portal publish-approve screen does not allow viewing comments after approve/decline (ACUMOS-1775)

	Edit Peer dialog always sets self status to false (ACUMOS-1924)

	Marketplace pagination - Hitting Back button in browser does not cache my 100 count list and brings me back to 10 models (ACUMOS-1630)

	Unable to exit out of the attach document to model in Manage My Model (ACUMOS-2026)

	IST2 - Interest (user tag for theme) popup window does not work. (ACUMOS-1759)

	IST2/IST - Login issue when time out occures (ACUMOS-1761)

	IST2 - Status is not moving for states when model is published (ACUMOS-1885)

	Intermittent Issue: Save Solution not working (ACUMOS-2037)

Version 1.16.2, 11th October 2018

	Publish Request: Change Spelling of Requestor or Requester (ACUMOS-1815)

	IST: Preferred tag is not displaying on model tile (ACUMOS-1765)

	Portal: can modelers in Publisher role approve their own public requests? (ACUMOS-1797)

	IST2 : Account Setting :Portal image upload screen cannot recognize JPG suffix, insists on jpg (ACUMOS-1802)

	IST2: Notification message should have publisher approval instead of admin approval (ACUMOS-1805)

	Portal manage-my-models page can’t add 2nd author or publisher (ACUMOS-1495)

	Portal federation peer dialog verification behaviors buggy (ACUMOS-1721)

	Portal mktplace model details page shows no description after publish to COMPANY (ACUMOS-1757)

	Portal comments reply feature discards post, never shown (ACUMOS-1776)

	Portal publish request table allows decline/reject of approved request (ACUMOS-1806)

	IST - jpg image not accepted for Co-Branding Logo (ACUMOS-1811)

	Showing only first 20 Tags on manage tags screen (ACUMOS-1837)

Version 1.16.1, 4th October 2018

	IST2: User Guide is not updated based on the new verification process. (ACUMOS-1510)

	IST2: Contact Icon is not displaying at the time of user selection on shared my model screen. (ACUMOS-1538)

	IST2: Published by text is cut down on model tiles when publisher have long name (ACUMOS-1819)

	<IST> <Portal Marketplace/WebOnboarding> Tooltip not appropriate for onboarding step (ACUMOS-1719)

	Portal manage-my-models page shows status Not Started altho pending publication (ACUMOS-1737)

	Portal publish-to-public name dialog model version field is empty (ACUMOS-1795)

	Portal login failure screen typo “does not exists” (ACUMOS-1799)

	IST: Deploy to Local : Download packages and help is not working on the popup (ACUMOS-1653)

	Publish on-boarding URLs from configuration on Portal documentation page (ACUMOS-931)

Version 1.16.0, 28th September 2018

	IST2: UI is displaying distorted on header when shared user have profile pic and also white strip is displaying (ACUMOS-1578)

	IST: Deploy to Local : Download packages and help is not working on the popup (ACUMOS-1653)

	IST: Issues in review/approve workflow when users request publish to public (ACUMOS-1764)

	IST: Preferred tag is not displaying on model tile (ACUMOS-1765)

	Portal image upload screen cannot recognize JPG suffix, insists on jpg (ACUMOS-1722)

	Portal publish-approve screen does not allow viewing comments after approve/decline (ACUMOS-1775)

	Portal login failure screen typo “does not exists” (ACUMOS-1799)

	Portal must not reveal existence of user after failed login attempts cause lock (ACUMOS-1774)

Version 1.15.48, 25th September 2018

	Issues on Web Onboarding Screen (ACUMOS-1711)

	Portal implementation for kubernetes-client API does not conform to design (ACUMOS-1760)

	Publish on-boarding URLs from configuration on Portal documentation page (ACUMOS-931)

	Portal federation admin screen cannot create subscription to model by ID (ACUMOS-1686)

	Portal federation peer dialog verification behaviors buggy (ACUMOS-1721)

	Portal text on web on-boarding screen has typo missing “s (ACUMOS-1729)

	Portal federation peer subscription field does not show selector content (ACUMOS-1744)

	Portal create new user dialog does not offer all available roles (ACUMOS-1772)

	Portal user cannot delete preferred tag (theme) (ACUMOS-1779)

Version 1.15.47, 21th September 2018

	IST2/IST - Login issue when time out occures (ACUMOS-1761)

	<Portal Marketplace/Web Onboarding> Error displayed while onbording when earlier model onboarding is failed (ACUMOS-1718)

	Issues on Web Onboarding Screen (ACUMOS-1711)

	<IST2> <Marketplace> Home > My Model > Documents: On clicking download button for document user is redirecting to “Page not found” error. (ACUMOS-1432)

	Main search - Search models only? (ACUMOS-582)

	Address CLM critical issues in Portal project (ACUMOS-1210)

Version 1.15.45, 9th September 2018

	Add Api Token in WebOnboarding flow (ACUMOS-1676)

	Portal’s personalized user experience with a theme like IOT, wireless, mobile (ACUMOS-1431)

	Portal sign-in dialog shows no message on mismatch username/password (ACUMOS-1723)

	Portal publish-approve screen does not refresh row status after approval (ACUMOS-1724)

	Portal publish request table does not show Please Wait while populating itself (ACUMOS-1727)

	Delete private model fails with message Model Name Not Unique (ACUMOS-1728)

	IST: Notification are not generating for all the processing (ACUMOS-1709)

	IST: User is not able to comment on model (ACUMOS-1710)

	Portal Marketplace/Web Onboarding> Instructions links not redirecting user to required page (ACUMOS-1716)

	Portal display authors and publisher details in marketplace (ACUMOS-1593)

	Portal federation admin screen cannot create subscription to all models (ACUMOS-1685)

	IST- Signup email verification not received now can’t login (ACUMOS-1624)

	Contact Information in the footer need to be configurable (ACUMOS-861)

	Sonar 40% code coverage for Portal Marketplace (ACUMOS-1202)

	Develop Portal’s personalized user experience with a theme like IOT, wireless, mobile (ACUMOS-1631)

	Portal Changes for IOT (ACUMOS-1673)

	R model On-Boarding instruction. (ACUMOS-950)

Version 1.15.44, 7 th September 2018

	IST2: Image Upload on Account Setting Issue (ACUMOS-1507 [https://jira.acumos.org/browse/ACUMOS-1507])

	IST2: User Management: Search Filter is not working properly (ACUMOS-1530 [https://jira.acumos.org/browse/ACUMOS-1530])

	<IST> <Marketplace> <DCAE> On Build For ONAP, on clicking Add to Catalog all steps are not getting completed (ACUMOS-564 [https://jira.acumos.org/browse/ACUMOS-564])

	<IST> <Marketplace> Error not displayed when tried to login with non-existing user (ACUMOS-1616 [https://jira.acumos.org/browse/ACUMOS-1616])

	Portal comments display - no name, no date/time, unauthorized edit (ACUMOS-960 [https://jira.acumos.org/browse/ACUMOS-960])

	Web onboarding should not require entry of toolkit type, make consistent with command-line (ACUMOS-1201 [https://jira.acumos.org/browse/ACUMOS-1201])

	Cannot upload large zip file as model document when publishing to marketplace (ACUMOS-1285 [https://jira.acumos.org/browse/ACUMOS-1285])

	Portal manage-my-models page can’t add 2nd author or publisher (ACUMOS-1495 [https://jira.acumos.org/browse/ACUMOS-1495])

	Authors Names are not displayed in model details page. (ACUMOS-1669 [https://jira.acumos.org/browse/ACUMOS-1669])

	Grey out script and file path in databroker popup UI (ACUMOS-1641 [https://jira.acumos.org/browse/ACUMOS-1641])

	Changing the node name should change the name in collator mapping table or splitter mapping table (ACUMOS-1647 [https://jira.acumos.org/browse/ACUMOS-1647])

	RBAC: Role and Privilege based Operations (ACUMOS-1089 [https://jira.acumos.org/browse/ACUMOS-1089])

	Portal support review/approve workflow when users request publish to public (ACUMOS-1468 [https://jira.acumos.org/browse/ACUMOS-1468])

Version 1.15.43, 24 th August 2018

	IST2: Manage My Model : Tag added message is displaying twice (ACUMOS-1504)

	IST2: Rating is not displaying on the box on the Model carousel on the home page (ACUMOS-1506)

	IST: Model Carousel on Home Page : Long Name is not displaying (ACUMOS-1617)

	IST: User Management : No record found message is not displaying when no data in the table (ACUMOS-1618)

	IST: Icon going out of the screen when user entered long name (ACUMOS-1625)

	<IST2><Portal Marketplace>Manage My Model > Publish to Company/Public Marketplace: ‘Add a tag’ field and box is highlighted with RED color when existing value entered and click on the screen (ACUMOS-1511)

	Publish on-boarding URLs from configuration on Portal documentation page (ACUMOS-931)

	increased flexibility and support for artifacts in web onboarding (ACUMOS-893)

	IST2- Deleting peers does not work. (ACUMOS-1596)

	log standardization and consistency portal/marketplace (ACUMOS-623)

	IST- Signup email verification not received now can’t login (ACUMOS-1624)

	Portal search solution by ID yields no result (ACUMOS-1576)

	Portal UI to support Deploy model to a Local Environment (ACUMOS-1498)

	enable or disable “deploy” button’s cloud options through configuration file (ACUMOS-860)

	Portal option Sort By does nothing for My Unpublished Models (ACUMOS-823)

	Handle impact of Acumos-1070 on components other than onboarding (ACUMOS-1296)

	Short Term Portal changes for Common Microservices (ACUMOS-1499)

Version 1.15.42, 17 th August 2018

	IST2: Rating is not displaying on the box on the Model carousel on the home page (ACUMOS-1506)

	<IST2> <Portal Marketplace> Download popup/Model Artifacts: Opening new tab on clicking Download button (ACUMOS-1562)

	Marketplace sorting, pagination takes time but no Progress indicator is displayed (ACUMOS-1159)

	Acumos Is Not Mobile Friendly appears on desktop browser (ACUMOS-1549)

	Portal store user supplement documents to Nexus (ACUMOS-1491)

	IST2: Manage My Model : Tag added message is displaying twice (ACUMOS-1504)

	IST2: User Management: Search Filter is not working properly (ACUMOS-1530)

	IST2: Manage My Model : Public Marketplace: Browse option is not working in the document (ACUMOS-1533)

	IST2: Site Content:Broken Image Icon is displaying on the home page (ACUMOS-1535)

	IST2: Site Admin : Success Story: Success Story is not displaying on the home page (ACUMOS-1536)

	<IST2><Portal Marketplace>Manage My Model > Publish to Company/Public Marketplace: ‘Add a tag’ field and box is highlighted with RED color when existing value entered and click on the screen (ACUMOS-1511)

	<IST2><Marketplace> Forgot Password popup loaded two times on clicking the Forgot Password link (ACUMOS-1534)

	DS should show “Loading” indicator as it populates left nav bar with models etc. (ACUMOS-1173)

	Portal Model authorship UI at publish time (ACUMOS-1358)

	DS clear leaves canvas in state requiring click on New, simplify UX (ACUMOS-1522)

	IST 2 | Application is going to infinite loop if click on output port of models. (ACUMOS-1521)

	IST 2 | Font and it’s size differs in solution name and solution Description (ACUMOS-1532)

	IST 2 | Close and Cancel button is not working for Splitter and Collator scheme selection (ACUMOS-1569)

	remove unecessary icons of micro-service generation process (ACUMOS-1338)

	Splitter and Collator : Scheme Selector pop up is not working as expected (ACUMOS-1485)

Version 1.15.40, 9 th August 2018

	IST2: Manage My Model : Reply to Comment: Reply Comment need to display as a popup (ACUMOS-1469)

	ISt2: Sing In is displaying when user activates account (typo) (ACUMOS-1502)

	IST2: User status is active in the admin while his account verification is pending (ACUMOS-1503)

	IST2: Image Upload on Account Setting Issue (ACUMOS-1507)

	<IST2> <Portal Marketplace> Download popup: Field value alignment not proper (ACUMOS-1512)

	Portal list of model artifacts should show artifact size (ACUMOS-947)

	Portal comments display - no name, no date/time, unauthorized edit (ACUMOS-960)

	Portal shows zero total available in my models page when some are present (ACUMOS-1331)

	Portal delete of unpublished model removes all revisions (ACUMOS-1408)

	All Instances - Date format should be consistent. (ACUMOS-1474)

	IST2 - Unable to add a peer in federation (ACUMOS-1514)

Version 1.15.39, 3 rd August 2018

	<IST2> <Marketplace> Downloaded count is not updating after downloading the file unless refreshing the browser page (ACUMOS-1134)

	<IST2><Marketplace> On clicking Previous and Next buttons multiple times, appropriate page is not displayed on screen (ACUMOS-1404)

	Cannot upload large zip file as model document when publishing to marketplace (ACUMOS-1285)

	Dev Challenge - Able to deploy to Azure without logging into Acumos (ACUMOS-1391)

	Document updates for Web onboarding changes (ACUMOS-1268)

	IST2 - Unable to add subscription (ACUMOS-1341)

	IST2 : In web on boarding for upload Model Bundle popup only Browse button is enable ,overall upload file field should be enable. (ACUMOS-1306)

	IST2: : Comment count is not displaying in the model box in market place and manage my model section (ACUMOS-1119)

	IST2: Need new VD to show the solution ID (ACUMOS-910)

	IST2: No error message is displaying when user disable single remaining slide (ACUMOS-1048)

	IST2: Notification : Mark as read / Move to Thrash : Multiple Selection : Page is not loading (ACUMOS-1396)

	IST2: Site Content : Null / Undefined is displaying on home page if user kept blank Supporting content field (ACUMOS-1397)

	IST2: User is not getting signout when he close the browser and open again. (ACUMOS-1305)

	Model authorship feature with new VD (ACUMOS-907)

	Portal bell notification count increases and decreases in a loop forever (ACUMOS-1441)

	Portal display solution ID on manage-my-model page also (ACUMOS-1439)

	Portal login in mobile is not displayed (ACUMOS-1450)

	Portal notification screen shows no table even tho I have 500+ notifications (ACUMOS-1405)

	Portal search feature does not re-fetch result when search string is cleared (ACUMOS-1410)

	Portal show Download button on private model (ACUMOS-1280)

	Publishing to both company and public marketplace is not functioning as per design (ACUMOS-382)

	Share with Team : Version No and Model ID also need to display after model name. (ACUMOS-1444)

	There is a cognita reference in PortalLoggingAspect.java (ACUMOS-917)

	IST 2 | User unable to use entire canvas for drag and drop. (ACUMOS-1060)

	IST2 | Solution is overlapping the property box. (ACUMOS-1066)

	DS shall confirm with user on navigate away from screen with unsaved changes. (ACUMOS-1167)

	DS should show “Loading” indicator as it populates left nav bar with models etc. (ACUMOS-1173)

	DS selection of item in left navigation category should highlight the item. (ACUMOS-1174)

	DS loses composite solution description and requires re-entry on every Save. (ACUMOS-1190)

	IST2 | User is able to upload ‘xlsx’ file if databroker type selected as ‘CSV File’. (ACUMOS-1269)

	DS should display its version somewhere on the page. (ACUMOS-1336)

	IST2 | Splitter and Collator | Mapping details are not persists once solution closed and retrieve again. (ACUMOS-1385)

	IST2 | Output port of the splitter not keeping state as ANY if user retrieve the solution again on canvas. (ACUMOS-1399)

	view more models” button is not clickable (acumos.research.att.com instance)(ACUMOS-1457)

	<IST2><Portal Marketplace>Manage My Model > Publish to Company/Public Marketplace: ‘Add a tag’ field and box is highlighted with RED color when value entered and click on the screen ACUMOS-1393

	All Instances - Date format should be consistent. (ACUMOS-1474)

	Define portal/marketplace session length / expiration ACUMOS-1101

	Deploy to Azure cloud is not working after clicking on “Deploy” button (ACUMOS-1473)

	Dev Challenge Acumos Token disappeared from a users account settings (ACUMOS-962)

	IST2: Grid / List View : Box Size is different when user upload a image model and a model have default image (ACUMOS-1433)

	IST2: Manage my Model : Issue in the document step during publishing model. (ACUMOS-1220)

	Marketplace sorting, pagination takes time but no Progress indicator is displayed (ACUMOS-1159)

	Portal comments display - no name, no date/time, unauthorized edit(ACUMOS-960)

	Portal list of model artifacts should show artifact size (ACUMOS-947)

	Portal uses inconsistent tests for Admin role (ACUMOS-1477)

	Support large size images(800 kb) in user profiles (ACUMOS-889)

	Portal shall publish user API token and allow for regeneration (Acumos - 389)

	Portal send email on account creation with verification link (ACUMOS-387)

Version 1.15.37, 19 th July 2018

	portal-marketplace: Fix RST compile warnings (ACUMOS-1320)

	IST2: Versioning of Model is not working (ACUMOS-868)

	IST2: No error message is displaying when user disable single remaining slide (ACUMOS-1048)

	IST2: Manage my Model : Issue in the document step during publishing model. (ACUMOS-1220)

	IST2: Sharing of Model is not working (ACUMOS-1361)

	IST2: Site Content : Add Slide : Main Background : Drag & Drop your file here! going out of the box (ACUMOS-1395)

	<IST2><Marketplace> On clicking Previous and Next buttons multiple times, appropriate page is not displayed on screen (ACUMOS-1404)

	<User guide> <Portal and Marketplace> No separate UI page is provided in the guide for “Build For ONAP” feature. (ACUMOS-1406)

	<User guide> <Portal and Marketplace > Inappropriate button displayed as “Add to Catalog” on web onboarding steps (ACUMOS-1407)

	portal-marketplace: add licences to code and docs (ACUMOS-270)

	Portal show Download button on private model (ACUMOS-1280)

	Cannot upload large zip file as model document when publishing to marketplace (ACUMOS-1285)

	Portal downloads dialog truncates file names unnecesarily, difficult to read (ACUMOS-1353)

	IST2 - Unable to add subscription (ACUMOS-1341)

Version 1.15.36, 11 th July 2018

	IST2: Published Option : Completed is not displaying when user published a model (ACUMOS-1335)

	IST2 : Deleted Model is not displaying in the my model section (ACUMOS-1334)

	Portal shows zero total available in my models page when some are present (ACUMOS-1331)

	Portal allows download of solution artifacts without login (ACUMOS-1278)

	changing version in portal does not update signature for a model (ACUMOS-1274)

	PM My Models search always includes shared models (ACUMOS-1143)

	IST2:Unpublished model is displaying when user filtered with the tags (ACUMOS-1108)

	IST2: Preview Model : Undefined tags is showing when user open the signature from preview model (ACUMOS-1107)

	IST2: Versioning of Model is not working (ACUMOS-868)

	<IST2> <DCAE> Build For ONAP buttons should be disabled for Java and ONAP models (ACUMOS-629)

	<IST> <Marketplace> <DCAE> On Build For ONAP, on clicking Add to Catalog all steps are not getting completed (ACUMOS-564)

	Support Multiple version of Solution in Public/Company/Private(ACUMOS-23)

	IST2: Notification: Only Administrator is coming in the Sender Name(ACUMOS-969)

	IST2: <Marketplace> Downloaded count is not updating after downloading the file unless refreshing the browser page(ACUMOS-1134)

	Relabel Portal tab in model details from “Version History” to “Associated Artifacts” or something(ACUMOS-1281)

	Sorting results are incorrect for Status column in federation screen(ACUMOS-320)

	IST2:Unpublished model is displaying when user filtered with the tags(ACUMOS-1108)

Version 1.15.35, 6 th July 2018

	IST2: No error message is displaying when user disable single remaining slide (ACUMOS-1048)

	IST2: Avg Rating should display till one decimal place (ACUMOS-1068)

	IST2: Site Content: Save is happening when user click on Quit and cancel button on the Supporting content popup (ACUMOS-1142)

	<IST2> <Marketplace> Web Onboarding: Page not getting refreshed even after selecting all steps (ACUMOS-1125)

	Upgrade to acumos-nexus-client version 2.2.0 (ACUMOS-1282)

	IST2 | Sorting results are incorrect for Status column in federation screen (ACUMOS-320)

	IST2 | Regression | Deploy To cloud drop down option is active even if user is not signed in (ACUMOS-926)

Version 1.15.33, 28 th June 2018

	ISt2: Manage my model : Reply to Comment : Delete comment is not working (ACUMOS-1118)

	<IST2> <Marketplace> Not able to add edit delete comment after adding 10 comments (ACUMOS-1139)

	MyModels shows description for private, not for public model thumb nails (ACUMOS-1219)

	IST2 The model name under “Model Name” when publishing model doesn’t like spaces (ACUMOS-1115)

	Web on-boarding feature does not show model name after it is entered (ACUMOS-1200)

	<IST2><Marketplace> My Models/Manage My Model: Different versions not getting selected from drop down by clicking on it (ACUMOS-1126)

	simplified rating process for models (ACUMOS-984)

	<IST2> Marketplace> Download pop-up: Unable to identify the file names and types on pop-up (ACUMOS-1116)

	IST2: Error Model : When user change the view the error model is displaying without error (ACUMOS-1150)

	IST2: Comment box and Write Comment hyper link in the header on model description page is not working (ACUMOS-1120)

	Web on-boarding behavior differs from command line for models/revisions (ACUMOS-1215)

Version 1.15.32, 21 th June 2018

	IST2/DC - Delete company/public model fails with message Model Name Not Unique (ACUMOS-1187)

	IST2: Site Content : Validation message is displaying as a popup for invalid image (ACUMOS-1050)

	The model name under “Model Name” when publishing model doesn’t like sapces (ACUMOS-1115)

	Upload Model Bundle status displayed as ‘Completed’ before clicking on Done button on file popup for mentioned steps (ACUMOS-1166)

	Site Content : No error message is displaying when user input nothing and click on done button on add slide popup (ACUMOS-1049)

	Site Content : Character count should increment/decrements when user delete /add some text (ACUMOS-1047)

	Web-onboarding status message is scrolled off and vanishes after short time (ACUMOS-1012)

	My Models/Manage My Model: Different versions not getting selected from drop down by clicking on it (ACUMOS-1126)

	Successfully Signup Message is not displaying for long time (ACUMOS-1140)

	Admin: Add user : Validation is not working when user select and deselect role before creating the user (ACUMOS-1152)

	Solution is getting closed if clicks on solution title tab (ACUMOS-933)

	Validation pop-up not showing if user ask to update the solution name or version (ACUMOS-934)

	Solution is reflecting twice in solution palette once publish to company market place. (ACUMOS-1106)

	Initial Implementation : Design Studio UI to support message splitting (broadcast and parameter splitting capability) (ACUMOS-1017)

	Initial Implementation : Able to connect multiple model and combine the inputs from models in to single output message using DS tool : “Collator” (ACUMOS-972)

	DS left nav bar missing search/filter for models (ACUMOS-1168)

	Reword the Drag and Drop text on the Design Studio canvas (ACUMOS-1185)

	DS name of splitter node lost on save and reload (ACUMOS-1170)

	Solution name showing as ‘untitled’ (ACUMOS-1151)

Version 1.15.30, 18 th June 2018

	IST2/DC - unable to publish model to Public if published to company(ACUMOS-1133)

Version 1.15.29, 14 th June 2018

	Rating: Rating Count is not displaying on the right hand side sub screen (ACUMOS-1067)

	Ratings: legends value is not changing while changing the rating (ACUMOS-1064)

	Web-onboarding status message is scrolled off and vanishes after short time (ACUMOS-1012)

	No validation for 140 characters in the Supporting content (ACUMOS-913)

	Hyper link label name is going of the screen on Add slide to top carousel (ACUMOS-912)

	All exposed APIs must be authenticated (ACUMOS-740)

	Deleted Model : Status of the deleted model should be deleted (ACUMOS-1046)

	simplified rating process for models (ACUMOS-984)

Version 1.15.28, 11 th June 2018

	Getting 404 Error while accessing the application (ACUMOS-1069)

	Notification count is increasing (ACUMOS-1061)

Version 1.15.26, 07 th June 2018

	Button is enabled without inputting the value. (ACUMOS-967)

	User session time out does not exist. (ACUMOS-966)

	Portal comments display - no name, no date/time, unauthorized edit (ACUMOS-960)

	<Web onboarding> Need to refresh after login from web (ACUMOS-955)

	Site Config: Link or Button Name : Marketplace link is not working (ACUMOS-937)

	Deploy to Azure : Deployment start message is displaying as a popup (ACUMOS-936)

	LF - Onboarding is available (ACUMOS-929)

	There is a cognita reference in PortalLoggingAspect.java (ACUMOS-917)

	Hyper link label name is going of the screen on Add slide to top carousel (ACUMOS-912)

	Showing dropdown is not displaying like 25-50 model when user go to next set (ACUMOS-911)

	Notification not displayed after on-boarding a model (ACUMOS-902)

	Comments , Reply to comments and Share with social networking is not working as expected (ACUMOS-865)

	IST/Dev Challenge - Portal BE has 400 error in logs (ACUMOS-857)

	Rating : Review Message is not displaying which user is giving while submitting the rating (ACUMOS-837)

	Signup Issues (ACUMOS-720)

	new description editor makes input challenging (ACUMOS-717)

	Deactivate-account feature should request confirmation (ACUMOS-576)

	Need new VD for pagination for previous and next button (ACUMOS-916)

Version 1.15.25, 01 th June 2018

	Acumos model signatures showing “undefined” in the GUI (ACUMOS-814)

	omitting part of model signature (ACUMOS-885)

	Drag and Drop not working in DEV challenge (ACUMOS-997)

Version 1.15.23, 24 th May 2018

	Top Carousel is not being displayed in IE (ACUMOS-920)

	IST2 - Site Content does not work – Important features minus few cosmetics (ACUMOS-901)

Version 1.15.21, 22nd May 2018

	IST2: UUID is displaying at wrong place(ACUMOS-892)

	Marketplace solution pagination feature deficencies(ACUMOS-726)

	Added description and got a message to add more text (ACUMOS-870)

	Checkbox & â€œenabledâ€� meaning must match on Site Content (ACUMOS-825)

	Set order of slides not working as designed(ACUMOS-827)

	Need to provide a custom hyper link from a Button in Top Carousel based on new VD (ACUMOS-846)

	IST2 - Site Content does not work (ACUMOS-901)

Version 1.15.20, 17th May 2018

	IST2: Signup Issues (ACUMOS-720)

	IST2: Icon are not displaying in the notification screen (ACUMOS-836)

	Remove hardcoded cloudapp.azure.com host names (ACUMOS-342)

	portal/marketplace FE for public/LF has AT&T CSP Global Log On (ACUMOS-789)

	web onboarding through portal breaks with no error indication (ACUMOS-715)

	deploy text for RackSpace indicates Azure (ACUMOS-853)

	Account Settings > Change photo not working (ACUMOS-587)

	All Instances - Forgot password email response (ACUMOS-847)

	Portal show UUID on model detail page (ACUMOS-871)

	Portal publishing flow shall ensure locally unique name (ACUMOS-873)

	IST2/Dev Challeng - Default image appears when Face is in the name (ACUMOS-874)

	Drag & Drop not working in Site Content (ACUMOS-826)

	Extra line on menu when Signup is disabled (ACUMOS-876)

	IST: Manage My Model : Attached document is not displaying in model details screen when user did not publish the model. (ACUMOS-649)

Version 1.15.18, 10th May 2018

	IST: Manage My Model : Attached document is not displaying in model details screen when user did not publish the model. (ACUMOS-649)

	IST: User Management : Field is not getting clear when user open the popup again (Condition : Username already exist scenario) (ACUMOS-687)

	IST: Submitted rating is not getting auto refresh (ACUMOS-705)

	IST2: Page is not getting refresh after user clear the text from header search box (ACUMOS-815)

	<IST><Build For ONAP> Error notification not proper when onboarding is failed (ACUMOS-664)

	<IST 2> <Build For ONAP> Added Model Name not displayed after onboarding the model (ACUMOS-749)

	portal-marketplace: add licences to code and docs (ACUMOS-270)

	Deactivate-account feature should request confirmation (ACUMOS-576)

	no feedback for failed model.zip webonboard (ACUMOS-421)

	new description editor makes input challenging (ACUMOS-717)

	usage of model sharing screen may be confusing (ACUMOS-739)

	CSS from CMS is over writing the Acumos CMS (ACUMOS-578)

	Manage My Model: show description and document (ACUMOS-707)

Version 1.15.17, 9th May 2018

	Downloading parts of a model changes name (ACUMOS-589)

	IST: Star (Ratings) is editable on the model detail screen (ACUMOS-704)

	IST: Model Details : Document: For any type of document Microsoft word icon is displaying (ACUMOS-604)

	Need to provide a custom hyper link from a Button in Top Carousel (ACUMOS-824)

	Success/ Failure message is not displaying on the UI after VM created or timeout (ACUMOS-676

Version 1.15.16 4th May 2018

	All exposed APIs must be authenticated (ACUMOS-740)

	Download model nexus image (ACUMOS-54)

	Developer Challenge Web On-boarding Status Bar is confusing users (ACUMOS-741)

	Cannot download Docker images from AcumosR (ACUMOS-748)

	Downloaded artifacts have zero length / Issues with Tar (ACUMOS-593)

	Sort by ID is not a sort but a list (ACUMOS-586)

	Success/ Failure message is not displaying on the UI after VM created or timeout (ACUMOS-676)

	Downloaded artifacts have zero length / Issues with Tar (ACUMOS-593)

	All Instances - Web on-boarding buttons need to be disabled when selected (ACUMOS-742)

	Upgrade Portal/Marketplace REST endpoints (ACUMOS-670)

	Peformance Bench Mark for Model Download (ACUMOS-633)

	Welcome page change to show challenge specific images and logo (ACUMOS-727)

	On-Boarding (in-flight) model’s status to show in Portal (ACUMOS-745)

	Acumos-R Web on-boarding: when users upload a model’s zip file, even though the model is uploaded, the UI remains “Not Started” state (CD-2144)

	UX: Download model is not working (CD-2055)

 Portal and Marketplace Publisher Guide

Portal and Marketplace Publisher Guide

	Publishing Models
	Requests List

	Approving or Declining a Request

	Manage Catalogs Overview

	Delete Catalog

	ManagePeer(s) Access

 ManagePeer(s) Access

ManagePeer(s) Access

	Publishers can allow peers to access restricted catalogs.

	Federation allows peers to access only public catalogs.

	For restricted catalog access peers need to get permission from the user.

[image: ../../../../../../_images/AccessedPeers.png]
In order to provide access user will see a button enabled only for restricted catalogs in Action coloumn under catalog page.

[image: ../../../../../../_images/User_access.png]
User can grant permission to the peers to provide access to Restricted Catalogs.
On click of Grant Peer Access button you can see a dialog through which user can give grant permission to peers.
Grant Peer Access button will be disabled when all the peers got access from the user.

[image: ../../../../../../_images/ExistingPeerDialog.png]
User can remove access to the peers to restrict access for Restricted Catalogs.
For removing single peer user should click on cross button under ACTION column of corresponding row.
For removing multiple peers user should select peers and click on Remove button.
Remove button will be disabled when no peer is selected for removal.

[image: ../../../../../../_images/removePeer.png]

 Manage Catalogs Overview

Manage Catalogs Overview

The publisher can create the number of catalogs in his instance, and using access level
option he can restrict it to display in the marketplace. Publishers can publish one model in different
catalogs and they can customize the information based on their needs.

There are two types of access level Acumos has provided.

	Public : Using this access level option publisher can allow his catalog access in the marketplace for the users. There is no condition to accessing these catalogs for the user whether they are logged-in or not.

	Restricted : Using this access level option publisher can restrict the catalog access for the marketplace users. For accessing these catalogs user has to login to Acumos.

[image: ../../../../../../_images/manage-catalogs-overview.png]

Clicking on Add New Catalog button, publisher is able to create new catalog.
Publisher has to enter the details while creating a new catalog

Catalog Name: Publisher can gives any name to his catalogs

Access level: Select this option to restricted your catalogs to be displayed in the marketplace or not.

Add Description: Publisher can provide small details or information about your catalog.

Self Publish: Using the Self Publish option publisher can decide to have an admin approval for Publishing the catalogs on the marketplace.

[image: ../../../../../../_images/add-new-catalog.png]

Clicking on Edit icon publisher is able to edit catalog details

[image: ../../../../../../_images/edit_catalog.png]

Delete Catalog

The trash-icon(Delete icon) under Action column is used to delete a catalog. Delete icon is Enabled only when there are no models associated with that catalog. Delete icon is Disabled when there is a single model associated with that catalog.

[image: ../../../../../../_images/delete-catalog.png]

Any catalog cannot be deleted if it falls under any one or more conditions listed below:

	If catalog is added as favorite catalog.

	If catalog has a model with pending publish request.

	If user granted access to peer for the catalog being deleted.

[image: ../../../../../../_images/delete-error-catalog.png]

 Publishing Models

Publishing Models

Users who have been assigned the Publisher role have the ability to:

	Access a list of requests to publish to the Public Marketplace

	Check the contents of the solution before publication

	Approve or decline publication of the the solution

Publishers have a Publish Request left menu item.

[image: ../../../../../../_images/publish-request-left-menu-item.png]

Requests List

From the Publish Request page, a Publisher is able to view requests to
publish models to the Public Marketplace, view model details by clicking on a
request, approve a request, and decline a request.

[image: ../../../../../../_images/publish-request-list.png]

	Enter filter criteria into the Filter text box in the upper right corner

	Change the number of requests/page

	Page navigation

Approving or Declining a Request

	Click on Model Name to view the details of that specific model.

[image: ../../../../../../_images/Model_Detail.png]

	After reviewing the model details, approve or decline the request by clicking on the button Approve Publication or Decline Publication buttons on the top right corner of the screen. Note that a Publisher may not approve or decline his/her own model.

[image: ../../../../../../_images/approve_request.png]

	Provide the reason in the comments box of the popup. Then click on Approve or Decline

	The Publisher can also approve/decline the request from the Current Requests list by clicking on the action buttons

[image: ../../../../../../_images/decline_request.png]

 Portal and Marketplace Lisence Admin User Guide

Portal and Marketplace Lisence Admin User Guide

	License Admin User Role

	Managing License Profile

 License Admin User Role

License Admin User Role

Users who have been assigned with License Admin User Role have the ability to:

	Create a new Licese Profile

	Modify a Licese Profile

	Access RTU Editor from Portal screen

License Admin User can see MANAGE LICENSE left menu item.

[image: ../../../../../../_images/Manage-Licnse-menu-item.PNG]

Managing License Profile

From MANAGE LICENSE page, User can create a new license profile and modify a license profile.

#.User can create a new license profile on clicking Create New button which will open an iframe that results the creation of new License profile.

[image: ../../../../../../_images/New-License-Profile.PNG]

#.User can Modify an existing License Profile by choosing an existing License Profile from the drop down named Default License Profile and click on Modify button will open an iframe which results modifying a License Profile.

[image: ../../../../../../_images/Modify-License-Profile.PNG]

#.User can be able to Access RTU Editor from Portal screen itself on clicking the button named RTU Editor present in RTU Agreements Portion.

[image: ../../../../../../_images/RTU-Editor.PNG]

 Creating and Using an Account on Acumos

Creating and Using an Account on Acumos

Creating a User Account

In order to use the full capabilities of Acumos, users must create
an account on the Acumos Portal. The user may also complete a user profile.
Depending on the Acumos instance configuration, custom company login
options may be supported.

Account management capabilities are available in the upper right corner
of the user interface.

	Click on Sign Up Now link on Acumos Home screen.

[image: ../../../../../_images/signUpNow_link.png]

	Fill out information in the Sign Up window and click the Sign Up button on the bottom of the screen.

[image: ../../../../../_images/signUp_screen.png]

	An account verification email will be sent to the email address that you entered. You cannot sign-in without verifying your email address. The verification link will be valid for a finite time period, as configured by the Acumos Platform Administrator.

	Click on the link in the account verification email to activate your account. Clicking the link will take you to the Acumos verification page, where you should see the following:

[image: ../../../../../_images/signUp_verification.png]

	After successfully verifying your email address, you can log into Acumos. See the Logging into Acumos section below.

	If the account verification link has expired, you will get an error message. Click the Refresh Token button to generate a new account verification email.

[image: ../../../../../_images/signUp_Verification_expired.png]

Note

Account creation may be customized on individual Acumos installations. If what you see on your local Acumos instance is different than what is in this guide, please consult your local Acumos Admin for assistance.

Logging into Acumos

The steps to login to Acumos are as follows:

	Click on the SIGN IN link on the top right corner of the Home
Page.

[image: ../../../../../_images/signIn_screen.png]

	Fill in the Username or Email Id and Password.

	Click Sign in on the bottom of the screen.

Note

Account log in may be customized on individual Acumos installations. If what you see on your local Acumos instance is different than what is in this guide, please consult your local Acumos Admin for assistance.

Resetting a Password

The steps to reset a password are as follows:

	From the Sign in window, click the Forgot Password link

[image: ../../../../../_images/password-forgetPasswordLink.png]

	Enter the email address associated with the account and then press the Send button

[image: ../../../../../_images/password-resetScreen.png]

Note

Log in and password reset may be customized on individual Acumos installations. If what you see on your local Acumos instance is different than what is in this guide, please consult your local Acumos Admin for assistance.

Setting Profile and Notification Preferences

Your User Profile is designed to give your users a view of your work. When you
publish a model, either to your Company instance or to the Public, your
profile is always available by clicking on your name.

To update your user profile, click on your name in the upper right corner and
then choose Account Settings.

[image: ../../../../../_images/Account_setting_profile_settings.png]

	The API Token is used to onboard models from the command line. If you want to delete the API Token for security reasons, you can delete by clicking the Delete Token button. if you want API Token, click on Refresh button to generate new one.

	When you change your email address, you will be automatically logged out of the application and must log in again

From time to time, you may wish to be notified if a process, such has
requesting access to a model, has completed. To set up your notification
preferences, access the Notification Preferences tab.

[image: ../../../../../_images/Account_setting_notification.png]

Password Expiration

	The expiration duration is configurable through yml with possible values like (nD / nW / nM / nY) where D = Days, W = weeks, M = Months & Y = Years)

	If above property not found or configured, password will not be expired or captured in DB

	
	Expiration date will be set in below scenarios:

	a)When user registers
b)Reset the password
c)Forgot password

Favorite Catalog

1)User can view favorite catalogs under SELECT FAVORITE CATALOG tab.

2)**SELECT FAVORITE CATALOG** tab will display all the catalogs among which favorite catalogs can be displayed as checked.

[image: ../../../../../_images/Account_setting_favorite_selected_catalog.png]

3)User can make any of the catalog as favorite by clicking the checkbox.

4)Clicking on the catalog name will show a dialogbox which displays a list of models associated with that catalog

[image: ../../../../../_images/AccountSettings_favorite_solutions.PNG]

5)User can see the models associated with favorite catalogs on clicking VIEW FAVORITE CATALOGS button present at bottom left cornor.

[image: ../../../../../_images/AccountSettings_view_favorite_catalogs.PNG]

6)**VIEW FAVORITE CATALOGS** will redirect to My Favorite Catalogs section under Marketplace page.

[image: ../../../../../_images/AccountSettings_marketplace_favorite_catalogs.PNG]

 Portal and Marketplace User Guide

Portal and Marketplace User Guide

	Platform Overview

	Creating and Using an Account on Acumos
	Creating a User Account

	Logging into Acumos

	Resetting a Password

	Setting Profile and Notification Preferences

	Password Expiration

	Favorite Catalog

	The Marketplace - For Consumers
	Overview
	Searching by Keyword

	Filtering by Category

	Filtering by Tag

	Filtering by Catalogs

	Viewing Model Details

	Deploying a Model
	Deploying to Local

	Deploying to Azure

	Deploying Your Model

	Cleaning up Azure Resources

	Deploy to K8S

	The Portal - For Modelers
	Overview

	Model On-Boarding Overview
	Architecture

	On-Boarding Client Libraries

	On-Boarding By Web

	On-Boarding Server

	On-Boarding a Model Using the Portal UI

	Viewing Your Models

	Managing a Model
	Sharing a Model with a Team

	Manage Publisher / Authors

	Publishing a Model

	On-Boarding Pre-Dockerized Model Using the Portal UI

	On-Boarding a Model with Docker URI Using the Portal UI

	On-Boarding History

	The Portal - For Modelers
	Description Rating

 Platform Overview

Platform Overview

[image: ../../../../../_images/acumos_homePage.png]

The Portal is a web-based tool designed for users who wish to either explore and use
machine learning models or data scientists who build models and wish to
share them with a larger community.

The Acumos Portal has two sections: (1) The Marketplace and associated
tools for people wishing to find, learn about and use (deploy or
download) models in their own computing environments; and (2) the
Modeler sections for people wishing to share, describe and market their
models. Modeler tools are available in several areas of the site, including
On-boarding, the Design Studio, My Models, and Manage My Model.

The Marketplace and Modeler communities may communicate and interact via the
commenting and rating tools for users.

It has the following key features:

	Easy On-boarding of Models. The Acumos Portal enables modelers to
easily on-board their AI models, document them, and package them into
reusable microservices. Newly on-boarded models are located in the
PRIVATE/UNPUBLISHED catalog, viewable only by the user. The Modeler
may publish them to either their Restricted marketplace (viewable by
others with logins on their local Acumos instance) or to the PUBLIC
Marketplace, where they may be distributed to a wider community.

	Explore the Possibilities of AI. The Marketplace enables users to
explore, gathering high-level or detailed information about a model
and how it is used. Users have access to extensive documentation, as
well as ratings and comments from the greater community.

	Model Packaging. Models are packaged as Dockerized microservices so
they can be deployed directly to a variety of environments. As a part
of the onboarding process, protobuf files are created to describe the model
inputs and outputs in a standard format, and a TOSCA file is generated
to allow the model to be accessed in the Design Studio.

	Model Access. Once a model is selected, the Acumos Marketplace
provides access to that model, either via downloading or by deploying
it to any one of several commonly used cloud environments. Specialty
access may be available on some instances. For example, models may be
specifically designed to work on ONAP instances.

	Compose. Users may also work with models in the Design Studio,
chaining them together to create new custom composite models to help
solve specific business problems. These composite models can be saved
and managed (validated, deployed, published) just like simple models.

	Federation. The Acumos Marketplace supports distributed relationships
with other Acumos peer instances, allowing users to browse and procure
models from remote federated partners. Federation also creates a much
larger available user pool for data scientists to share their models.

Users are welcomed to Acumos on the home page, showing a carousel
highlighting Acumos features and uses. Other parts of the page may show
featured or trending models, upcoming Acumos events and illustrations of
how Acumos can help customize solutions in many domains.
The Acumos homepage is customizable, so your home page may differ from what is described here.

Note

Users do not need to be logged into Acumos or have an account to see the Home and Marketplace pages, but users must be logged in to download or deploy models.

 The Portal - For Modelers

The Portal - For Modelers

	Overview

	Model On-Boarding Overview
	Architecture

	On-Boarding Client Libraries

	On-Boarding By Web

	On-Boarding Server

	On-Boarding a Model Using the Portal UI

	Viewing Your Models

	Managing a Model
	Sharing a Model with a Team

	Manage Publisher / Authors

	Publishing a Model

	On-Boarding Pre-Dockerized Model Using the Portal UI

	On-Boarding a Model with Docker URI Using the Portal UI

	On-Boarding History

	The Portal - For Modelers
	Description Rating

 Managing a Model

Managing a Model

The Model Detail page may not show very much information if the model has not
been published. To add a description, documents and details, click on the Manage My Model button at the top.

[image: ../../../../../../_images/models_manageMyModelBtn.png]

A new page loads with MANAGEMENT OPTIONS on the left.

[image: ../../../../../../_images/models_manageMyModel.png]

Sharing a Model with a Team

A Modeler can share a model with anyone who has an account on his/her local
Acumos. When you share a model with a collaborator, you make that Modeler a
co-owner of the model. This means they have all the same capabilities as
the original owner. An overview is shown below.

[image: ../../../../../../_images/models_shareWithTeamJourney.png]

The steps to share are as follows:

	First, select the Share with Team tab under MANAGEMENT OPTIONS

[image: ../../../../../../_images/models_shareWithTeamTab.png]

	Next, where you see Find a user to Share with, type in the user ID
of the person with whom you wish to share. You will need to get that user
ID from them. The UI will show suggestions based on the characters
you have typed. Once you have located the correct person, select the
Share button

[image: ../../../../../../_images/models_shareWithTeamScreen.png]

	The Share with Team will update. You will see that your
model is shared and you have added collaborators.

[image: ../../../../../../_images/models_shareWithTeamDone.png]

The collaborator will receive a notification that a new model has
been shared with him/her.

Manage Publisher / Authors

Model owners have the ability to add different publisher name and the details of additional authors

[image: ../../../../../../_images/models_manageAuthors.png]

After you fill in the required fields, click Add author.

Publishing a Model

The publisher can create the number of catalogs in his instance, and using access level option
he can restrict it to display in the marketplace.

Users can publish one model in different catalogs and they can customize the information based
on their needs. There are two types of access level Acumos has provided.

	Public: Using this access level option publisher can allow his catalog access in the marketplace for the users. There is no condition to accessing these catalogs for the user whether they are logged-in or not.

	Restricted: Using this access level option publisher can restrict the catalog access for the marketplace users. For accessing these catalogs user has to login to Acumos.

The presentation of the models may be different in the marketplace to meet the needs of the
different communities. For example, a user may wish to provide company-specific details to
their colleagues inside their Company instance. This may include proprietary information,
documents or details that are only relevant to colleagues using the Company instance. Information
published to the restricted catalogs is contained within the company firewall.

Publishing to the Catalog

The publishing process is summarized here.

[image: ../../../../../../_images/models_publishLocalJourney.png]

Specific steps:

	From the My Models page, select the model of interest, open the Model Detail Page and click on Manage My Model at the top

	Select Publish to Marketplace

	Select the catalog from the drop-down. The Catalogs are of all public catalogs and restricted catalogs which the user is being assigned.

	Click on Model Description and describe your model in terms that your users will understand and wish to use it

	Click on Model License Profile and add/update/select the license profile.

	Click on Model Category. Select a Category and Toolkit type from the dropdown box

	Select Model Documents and add any useful documents, such as release notes or detailed instructions that will help your users

	Click on Model Tags. Either select one of the system tags or add your own. Any tags you add will become available for other users to select as well.

	You have completed the first step for publishing. Now click on Submit for Publication. This will launch a series of back end steps that will prepare your model for publication

	The publishing workflow may consist of several steps configured by the Acumos Admin. Some instances may require manual review.

	Once the publishing process is complete, all the workflow icons will be highlighted and the model will be available in the Company Marketplace

Note: If user have not added author details in the model before publishing, a continous message “You cannot publish the model without entering the author name. Please add author name in the “Manage Publisher/Authors” page to publish it” will display and Submit to Publication button showing disabled.

[image: ../../../../../../_images/models_author.PNG]

Un-publishing the model from the catalog

Specific steps:

	From the My Models page, select the model from the MY PUBLISHED MODELS list, open the Model Detail Page and click on Manage My Model at the top

	Select Publish to Marketplace

	Select the catalog from the right hand side drop-down (Catalog(s) of published model) which you want to un-publish from it.

	Click on Un-publish button.

[image: ../../../../../../_images/unpublishing_model.png]

 Viewing Your Models

Viewing Your Models

Users may view all the models they have uploaded by accessing the My
Models page.

Models are organized by their visibility to others on your My Models
page. They are sorted into the following sections:

	MY UNPUBLISHED MODELS

	Initially, successfully on-boarded model will appear in my Models page in
the UNPUBLISHED section. These are visible only to you and any
collaborators of that model (shared). Partially on-boarded models (in
process) are also displayed in this section but are shown greyed out
until the on-boarding process is successfully completed.

	MY PUBLISHED MODELS

	Models that have been published to Restricted catalog, appear in the LOCAL marketplace and
are visible to anyone with an account on the local Acumos Instance.

Models that have been published to Public catalog, appear in the PUBLIC marketplace and may
be viewed by users on Acumos instances that have a federated relationship with your local instance.

	MY DELETED MODELS

	At this time, models are not truly deleted but rather moved into a “deleted” state.

[image: ../../../../../../_images/models_myModelsPage.png]

	Access the My Models page from the outer left menu

2-6. This functionality works the same way it does on the main Marketplace page. Please see the Overview for details.

Clicking on any model image shows the Model Detail page for that model.

 Managing Notifications

Managing Notifications

Users who are logged in can click the notifications icon to display system messages.

[image: ../../../../../../_images/notification_icon.png]

Click the Read all Messages button to display the Manage Notifications page.

[image: ../../../../../../_images/notification_list.png]

From the Manage Notifications page, messages may be filtered, marked as read, or deleted.

 On-Boarding Pre-Dockerized Model Using the Portal UI

On-Boarding Pre-Dockerized Model Using the Portal UI

Acumos allows users to On-board their docker image models. Each model dockerized outside
acumos by modelers can be On-boarded in Acumos. You just have to use the On-boarding dockerized model
panel in the on-boarding model page of the Acumos portal.In this panel you can find two options.

[image: ../../../../../../_images/onboarding-dockerized-model.PNG]

	Upload New

When you click Upload New button , you will get Model Name field, just type the desired name of the model
and click on Check Availability to check whether the model name is available.

If model name is available, It will ask you for Upload Protobuf file and Upload License file. It is optional.

[image: ../../../../../../_images/onboarding-dockerized-model-license.PNG]

Now Upload Protobuf file with an extension of .proto and Upload License file with an extension of .json

[image: ../../../../../../_images/onboarding-dockerized-model-license-browse.PNG]

In case of License…..

There are two radio buttons Upload and Select License Profile
from where user can upload license file which must be with an extension of .json which contains high level general terms and conditions for use of the model.

[image: ../../../../../../_images/model-onboarding-docker-uri-license.png]
If Upload radio button is selected it will allow user to browse a license.json file. Once the file is selected the Upload button is enabled clicking which file will be uploaded.

[image: ../../../../../../_images/model-onboarding-docker-uri-upload.png]
Select License Profile radio button allows the user to select a license template from a drop-down list. The Modify button allows the user to change the content of template.

[image: ../../../../../../_images/model-onboarding-docker-uri-select-license.png]
Upon clicking the Modify button a pop-up will be opened which allows the user to change license templates content. The Save button will save the license template.

[image: ../../../../../../_images/model-onboarding-docker-uri-modify.png]
[image: ../../../../../../_images/model-onboarding-docker-uri-save.png]
The Create button will allow the user to create a new license template.

[image: ../../../../../../_images/model-onboarding-docker-uri-create.png]
Click the Create Docker Image Reference
button which is shown after name validation.

[image: ../../../../../../_images/onboarding-dockerized-model-new.PNG]

	Upload Revision

When you click on Upload Revision button, you can search the existing model and select that model. It will ask you for Upload Protobuf file and Upload License file. It is optional. You can Click on Update Docker Image Reference button which is shown after selecting your model.

[image: ../../../../../../_images/onboarding-dockerized-model-uploadrev.PNG]

In case of License…..

There are two radio buttons Upload and Select License Profile
from where user can upload license file which must be with an extension of .json which contains high level general terms and conditions for use of the model.

[image: ../../../../../../_images/model-onboarding-docker-uri-license.png]
If Upload radio button is selected it will allow user to browse a license.json file. Once the file is selected the Upload button is enabled clicking which file will be uploaded.

[image: ../../../../../../_images/model-onboarding-docker-uri-upload.png]
Select License Profile radio button allows the user to select a license template from a drop-down list. The Modify button allows the user to change the content of template.

[image: ../../../../../../_images/model-onboarding-docker-uri-select-license.png]
Upon clicking the Modify button a pop-up will be opened which allows the user to change license templates content. The Save button will save the license template.

[image: ../../../../../../_images/model-onboarding-docker-uri-modify.png]
[image: ../../../../../../_images/model-onboarding-docker-uri-save.png]
The Create button will allow the user to create a new license template.

[image: ../../../../../../_images/model-onboarding-docker-uri-create.png]
In the above both cases, you will receive the Acumos image reference in the My Image Model field which is to be used
to push your docker image model in Acumos.

This Acumos image reference looks like :

<acumos_domain>:<docker_proxy_port>/modelname_soultion_id:tag

Below are the steps to push your docker image.

	Login the Acumos Docker Registry

docker login https://<acumos_domain>:<docker_proxy_port> -u <acumos_userid> -p <acumos_password>

	Tag the docker image model with the Acumos image reference

docker tag my_image_model <acumos_domain>:<docker_proxy_port>/modelname_solution_id:tag

	Push the model in Acumos

docker push <acumos_domain>:<docker_proxy_port>/modelname_solution_id:tag

 On-Boarding a Model with Docker URI Using the Portal UI

On-Boarding a Model with Docker URI Using the Portal UI

Acumos allows users to On-board a model which has already stored in docker repo like Docker Hub
even outside Acumos domain. To on-board this type of model, you should have docker image details.

Once you are ready with details, just click on ON-BOARDING DOCKERIZED MODEL URI panel which is
just right side of the ON-BOARDING BY WEB on the ON-BOARDING MODEL page of the Acumos portal.

Enter the mandatory details like Model Name, Host(the docker registry), Port and Image , optionally Tag.
You can upload protobuf file which is optional and You can upload the license file associated with this docker URI model as per your choice. When you click on
On-Board Model , the model will be on-boarded after completion of backend process steps (like Create
Solution and Add Artifacts) and available in MY MODELS page, you can view this by clicking View Model.

[image: ../../../../../../_images/model-onboarding-docker-uri1.png]
License can be added optionally. ADD LICENSE PROFILE check box allows the user to add license file while On-boarding the model. There are two radio buttons Upload and Select License Profile
from where user can upload license file which must be with an extension of .json which contains high level general terms and conditions for use of the model.

[image: ../../../../../../_images/model-onboarding-docker-uri-license.png]
If Upload radio button is selected it will allow user to browse a license.json file. Once the file is selected the Upload button is enabled clicking which file will be uploaded.

[image: ../../../../../../_images/model-onboarding-docker-uri-upload.png]
Select License Profile radio button allows the user to select a license template from a drop-down list. The Modify button allows the user to change the content of template.

[image: ../../../../../../_images/model-onboarding-docker-uri-select-license.png]
Upon clicking the Modify button a pop-up will be opened which allows the user to change license templates content. The Save button will save the license template.

[image: ../../../../../../_images/model-onboarding-docker-uri-modify.png]
[image: ../../../../../../_images/model-onboarding-docker-uri-save.png]
The Create button will allow the user to create a new license template.

[image: ../../../../../../_images/model-onboarding-docker-uri-create.png]

 On-Boarding History

On-Boarding History

After On-boarding one or more models in Acumos Portal, you can check the status of the models
whether they have been On-boared successfully, failed or in-progress. you can click on View On-Boarding History
button in the on-boarding model page of the Acumos portal to check the history.

[image: ../../../../../../_images/view-onboarding-history-nav.PNG]

You can see all of your On-boarded models with details like modelname, date and status etc.

[image: ../../../../../../_images/onboarding-history.PNG]

If you want to know the details of the particular Success/Failed model, click on View Results button on the
View On-Boarding History page and find the details in which step it got success or failed.

[image: ../../../../../../_images/onboarding-history-results.PNG]

 Model On-Boarding Overview

Model On-Boarding Overview

Acumos is intended to enable the use of a wide range of tools and technologies in the development
of machine learning models including support for both open sourced and proprietary toolkits.

The goal of Onboarding is to provide an ingestion interface, by web or CLI(command line interface)
for various types of models and to create required artifacts and identifiers to enter the Acumos
machine learning platform.

In short, our goals are to generate or provide all the necessary materials required to use the models
with the others components of Acumos like :

	Tosca file for Design studio

	Represent model I/O such for microservice generation

	SolutionID for CDS

	Licence file

For model in a model interchange format like ONNX and PFA, only web interface is useable to upload
them in the platform

For models developped in Java, Python 3.0, R On-boarding allows user to create containerized
microservice at the end of the on-boarding process. If user choose to not create the microservice
during on-boarding he can create it later.

For model Dockerized and stored in repo outside Acumos (like for example Docker hub) you can save the
model URI in Acumos. You can also dockerize your models by yourself and on-board them in Acumos.

These kinds of Models can be easily onboarded and wrapped into containerized microservices which are
interoperable with many other components.The solution for accommodating a myriad of different model
types is to provide a custom wrapping library for each runtime. The client library encapsulates the
complexity surrounding the serialization and deserialization of models. Additionally, the client library
creates a common native interface, a wrapper, for invoking the inner model. In order for Acumos to be
able to reason about models uniformly, there is a common model interface description that details what
the available model methods are and what they look like. Acumos instantiates ML models as microservices
and safely composes them together.

Architecture

High-level architecture Design :

[image: ../../../../../../_images/HighLevelFlow2.png]
Low-level architecture Design (R, Python, Java, ONNX, PFA models) :

[image: ../../../../../../_images/Architecture_Diagram_demeter.png]
Low-level architecture Design (Dockerized model and dockerized model URI) :

[image: ../../../../../../_images/Architecture_Diagram_docker_demeter.png]
Low-level architecture Design (C++) :

[image: ../../../../../../_images/Architecture_Diagram_C_demeter.png]

On-Boarding Client Libraries

The Acumos on-boarding process generates everything needed to create an executable microservice for
your model and add it to the catalog. Acumos uses Protobuf as a language-agnostic data format to
provide a common description of the model data inputs and outputs.

It exists three client libraries that supports the onboarding of Python, Java and R models. They are
mainly composed of a function to create the model bundle in wich artifacts are embeded and a push
function to push (onboard) the model bundle in Acumos. Once the model bundle is onboarded successfully
in Acumos, if you have chosen a message response is displayed with the Acumos doc

The appropriate client library does the first step of the on-boarding process. This includes:

	Introspection to assess the toolkit library versions and determine file types

	Creation of a JSON description of the system

	Creation of the protobuf file

	model bundle push to the Acumos on-boarding server

	licence push to the Acumos on-boarding server (optional)

The model bundle is an archive compose of the model, the JSON file and the Protobuf file previously
created by the client library. Each client library have a parameter to create the micro service just
at the end of the on-boarding. This parameter is a boolean parameter and the default value is “TRUE”,
users can change this value to “FALSE” if needed. The creation of the micro-service is still possible
later, after the on-boarding, in the details model page (when you click on the model in the my model
page). User can also on-board a licence (that must be named “licence.txt”) with his model by putting
the path to the licence file in the corresponding parameter of push function of the client libraries.

Once the model bundle is onboarded successfully in Acumos, if you have chosen to create the micro service
at the end of onboarding process, Acumos Docker image URI is displayed in a message response. Then you can
use this URI to load the Docker model image in your own Docker repository.

On-Boarding By Web

Users can also onboard model coming from R, python or Java by web, but the first step is to use the
on-boarding client to create the model bundle and then upload this model bundle thanks to the web
on-boarding page of the Acumos portal. In the same way as for the on-boarding with client libraries,
user can choose to create the microservice at the end of on-boarding and also to upload a licence file
(that must be named “licence.txt”) thanks to checkboxes.

For ONNX and PFA models it doesn’t exist a client library and so no model bundle. You just have to
onboard the model itself by using the on-boarding Web page of your acumos portal. Onboard a model
under a model interchange format like ONNX and PFA is just an upload & store processus. There is no
possibility to create a micro-service but user can upload a licence file (that must be named licence.txt)

On-Boarding Server

The On-boarding server is in charge to :

	Request the authentication backend to authenticate the user.

	Store all the artifacts and model in Nexus.

	Create a Solution-Id for each new model onboarded.

	Check if model has already been onboarded if yes, update the revision-Id and associated artifatcs for this model.

	Fill artifact type, Model type, Toolkit type associated to a Solution ID in CDS(Common Data Service) database.

	Trigger the creation of Microservice based on what user choose during WEB or CLI onboarding.

 On-Boarding a Model Using the Portal UI

On-Boarding a Model Using the Portal UI

A high-level summary of the on-boarding steps and overview of the
workflow is shown below:

[image: ../../../../../../_images/models_onboardingJourney.png]

Prerequisites : You have to create a model bundle in your own environment
before start to on-board. Acumos cannot transform your model in a microservice
with only the model itself, it needs some other relevant information contained
in the model bundle. The model bundle consists of component.json defining the
component and its metadata and component.proto with the protobuf specs.
You can retrieve all the information to create your model bundle in the
“ON-BOARDING BY WEB” home page

[image: ../../../../../../_images/models_onboardingWeb.png]

Once your model bundle has been created, follow these steps:

	Select the “ON-BOARDING MODEL” tab in the outer left menu

	Select “ON-BOARDING BY WEB”

	Drag & Drop your model bundle or use the Browse button to select it

	Click Upload

	When uploading is finished, click on On-Board Model.

[image: ../../../../../../_images/models_onboardingWebNotice.png]

This will initiate a series of back-end process steps, illuminated as they run,
by the cascade from left to right of the icons on the top of the page. These
include creating the microservice that will run in a docker container,
creating a TOSCA file for your model so it can be used in the Design Studio,
and storing the artifacts and model.

[image: ../../../../../../_images/models_onboardingWebSuccess.png]

On-boarding is finished when all steps turn green. Click the View Model
button to see your model in the MY UNPUBLISHED MODELS section of the
My Models page.

If one of the steps appears in red, on-boarding has failed. Check your
notifications to determine why on-boarding failed
- there should be a message with a link to download on-boarding log files. If
you need help debugging, please reach out to the Acumos Community or Dev
Discuss mailing lists [https://lists.acumos.org/g/main/subgroups] or post on
StackOverflow [https://stackoverflow.com/search?q=acumos].

The above On-boarding process is along with microservice generation. If you dont
want MicroService Generation you can uncheck Create micro-service during on-boarding
checkbox which is checked by default.

[image: ../../../../../../_images/model-onboarding-wo-microservice-success.png]

The above process will skip the steps Dockerize and Add Docker Image when we uncheck
Create micro-service during on-boarding. You can see the Create Solution, Add Artifacts
and Create Tosca steps turn green. Click the View Model button to see your model in the
MY UNPUBLISHED MODELS section of the My Models page. You can
see Create Microservice button which is right side of ** Manage My Model** button to
create MicroService for your model.

License can be added optionally. Add License Profile check box allows the user to add license
file while On-boarding the model. There are two radio buttons Upload and Select License Profile
from where user can upload license file which must be with an extension of .json which contains
high level general terms and conditions for use of the model. Checkbox will be disabled till the model
is uploaded.

[image: ../../../../../../_images/model-onboarding-with-license.png]
If Upload radio button is selected it will allow user to browse a license.json file.
Once the file is selected the Upload button is enabled clicking which file will be uploaded.

[image: ../../../../../../_images/model-onboarding-upload.png]
Select License Profile radio button allows the user to select a license template from a drop-down list.
The Modify button allows the user to change the content of template.

[image: ../../../../../../_images/model-onboarding-select-license.png]
Upon clicking the Modify button a pop-up will be opened which allows the user to change license templates content.
The Save button will save the license template.

[image: ../../../../../../_images/model-onboarding-modify.png]
[image: ../../../../../../_images/model-onboarding-save.png]
The Create button will allow the user to create a new license template.

[image: ../../../../../../_images/model-onboarding-create.png]

 Overview

Overview

The Acumos Portal is designed to enable Modelers to easily on-board AI models and
associated document/license. For modles built with Java, Python or R language,
modelers have the possibility to package them into reusable microservices.

A Modeler may test out the Acumos features in a personal
private/unpublished section of the Marketplace. Additionally, a Modeler may publish
the models to the Company Marketplace or to the Public Marketplace for wider distribution.

Modelers are typically subject-matter experts in their fields, so Acumos
models come from a wide range of domains and applications.

Models may be written in a number of popular programming languages or
toolkits, including Java, R, Python(Scikit Learn, Keras, Tensor FLow), ONNX and PFA. It is
also possible to on-board models pre-dockerized outside Acumos.

All of the models that a user has on-boarded can be viewed from the My
Models page. Depending on their history, the models may exist in one
for three sections: MY UNPUBLISHED MODELS,PUBLISHED TO MARKETPLACE, and MY DELETED MODELS .

Models published to Company are visible only to account holders on your local
Acumos instance. This can be thought of as “inside the instance firewall”
– typically viewable by close collaborators. Models published to Public are
available to outside Acumos instances. The set of peers that may have access to
Public models is determined by your local Administrator.

Private/Unpublished models are visible only to the Modeler. However, a Modeler
does have the option to share a model with a specific user who has an account
on the same Acumos instance.

 Description Rating

Description Rating

Owner/ Co-owners can publish their models into Marketplace using Publish to Marketplace menu item of Manage My Model button.

[image: ../../../../../../../_images/manage-mymodel.png]

When a Owner/ Co-owners publishes a model to marketplace associated with a catalog, he must provide meta information such as model name, description, category etc.., if no such information is provided the system will not allow the Owner/ Co-owners to publish the model.

[image: ../../../../../../../_images/publish-to-marketplace.png]

On click of model description link, a text editor window will be appeared where Owner/ Co-owners can view or add/edit the description for that model.

[image: ../../../../../../../_images/model-description.png]

There will be a character counter in the footer section of model description editor, which will count the total number of characters entered in it. Depending on the character count the system will provide the rating to a model.

[image: ../../../../../../../_images/description-counter.png]

Rating will be given if the description field contains character count :

	Greater than 500 characters - 5 stars

	Greater than 400 characters - 4 stars

	Greater than 300 characters - 3 stars

	Greater than 200 characters - 2 stars

	Greater than 100 characters - 1 star

	Less than 100 characters - no stars

Once the description is added rating can be viewed after exiting the text editor. There will be a note stating, if the character count is less than 500 characters suggests that the Owner/ Co-owners to add more information or else he can go with current rating by clicking the OK button.

[image: ../../../../../../../_images/Rating_descripton_ok.jpg]

Upon confirming the description data Owner/ Co-owners can view the description as well as the rating under the Model Description section.

[image: ../../../../../../../_images/Rating_descripton_final.jpg]

Rating of a model can be viewed in preview section of model as well as the model details page.

[image: ../../../../../../../_images/model_detail_preview.jpg]
[image: ../../../../../../../_images/model_detail_home.jpg]

 The Portal - For Modelers

The Portal - For Modelers

	Description Rating

 The Marketplace - For Consumers

The Marketplace - For Consumers

	Overview
	Searching by Keyword

	Filtering by Category

	Filtering by Tag

	Filtering by Catalogs

	Viewing Model Details

	Deploying a Model
	Deploying to Local

	Deploying to Azure

	Deploying Your Model

	Cleaning up Azure Resources

	Deploy to K8S

 Overview

Overview

The Acumos Marketplace is designed to make it easy to discover, explore, and use AI models.
In addition to displaying models from the local platform’s catalog, the Public Marketplace
can be configured to display models from peer Public Marketplaces. Users may view the details
of a peer Model. However, users aren’t able to work with, download, or deploy a peer Model
without first requesting access to use that model. Public Marketplace peer relationships
are set up and managed by the administrators of each Acumos instance.

	The Marketplace only displays Public catalog models to users who have not logged in.

	There is no option to display models from marketplaces other than Public.

[image: ../../../../../../_images/marketplace_mainViewNotLoggedIn.png]

The Marketplace has three main views to logged-in users:

	My Favorite Catalogs: In the marketplace only shows models which have been selected as a favorite catalog from the account setting page.

	Public Catalogs: All public catalog models are displayed in the marketplace.

	Restricted Catalogs: Logged in user can view the restricted catalogs in the marketplace

After you have used models on the Marketplace, you can share your experiences
by using the comments and ratings capabilities on the Marketplace.

[image: ../../../../../../_images/marketplace_mainViewLoggedIn.png]

	Select my favorite catalogs to display only the favorite catalog models in the marketplace, or select ALL Catalog to view all the catalog models there.

	Click a Select Favorite Catalog button to select your favorite catalogs list from the account setting page.

	Select an option from the Sort By drop down to sort the displayed models

	Select one or more checkboxes to Filter By Category clicking the Show All link display additional categories if they exist; see the Filtering by Category section for details

	Change from grid view to list view by selecting the corresponding icon

	Select an option from the Showing drop down to change the number of models displayed on a page

	Page navigation

	Click a model’s image to access the Model Detail page

	SITE ADMIN and PUBLISH REQUEST are menu items only available to users with those roles

	Model search; see the Searching by Keyword section for details

	Click the Bell icon to review your notifications

	Click the down arrow next to your name to access Account Settings

	Help and Log Out

Searching by Keyword

You can search models in the marketplace to find keyword matches in the
following fields: name, description, author, publisher, solution ID and
revision ID. To search the Marketplace by keywords, follow these steps:

	Enter keywords in the search field near the top of the left navigation bar

	Hit return or click the search icon to start the search

	The result of your query is shown, with only the models that meet
your search criteria

Filtering by Category

To filter your view of the Marketplace by Category, follow these
steps:

	From the Marketplace left inner menu, select Show All to show all
categories

	Click on a Category to select it

	The screen is updated with only models that have your selected
Category

Filtering by Tag

To search the Marketplace using Tags, follow these steps:

	From the Marketplace left inner menu, click on the Tag of interest

	The Tag will become highlighted

	The screen is updated with only the models that have your selected
tag

Filtering by Catalogs

User has two option to filter catalogs.

	Selecting All Catalogs , user can able see all public catalog models in the marketplace

	Selecting My Favorite Catalogs , user can see only favorite catalog models in the marketplace

[image: ../../../../../../_images/marketplace_filtering_by_catalogs.png]

 Deploying a Model

Deploying a Model

Deploying to Local

Clicking the Deploy to Local button opens a pop-up window from which you
are able to download the solution package for deployment to a local/private
Kubernetes cloud.

[image: ../../../../../../_images/models_deployToLocal.png]

Deploying to Azure

Logged-in users may deploy a model’s microservice to Microsoft Azure.

Microsoft Azure is a cloud computing service created by Microsoft for building,
testing, deploying, and managing applications and services through a global
network of Microsoft-managed data centers. Acumos is able to deploy models and
composite models easily in an Azure cloud. It creates a new virtual machine and
deploys the model in that VM.

A Composite Solution is combination of more than one model. The Model Connector
is also deployed with a composite solutions since it is used for communication
between models in the VM. Databroker details can be specified for a composite
model. If a Data Broker image is available in the composite solution, then it
will also be deployed. Upon successful deployment, the user is notified of the model connector
endpoint and optionally, the Zip or CSV Databroker.

This guide is intended to help you:

	setup a Microsoft Azure account for use in deploying Acumos models

	access the deployed Azure VMs for testing, etc

This guide assumes that you have an Azure account. If not, you can sign up for
a free trial account at https://azure.microsoft.com.

Configuring Your Azure Account

This section will help you setup your Azure account for use in launching Acumos
models and save key account attributes for use in the Acumos portal “Deploy to
Cloud” dialog. A summary of the minimum attributes you will need is below,
followed by instructions on creating/obtaining these attributes.

	Application Id: “Application Id” value for your Azure Active Directory application

	Tenant Id: the “Directory ID” value under “Azure Active Directory” / “Properties”

	Secret key: application key “Value” created through “Settings” / “Keys” for your Azure Active Directory application

	Subscription Key: your “Subscription Id”

	Resource Group: Name of your Resource group

	Acr Name: Name of your Azure Container Registry (ACR)

	Storage Account: Name of your Azure Storage Account

Copy Tenant Id

The Acumos platform needs your Azure account “Azure Active Directory” ID during
model launch in Azure. Note this ID is only provided by you in the “Launch in
Azure” dialog, and is not retained by the Acumos platform. To copy this ID for
later use, under “Azure Active Directory”:

	select “Properties”

	copy the “Directory ID” value and save for later use as the “Tenant Id” in the “Launch in Azure” dialog

Copy Subscription Key

The Acumos platform needs your Azure account “Subscription Id” during model
launch in Azure. Note your “Subscription Id” is only provided by you in the
“Launch in Azure” dialog and is not retained by the Acumos platform. To copy
this ID for later use, under “Cost Managemen + Billing”:

	select “Subscriptions”

	select “My subscriptions”

	copy your “Subscription Id” and save for later use as the “Subscription Key” in the “Launch in Azure” dialog

Create an Azure Active Directory application entry for the Acumos portal

As described at here [https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal], the Acumos platform represents “code that
needs to access or modify resources” in Azure, and to be given those
permissions, needs to be registered as an Azure Active Directory (AD)
application. The ID assigned to this application will be used by the Acumos
platform during model launch in Azure. Note this ID is only provided by you in
the “Launch in Azure” dialog and is not retained by the Acumos platform. To
register the Acumos platform as an application and copy its ID for later use,
under “Azure Active Directory”:

	select “App registrations”

	select “+” (create new)

	enter a name

	enter any URL (this is not used for Acumos)

	set “Application type” to “Web app / API”

	select “Create”

	copy the displayed “Application Id” for later use as the “Application Id” in the “Launch in Azure” dialog

Create a Secret Key for the Azure Active Directory Application

The Acumos platform needs to be assigned a secret key in order to access your
Azure account during model launch in Azure. Note this secret key is only
provided by you in the “Launch in Azure” dialog and is not retained by the
Acumos platform. To create and copy this secret key for later user, under
“Azure Active Directory”:

	select “App registrations”

	select the Azure Active Directory application registered above

	select “Settings”

	select “Keys”

	under “Passwords” enter a key name and duration

	select “Save”

	copy the displayed application key “Value” for later use as the “Secret Key” in the “Launch in Azure” dialog

Add Admin User permission for Your Azure Subscription

The Acumos platform needs to be able to create resources under your
subscription, in order to deploy models there. To enable this, you need to
assign the the Azure Active Directory application registered above with
permissions as “Contributor” and “Reader”, as below. To create the needed
permissions, under “Cost Management + Billing”:

	select “Subscriptions”

	select “My subscriptions”

	select your subscription

	select “Access control (IAM)”

	select “+Add”

	set “Role” to “Contributor”

	set “Assign access to” to “Azure AD user, group, or application”

	under “Select” enter the Azure Active Directory application name you created above

	select the Azure Active Directory application name when it is displayed below

	select “Save”

Repeat this process, selecting this time the “Role” as “Reader”.

Note that all resources you create below will now inherit these Admin user
permissions, so you do not have to set permissions for each resource.

Create a Resource Group

Resource Groups allow management of resources with a common (“inherited”) set
of permissions and other options. The Acumos platform needs the name of a
resource group under which you have created some basic resources (as described
later) during model launch in Azure. Note this Resource Group name is only
provided by you in the “Launch in Azure” dialog and is not retained by the
Acumos platform.

If you don’t have an existing resource group in the East US region, you will
need to create one. To create a resource group, under “Resource groups”:

	select “Create”

	enter a “Name” (you will use this name later in the “Launch in Azure” dialog)

	select “East US” (this location is currently required by the Acumos platform)

	select “Create”

	refresh the list of Resource groups and the new one should be displayed

	select the resource group

Create an Azure Container Registry (ACR)

An ACR is needed so the Acumos platform can push container images to your Azure
account, for launch inside VMs created in the process of model deployment.
Using an ACR under your Azure account can speed up model deployment. The Acumos
platform needs the name of this ACR during model launch in Azure. Note this ACR
name is only provided by you in the “Launch in Azure” dialog and is not
retained by the Acumos platform.

If you don’t have an existing ACR in the East US region, you will need to
create one. To create a new ACR, under “All resources”:

	select “+Add”

	select “Containers”

	select “Azure Container Registry”

	enter a “Name” (you will use this name later in the “Launch in Azure” dialog)

	set “Resource group” to “Use existing”

	from the drop-down list, select the resource group created above

	select “East US” (this location is currently required by the Acumos platform)

	select “Create”

Create a Storage Account

A storage account is needed so the Acumos platform can install applications and
save data to disk as needed during model deployment and execution. The Acumos
platform needs the name of this storage account during model launch in Azure.
Note the storage account name is only provided by you in the “Launch in Azure”
dialog and is not retained by the Acumos platform.

If you don’t have an existing storage account in the East US region, you will
need to create one. To create a storage account, under “Storage accounts”:

	select “+Add”

	enter a “Name” (you will use this name later in the in the “Launch in Azure” dialog)

	set “Resource group” to “Use existing”

	from the drop-down list, select the resource group created above

	select “East US” (this location is currently required by the Acumos platform)

	select “Create”

Create a Network Security Group and Access Rules

A network security group (NSG) is required so that the Acumos platform can
configure access to necessary host ports on the deployed VMs. A specific NSG
name is required by the Acumos platform. To create this NSG, under “Resource
groups”:

	select the resource group created above

	select “+Add”

	in the search box, enter “Security”

	in the resulting list, select “Network Security Group”

	select “Create”

	set “Name” to “E6E-NSG”

	set “Resource group” to “Use existing”

	from the drop-down list, select the resource group created above

	select “East US” (this location is currently required by the Acumos platform)

	select “Create”

To enable the Acumos platform to access VMs it deploys, deploy model
microservices, and deploy additional components that help orchestrate and
connect the models to your data sources, you will need to define NSG rules to
open the following TCP ports to the Acumos platform. The Acumos platform will
be identified here by IP address; you can get the IP address using a
reverse-DNS lookup e.g. ‘nslookup marketplace.acumos.org’. Ports that need to
be opened, and their purpose, are described below:

	TCP port 22: SSH, enabling the Acumos platform to configure the deployed VM, e.g. install docker and the various microservices and platform components

	TCP port 8555: Acumos Blueprint Orchestrator, used in Composite Solution deployment

	TCP port 8556: Acumos DataBroker, a component deployed when a user wants assistance in mapping a data source to the protobuf interface of a deployed model (details will be provided for when this applies and how the user selects it)

	TCP port 5006: Acumos Probe, a component enabling the user to access and visualize the protobuf interfaces of their deployed solutions

If you need to provide access to your model microservices from outside the
Azure virtual network, e.g. to push data to the microservice, you will need to
create additional NSG rules to open the following ports to the IP addresses of
systems to be connected to the microservices:

	TCP port 8557: microservice #1, i.e. for deployment of a single model microservice (“Simple Solution”) or the first microservice in a multi-model deployment (“Composite Solution”)

	TCP port 8558: microservice #2

	TCP port 8559: microservice #3

	TCP port 8560: microservice #4

	and so on

To add NSG rules, under “Resource groups”:

	select the resource group created above

	select NSG “E6E-NSG”

	select “Inbound security rules”

	select “+Add”

	set “Source” to the IP address of the system that needs the access

	select “Protocol” “TCP”

	set “Destination port ranges” to the specific port or range of ports that applies to the rule

	set “Name” to whatever helps you remember what the rule is related to

	select “Add”

Repeat this for any other hosts you want to have access to the VM, and for any
other access rules that are needed for your deployed model or applications to
be installed on or connected to the deployed VM.

Note: it is recommended to NOT set “Source” to “Any” and “Destination port ranges” to “*” as these settings can expose your VM to security risks.

Create a Virtual Network

A virtual network and subnet is required so that required ports can be opened on the VM in which Acumos will launch your model. Acumos requires a specifically named virtual network and subnet, since it will create interfaces and public IP addresses on that network/subnet.

To create the specified virtual network, under “Resource groups”:

	select the resource group created above

	select “+Add”

	enter “Networking” in the search bar and hit enter

	in the resulting list, select “Virtual network”

	select “Create”

	set “Name” to “Acumos-OAM-vnet”

	set “Resource group” to “Use existing”

	from the drop-down list, select the resource group created above

	select “East US” (this location is currently required by the Acumos platform)

	set “Subnet” to “Acumos-OAM-vsubnet”

	select “Create”

Associate the NSG to the Subnet

To ensure the NSG rules created above are applied to the subnet you created, under “Resource groups”:

	select the resource group created above

	select the virtual network “Acumos-OAM-vnet”

	select “Subnets”

	select “Acumos-OAM-vnet”

	select “Network security group”

	select the NSG “E6E-NSG”

	select “Save”

Deploying Your Model

	Locate the Model Detail Page for the model of interest

	Click on the Deploy to Cloud drop-down arrow and select Microsoft Azure

The resulting dialog will require the parameters listed under Configuring Your Azure Account in this guide.

	Application ID The ID for application during registrations in Azure Active Directory

	TenantID The ID of the AAD (Azure Active Directory) in which application is created

	Secret key Client Secret key for a web application registered with Azure Active Directory

	Subscription Key Subscription grants access to Azure services and to the Azure Platform Management Portal

	Resource Group Resource groups provide a way to monitor, control access, provision and manage billing for collections of assets that are required to run an application, or used by a client or company department

	Acr Name Same as ApplicationID

	Storage Account An Azure storage account provides a unique namespace to store and access Azure Storage data objects. All objects in a storage account are billed together as a group

	[image: ../../../../../../_images/models_deployToAzureDetails.jpg]

	[image: ../../../../../../_images/models_deployToAzureDetails-CSVBroker.png]

Click Deploy. The Acumos platform will create these resources under your Azure subscription:

	a NIC

	a public IP address

	a disk

	a VM

At the current time, there is no explicit notification that deployment was complete and successful. You can verify deployment success as described in the following section.

Accessing and Verifying the Deployment

The Acumos platform currently creates a single user account on the deployed VM, with these credentials:

	username: dockerUser

	password: 12NewPA$w0rd!

Cleaning up Azure Resources

The Acumos platform does not automatically remove resources that it creates
under your Azure account. When you are done testing with the model in the
launched VM, if you do not want to keep these resources active, you can delete
them through the Azure “All resources” list.

Deploy to K8S

Logged-in users may deploy a model’s microservice to Kubernetes.

Kubernetes (commonly stylized as k8s) is an open-source container-orchestration system for automating application deployment, scaling, and management.
It aims to provide a “platform for automating deployment, scaling, and operations of application containers across clusters of hosts”.

Steps:

	
	User can select the kubernetes from the deploy to cloud option.

	[image: ../../../../../../_images/Deploy-kubernetes.PNG]

	
	User can click on the OK button and select any of the Kubernetes cluster value.

	[image: ../../../../../../_images/Deploy-cluster-values.PNG]

	
	User will get a info message that process is started.

	[image: ../../../../../../_images/Deploy-info.PNG]

	
	Once the model is successfully deploy user will get the notification in the bell icon.

	[image: ../../../../../../_images/Deploy-notification.PNG]

 Viewing Model Details

Viewing Model Details

Much more information about a model is available on a Model Details page. From the search results, clicking on any model image shows the Model Detail page for that model. Sections on the Model Detail page include:

	Description

	Ratings

	Comments

	License Profile

	Signature: the description of the model incoming data feed and output

	Documents: any supporting documentation the Modeler wishes to include

	Model Artifacts

	Author/Publisher Details

[image: ../../../../../../_images/Model_Detail.PNG]

Most of the information on the detail page is contributed by the creator of the model to showcase the model and tell potential users about its capabilities and use. Ratings and Comments are contributed by other users of this model.

 Downloading a Model

Downloading a Model

Logged-in users may download a model bundle from the Model Detail page.

[image: ../../../../../../_images/models_downloadFromMPJourney.png]

The steps to download a model are as follows:

	Select the Download button from the Model Detail page

	Select the model file you wish to download. The bottom file is the
complete zip file

[image: ../../../../../../_images/models_downloadFromMPSteps.png]

 Configure Workflows

Configure Workflows

A number of Acumos tasks, such as on-boarding and publishing require the
user to complete a series of tasks and then initiate a back-end workflow
to complete the overall task. The workflow can be described as a series
of steps, all of which must succeed to complete the overall task.

The Admin of a Acumos system may include or omit steps from the back-end
workflow to customize their local instance.

UI for Workflow Configuration

When “Configure Workflows” is selected, the current set of workflows and
currently configured steps is displayed. When the Acumos portal is
deployed, this will include the system default workflows for
“On-boarding”, “Publishing to Local”, “Publishing To Public” and “Import
Federated Model Work”, e.g. as below. Options from here:

	Deactivate or Assign any workflow

	Modify any workflow, by adding or deleting optional steps

	Grayed-out steps are mandatory and cannot be deleted or modified

	Optional steps have a “bar-in-circle” icon ([image: Delete-step]) which
enables the step to be deleted, e.g. the Security Scan step as
optional for the Onboarding work flow

[image: ../../../../../_images/admin-workflows.png]

Example: Change workflow for On-boarding

Select the correct workflow and choose the EDIT button.

[image: ../../../../../_images/admin-workflow-edit.png]

The detailed steps are shown, including the optional SECURITY step. If
the SECURITY step is currently not included, and Admin wishes to add it,
they click on the + symbol for that step.

Adding a Security Step:

[image: ../../../../../_images/admin-workflow-step-add.png]

Deleting a Security Step: Click on the “-“ button”.

[image: ../../../../../_images/admin-workflow-step-delete.png]

Result: The new security step is shown in the workflow. To implement
the change, the Admin must select Assign Workflow button.

[image: ../../../../../_images/admin-workflow-assign.png]

 7. Federation

7. Federation

Federation enables peering of Acumos sites for the purpose of developing
a broader public marketplace of models. Federation involves several main
processes described in the following sections:

	Establishing connectivity between peers

	Creating peer relationships between portals

	Subscribing to models published in the public marketplace of peers

Following is an overview of the federation process.

Once connectivity has established between peers, and a peer relationship
established in the admin UI (step 1 below), the local admin can setup a
public marketplace subscription to some set of models from the peer
(steps 2-4 below) and receive confirmation that the subscription is
setup (step 5 below). An optional step at this point is the validation
of the models received over the federation API, prior to insertion of
their metadata (not the actual model artifacts) into the local portal’s
public marketplace.

A user of the local portal can then discover new models and request
access to them, which may need to be approved by a local admin, per the
local admin’s customization of the related workflow. Once approved, the
model artifacts are retrieved and stored in local repositories, and made
available for the user to download, launch, etc.

The federation process is outlined below:

[image: ../../../../../_images/admin-federate-user-journey.png]

7.1. How a model is federated which is published in restricted catalog

	Creation of Restricted Catalog : Click Here [https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-publisher/catalog-management/manage-catalogs.html]

	Creation of Role and assign restricted catalog : Click Here [https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-admin/role_management.html]

	Assign role to a user : Click Here [https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-admin/user_management.html]

	Manage Peer Access : Click Here [https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-publisher/catalog-management/ManagePeer(s)%20Access.html]

Note: For Step 1 and Step 4 user should have publisher role and for Step 2 and Step 4 admin access is required.

Rest Federation Steps are same.

7.2. Configuring an Acumos Instance for Federation

Instructions are in the ../../../submodules/federation/docs/config.

7.3. Establishing connectivity between peers

Peer relationships are initiated and negotiated by peer
companies/organizations through processes outside the scope of this
guide, and may depend upon network provisioning also outside the scope
of this guide. Once peering has been agreed to, the following steps are
required as prerequisites to the use of the portal UI for setting up
federation:

	Since portals and related public APIs are accessed only over HTTPS,
each portal must have at least one SSL certificate to use for the
following publicly exposed services and API endpoints, or one
certificate for each:

	Portal web service and onboarding API endpoint, both accessed
through an HTTPS proxy setup as part of portal deployment. Further
description of these aspects are provided in *(TODO: link to
portal deployment guide)*

	The federation API endpoint

	Each peer shares their public certificate or certificate authority
(CA) details for the federation API endpoint, and the other peer
installs the CA certificate by:

	On the host of the federation-gateway service, importing the CA
cert into the SSL truststore as setup for federation-gateway.

	restarting their federation-gateway service, and verifying basic
connectivity to the peer gateway.

7.4. Creating peer relationships between portals

7.4.1. Enable Federation

The first step in creating peer relationships to enable federation
overall, but clicking the slider on the upper-right of the Federation
tab, labeled as “Federation”. By default, this shows as “Disabled”, and
when clicked will change to “Enabled”. *TODO: clarify the effect that
enabling or disabling federation has on the following processes*

7.4.2. Add Peer

Selecting the “Add Peer” button will present a dialog in which a peer
relationship can be defined and validated, with the options:

	Peer Name (mandatory): name to assign this peer in the peer list.
TODO: clarify any syntax/semantic restrictions/implications

	Peer Admin Email (mandatory): must be a valid format email address,
and not already used for some other peer

	Server FQDN (mandatory): Domain name associated with a valid server
certificate as signed by the peer CA as described above. The domain
name must be resolvable via DNS, or by local host configuration (for
an example of the latter, see the OnClick Deploy guide) *(TODO:
link to guide)*

	API Url (mandatory): URL for the peer federation API endpoint. Must
be of the form “https:<FQDN or IP address>:<port configured for the
federation API>”.

	Description (optional): Anything that helps describe this peer.

[image: ../../../../../_images/admin-peer-add.png]

7.5. Actions on peer list entries

Once a peer has been added, it is displayed in the list of peers. The
list provides various information and actions for peer entries:

	Name, gateway info, contact: as entered in the “Add Peer” dialog

	Subscriptions: manage subscriptions (see section below)

	Status: “inactive” when the peer is added; “active” once the
“Activate” icon ([image: Activate]) is clicked. Goes back to “inactive” when
the “Deactivate” icon ([image: Deactivate]) is clicked. *TODO: clarify effects
of activation/deactivation*

	Status change icon: “Activate” icon ([image: Activate]) when added or
inactive, or “Deactivate” icon (Deactivate|) when active.

	Edit ([image: Edit]): edit peer details (see section below)

	Delete ([image: Delete]): removes the peer entry

	Self: identifies whether the peer entry is for the local portal as
selected when the peer was added. “Mark as Self” when added or
currently not set to self. “Remove as Self” when set to self.
Clicking the current setting will toggle to the other value.

[image: ../../../../../_images/admin-peer-list.png]

7.6. Edit Peer

Selecting the “Edit Peer” icon ([image: Edit]) will bring up the same dialog
as “Add Peer” with the addition of the “Verify” button being selectable.

Selecting the “Verify” button will:

	*TODO: clarify what the verify does, affects, and any subsequent
actions once a verification process is successful/unsuccessful*

[image: ../../../../../_images/admin-peer-verify.png]

7.7. Subscriptions

Selecting “View/Add” in the “Subscriptions” column will bring up a
dialog for management of subscriptions with the peer. When first added,
the peer subscriptions list will be empty.

[image: ../../../../../_images/admin-subscriptions-view.png]

7.7.1. Add Subscription

Selecting “New Subscription” in the “View/Add Subscriptions” dialog will display:

[image: ../../../../../_images/admin-subscription-add.png]

Select the catalog from the “Select Catalog” drop-down. Select frequency of update form “Select Frequency of update drop down (Hourly, Daily, Monthly, Update on demand). Then click on “Add To Subscription List” button the subscription will be added to the list for this peer, e.g. as below.

[image: ../../../../../_images/admin-subscription-list.png]

To see the details for a subscription, select the “+” icon, which will
expand the display with details and options, e.g. as below. From here
you can:

	Select a new “Frequency of Update”

	Delete the subscription by selecting the trashcan icon (image18)

 Portal and Marketplace Admin Guide

Portal and Marketplace Admin Guide

	1. Introduction
	1.1. What is Covered by the Admin Interface

	1.2. Admin Access to the Acumos Portal

	2. Site Monitoring

	3. Role Management

	4. User Management
	4.1. System Roles

	4.2. Add New User

	4.3. Update Role for existing user

	4.4. Deactivate existing user

	5. Site Content
	5.1. Content Pages

	5.2. Carousels

	6. Site Configuration

	7. Federation
	7.1. How a model is federated which is published in restricted catalog

	7.2. Configuring an Acumos Instance for Federation

	7.3. Establishing connectivity between peers

	7.4. Creating peer relationships between portals

	7.5. Actions on peer list entries

	7.6. Edit Peer

	7.7. Subscriptions

	8. Maintained Backup Logs
	8.1. Backup Logs

	8.2. Archived Logs

 1. Introduction

1. Introduction

This user guide describes how to use the Admin Interface for Acumos portals.

1.1. What is Covered by the Admin Interface

The Admin Interface is a web-based tool for a site admin to:

	Monitor the site activity

	Manage the roles that restrict use of various portal features and assign catalogs to roles.

	Manage users and change their roles.

	Update and edit the site content.

	Configure the site.

	Manatained Backup Logs.

	Manage Federation relationships: configure peer gateways and set up
subscriptions to that peer’s public marketplace.

1.2. Admin Access to the Acumos Portal

When a new Acumos Portal is deployed, a default admin user will be
created in the process of deployment by common-dataservice database
setup scripts. A default username (“*TBD*”) and password
(“*TBD*”) will be assigned to the admin and must be changed upon
first login, as the password will be set to “expired” when created.

Users can be assigned the role of Admin via the Portal UI at “Site
Admin” / “User Management”. Select the user and pick “admin” under the
“Change Role To” dropdown. The user will need to logout and back in for
the “Site Admin” tools to be visible.

The Site Admin Dashboard provides the toolset that admins use to manage
the Acumos portal. The Site Admin Dashboard can be accessed by site
admins only. Admins will have the “SITE ADMIN” option on the left of the
portal UI when they login.

 8. Maintained Backup Logs

8. Maintained Backup Logs

In Acumos, any user having administrative privileges can take and maintain backups of logs that are stored in server using an UI. In SITE ADMIN page a Maintained Backup Logs menu is available, it contains two tabs BACKUP LOGS and ARCHIVED LOGS.

8.1. Backup Logs

In BACKUP LOGS tab, there are Create Backup and Archive buttons.

[image: ../../../../../_images/admin-maintained-backup-logs.png]

When clicked on Create Backup button a pop-up is shown where a repository need to be selected, if no repository is available in elasticsearch then a new repository need to be created since backups are stored in form of repositories.

[image: ../../../../../_images/admin-create-backup.png]

Repository name need to entered in the pop-up appeared when Create Repository button of Create Backup pop-up is clicked.

[image: ../../../../../_images/admin-create-repository.png]

Repositories are collection of Indices, the logs from server are converted into json format and sent to elastic search of ELK in back-end, rows of that json file is treated as Indices. These Indices are created automatically from the data gathered through day to day activities performed on server.
ADMIN can select any number of Indices in a single repository where backup can be created.

[image: ../../../../../_images/admin-indices.png]

Multiple backups can be grouped together if they belong to same repository. The + icon before the repository name will show the set of backup logs grouped under a single repository.

[image: ../../../../../_images/admin-expand-repository.png]

Indices can be deleted as well. Deletion of Indices from the UI will permanently delete them from database.

[image: ../../../../../_images/admin-delete-indices.png]

The icon of action on MAINTAINED BACKUP LOGS page will Archive each repository for future use.

[image: ../../../../../_images/admin-archive.png]

8.2. Archived Logs

In ARCHIVED LOGS tab, there are Restore and Delete buttons which are used to restore and delete the archived repositories.

[image: ../../../../../_images/admin-archived.png]

Archived repositories can be restored or deleted using the Archived Logs Tab. The Restore icon under actions will restore and the Trash icon will delete the repositories respectively.

[image: ../../../../../_images/admin-restore.png]

Once repositories deleted from archived logs they cannot be restored stating they are permanently deleted.

[image: ../../../../../_images/admin-delete-repository.png]

 2. Site Monitoring

2. Site Monitoring

Site monitoring requires the installation of the ELK stack components. Please
see the ../../../submodules/platform-oam/docs/user-guide for
installation instructions as well as how to access the Kibana dashboards from
the Monitoring tab.

 Requests

Requests

@TODO what is this tab for? this tab contains nothing but dummy data

 3. Role Management

3. Role Management

Admin can create the roles and provide corresponding catalogs required to that role.

[image: ../../../../../_images/role_management.PNG]

Selecting the �Create New Role� button will present a dialog in which roles can be defined, with the options:

	Role Name (mandatory): must be unique, i.e. not already used as a role name

[image: ../../../../../_images/create_role.PNG]

Admin can give catalog permissions. Allowing the user with a particular role to access particular set of catalogs.
The catalogs are of restricted catalogs which the user is being assigned.
The Select All check-box allows the admin to assign the permissions of all catalogs to a particular role.

[image: ../../../../../_images/select_all.PNG]

Create button creates the role once all the mandatory fields like Role Name, Catalog selection are filled.

[image: ../../../../../_images/create_button.PNG]

Once a role is created, it is displayed in a tabular format along with its actions.

[image: ../../../../../_images/role_table.PNG]

Edit Icon under the Action tab allows to edit the already assigned catalog permissions and role name too.

[image: ../../../../../_images/edit_role.PNG]

The Update button updates the existing permissions with new permissions.

[image: ../../../../../_images/update_role.PNG]

The Delete Icon allows the admin to delete a particular Role along with their permissions.

[image: ../../../../../_images/delete_role.PNG]

 RTU CONFIGURATION

RTU CONFIGURATION

Acumos users can be granted access by the portal admin on which model the user has right to use.

RTUID should be entered in the RTU CONFIGURATION tab in the Acumos Portal SITE ADMIN page.

[image: submodules/portal-marketplace/docs/user-guides/portal-admin/images/admin-rtu-home.png]

After entering the RTUID, if the the associated model and users are available, then users list
will be shown and soltution will be available at Associated Model dropdown, otherwise it wont
show any models.If you want to provide access to more users you can select those users and click
on Update button.

[image: ../../../../../_images/admin-rturef-success.png]
[image: ../../../../../_images/admin-rturef-error.png]

If there is no associated model tagged with RTUID, you can search the model by using Search by Model name
and add one or more users who can access this model and click on Save buttion to save this.

[image: ../../../../../_images/admin-rtu-searchmodel.png]
[image: ../../../../../_images/admin-rtu-model-save.png]

 6. Site Configuration

6. Site Configuration

This tab enables configuration of the following:

	Logos enabling the portal owner (typically a company or other
organization) to brand the site: *TODO: explain how these are
presented*

	Co-Branding Logo

	Header Logo

	Footer Logo

	siteInstanceName: Name for the portal site, used to differentiate the
site when users first visit (before login), ala “Explore the
<siteInstanceName> Marketplace”, “Discover <siteInstanceName>”, etc.

	ConnectionConfig: set parameters for networking *(TODO: clarify how
these are used)*

	socketTimeout

	connectionTimeout

	EnableOnboarding: option to enable or disable the onboarding feature
for modelers

	validationText: If you have Text Check configured as part of your Publishing workflow, a keyword scan will be performed on a model’s artifacts. That keyword scan will use the comma separated list of keywords entered in this field.

 5. Site Content

5. Site Content

5.1. Content Pages

Admin users can update ‘Footer Contact Information’ as well as ‘Terms and Conditions’ from
the site content of acumos site admin page.

Go to SITE ADMIN of Acumos Portal page and click on Site Content tab , you can see
Footer Contact Information and Terms and Conditions under CONTENT PAGES panel.

[image: ../../../../../_images/admin-site-content.PNG]

5.2. Carousels

Admin users can update ‘Top Carousel’ , ‘Event Carousel’ as well as ‘Success Story Carousel’ from the site content of Acumos site admin page.

Go to SITE ADMIN of Acumos Portal page and click on Site Content tab , you can see
Top Carousel , Event Carousel and Success Story Carousel under Carousels panel.

[image: ../../../../../_images/admin-site-content-carousel.PNG]

Admin users can add carousel by clicking on the Add Slide button.

[image: ../../../../../_images/admin-site-content-addbutton.PNG]

Admin users can edit carousel by clicking on the Edit link. Also slides can be enable and disable by Enable/Disable Slides button.
Admin user can not disable slide if only one slide is present.

Admin users can set order of the carousel by clicking on the Set Order link.

[image: ../../../../../_images/admin-site-content-setorder.PNG]

All the added slides will be display on the home page.

 4. User Management

4. User Management

This tab lists all user accounts on the portal and enables:

	Searching for users and selecting a list of users by role

	Adding a user

	Bulk activation and deactivation of users

	Changing the role of a user to one or more of the system roles

Note

A user may be deactivated but not deleted

4.1. System Roles

	Role

	Description

	Permissions

	MLP System User

	Default role assigned to new accounts

	On-board a model, use the Design Studio and Marketplace

	Admin

	Portal Administration

	MLP System User, site administration

	Publisher

	Model Publishing

	MLP System User, publish models to the Public Marketplace

4.2. Add New User

Selecting the “Add New User” button will present a dialog in which new
user details can be provided, including:

	First Name (mandatory)

	Last Name (mandatory)

	User Name (mandatory): must be unique, and not already used for some
other account

	Email (mandatory): must be a valid format email address, and not
already used for some other account

	Password (mandatory): must contain at least eight characters, which
should have at least one upper case and one lower case letter,
numbers and symbols like, ! # @ $ * &. If the password is determined
to be “weak”, a stronger password must be selected or the “Add”
button will not be selectable.

	Role (mandatory): one of the defined roles, by default “MLP System
User”, “admin”

An option to send the new user an account creation email is provided.
The email will be sent from the defined email address of the admin user
that added the new user.

[image: ../../../../../_images/admin-user-add.png]

4.3. Update Role for existing user

	Select the user and click on change role to dropdown.

	Select the roles and click on change button.

	Click on the confirm button on the change role popup.

4.4. Deactivate existing user

	Select the user and click on bulk actions dropdown.

	Select the Inactive User and click on apply button.

	Click on the confirm button on the inactive confirmation popup.

 Addendum

Addendum

	1. On-Boarding Design Studio Toolkit Models
	1.1. On-Boarding the Models

	1.2. Publishing the Models

 1. On-Boarding Design Studio Toolkit Models

1. On-Boarding Design Studio Toolkit Models

The Design Studio requires specific toolkit models to be on-boarded in order for
Data Broker, Generic Data Mapper, Splitter, and Collator functionality to be
enabled.

1.1. On-Boarding the Models

	Download the following archived model bundles from the Design Studio wiki [https://wiki.acumos.org/display/DS#DesignStudioHome-ToolKitModels] page:

	Collator.zip

	Splitter.zip

	DataBroker.zip

	DataMapper.zip

	Each zip file is a model that needs to be on-boarded; follow the web on-boarding instructions to upload the models.

1.2. Publishing the Models

All the models should be published to the Company marketplace. Each model needs
to have Model Category and Toolkit Type set. See the Publishing to the Company
Marketplace section of the Managing a Model
page in the Portal and Marketplace User Guide for instructions.

	Model

	Model Category

	Toolkit Type

	Collator

	Data Transformation

	Collator

	Data Broker

	Data Sources

	Data Broker

	Generic Data Mapper

	Data Transfer

	

	Splitter

	Data Transformation

	Splitter

 Openstack Client Developers Guide

Openstack Client Developers Guide

1. Introduction

This is the developers guide to Openstack Client.

1.1 What is Openstack client?

Acumos provides deployment of model in Openstack cloud :

	Deploy single solution from Acumos marketplace in Openstack clould.

	Deploy composite solution from Acumos marketplace in Openstack clould.

1.2 Target Users

This guide is targeted towards the open source user community that:

	Intends to understand the functionality of the Openstack client.

1.3 Openstack client - Flow Chart

[image: Openstack Flow Chart]

1.5 Openstack client Flow Structure:

Page Name: Model/Solution Landing Page

	Clicking on <Deploy to Cloud> for Deploy model .

	<Deploy to Cloud> should prompt details about MS Azure (Inputs
TBD),Rackspace etc..

	Select <rackspace> from Drop down and fill all details for Deployment.

2. Model Deployment

2.1 Single Solution

	openstack/singleImageOpenstackDeployment

- Trigger

This API is used to deploy single solution in openstack cloud.

- Request

	{

	“imagetag”: “test-nexus01:8001/newadder1:1”,

“solutionId”: “02eab846-2bd0-4cfe8470-9fc69fa0d877”,

“solutionRevisionId”: “a9e68bc6-f4b4-41c6-ae8e-4e97ec3916a6”,

“userId”: “0505e537-ce79-4b1f-bf43-68d88933c369”,

“vmName”: “Gold80”

}

- Response

{
“status”: “SUCCESS”,
“UIDNumber”: “Unique Transaction Number”
}

2.2 Composite Solution

	openstack/compositeSolutionOpenstackDeployment

- Trigger:

This API is used to deploy Composite solution in openstack cloud.

- Request:

	{

	“jsonMapping”: “testMapping”,

“jsonPosition”: “testPosition”,

“urlAttribute”: “testUrl”,

“imagetag”: “test-nexus01:8001/newadder1:1”,

“solutionId”: “02eab846-2bd0-4cfe8470-9fc69fa0d877”,

“solutionRevisionId”: “a9e68bc6-f4b4-41c6-ae8e-4e97ec3916a6”,

“userId”: “0505e537-ce79-4b1f-bf43-68d88933c369”,

“vmName”: “Gold80”

}

- Response:

{
“status”: “SUCCESS”,
“UIDNumber”: “Unique Transaction Number”
}

 Openstack Client

Openstack Client

	Openstack Client Release Notes
	Version 3.0.3, 31 January 2020

	Version 3.0.2, 30 December 2019

	Version 3.0.1, 11 December 2019

	Version 3.0.0, 19 September 2019

	Version 2.0.12, 18 April 2019

	Version 2.0.11, 18 April 2019

	Version 2.0.10, 7 March 2019

	Version 2.0.10, 28 March 2019

	Version 2.0.8, 1 March 2019

	Version 2.0.5, 15 February 2019

	Version 2.0.2, 4 February 2019

	Version 2.0.0, 28 January 2019

	Version 1.1.22, 4 October 2018

	Version 1.1.21, 17 September 2018

	Version 1.1.112 Sepetember 6th 2018

	Version 1.1.11, August 16th 2018

	Version 1.1.5, July 6th 2018

	Version 1.47.0, March 2018

	Openstack Client Developers Guide
	1. Introduction

	2. Model Deployment

	Openstack Client Users Guide
	1. Introduction

	3. openstack-client Experience - for Users

 Openstack Client Release Notes

Openstack Client Release Notes

Version 3.0.3, 31 January 2020

	update acumos-azure-client, openstack-client,kubernetis-client and deployment-client for cds 3.1.1(ACUMOS-3957 [https://jira.acumos.org/browse/ACUMOS-3957])

Version 3.0.2, 30 December 2019

	update acumos-azure-client, acumos-openstack-client,kubernetis-client and deployment-client for logging library 3.0.5(ACUMOS-3880 [https://jira.acumos.org/browse/ACUMOS-3880])

Version 3.0.1, 11 December 2019

	update acumos-azure-client, acumos-openstack-client,kubernetis-client and deployment-client for cds 3.1.0 (ACUMOS-3835 [https://jira.acumos.org/browse/ACUMOS-3835])

Version 3.0.0, 19 September 2019

	update CDS 3.0.0 for openstack-client (ACUMOS-3448 [https://jira.acumos.org/browse/ACUMOS-3448])

Version 2.0.12, 18 April 2019

	Openstack client migrate Docker base image away from frolvlad/alpine-oracle (ACUMOS-2543 [https://jira.acumos.org/browse/ACUMOS-2543])

Version 2.0.11, 18 April 2019

	update CDS 2.2.1 for openstack-client (ACUMOS-2767 [https://jira.acumos.org/browse/ACUMOS-2767])

Version 2.0.10, 7 March 2019

	Logging Standardization (ACUMOS-2330 [https://jira.acumos.org/browse/ACUMOS-2330])

	Increase Sonar coverage to at least 40% (ACUMOS-2367 [https://jira.acumos.org/browse/ACUMOS-2367])

Version 2.0.10, 28 March 2019

	Logging Standardization (ACUMOS-2330 [https://jira.acumos.org/browse/ACUMOS-2330])

	Increase Sonar coverage to at least 40% (ACUMOS-2367 [https://jira.acumos.org/browse/ACUMOS-2367])

	update CDS 2.1.2 for Openstack-client (ACUMOS-2669 [https://jira.acumos.org/browse/ACUMOS-2669])

Version 2.0.8, 1 March 2019

	update CDS 2.1.1 for Openstack-client (ACUMOS-2589 [https://jira.acumos.org/browse/ACUMOS-2589])

Version 2.0.5, 15 February 2019

	update CDS 2.0.7 for Openstack-client (ACUMOS-2528 [https://jira.acumos.org/browse/ACUMOS-2528])

Version 2.0.2, 4 February 2019

	IST2: Deploy to Azure : Message Improvements(ACUMOS-863 [https://jira.acumos.org/browse/ACUMOS-863])

Version 2.0.0, 28 January 2019

	update CDS 2.0.4 for Openstack-client (ACUMOS-2412 [https://jira.acumos.org/browse/ACUMOS-2412])

Version 1.1.22, 4 October 2018

	update CDS 1.18.2 for Openstack-client (ACUMOS-1821 [https://jira.acumos.org/browse/ACUMOS-1821])

Version 1.1.21, 17 September 2018

logs not written to location same as others(ACUMOS-1635)

Version 1.1.112 Sepetember 6th 2018

	CDS 1.18.0

Version 1.1.11, August 16th 2018

	CDS 1.17.1 upgrade (ACUMOS-1607)

Version 1.1.5, July 6th 2018

	CDS 1.15.3 upgrade

Version 1.47.0, March 2018

	Latest release of the Openstack Client.

 Openstack Client Users Guide

Openstack Client Users Guide

1. Introduction

This is a user’s guide that describes how to use the the openstack client.

1.1 What is the Openstack ?

Openstack is a free and open-source software platform for cloud computing, whereby virtual servers and other resources are made available to customers.

	1.Easy Deploy Simple models. The openstack client deploy simple models easily in openstack cloud. It created new virtual machine and deployed

	models in virtual machine.

	2.Easy Deploy Composite models. The openstack client deploy Composite models easily in openstack cloud. It created new virtual machine and

	deployed models in virtual machine .it provided endpoint of models and endpoint URL is showing as notification after deployment.

1.2 Target Users

The openstack-client is designed for users who wish to deploy Models in Openstack cloud in separate virtual machine.

	Creating a Login on Acuomos

In order to use the full capabilities of Acuomos, the users must create a login on the Acumos Portal.

3. openstack-client Experience - for Users

3.1 Acumos Marketplace**

Users can go marketplace and discover models by browsing, direct search, or by applying any of a number of filter criteria to explore the marketplace. Models are presented on the Marketplace as “tiles”, showing the Name, image, ratings and usage statistics.

3.2 openstack client**

User can deploy model in Openstack cloud if Deploy to cloud button is enable in model detail page. User select rackspace to deploy model in Openstack cloud. Acumos have two type of model to deploy Openstack cloud.

1.User can fill vm name detail and deploy simple solution in Openstack cloud.

[image: submodules/openstack-client/docs/images/ModelDetails.jpg:alt:ModelDetail.]

	2.Composite model is combination of more than one solutions. Model connector also deploy with composite models. Model connector is use for

	communication between models in virtual machine.

[image: submodules/openstack-client/docs/images/openstackdetail.jpg:alt:openstackDetails]

	3.User can set databroker details with composite mode. Databroker image is available in composite solution then it will also deploy

	with composite solution.

[image: submodules/openstack-client/docs/images/openstackdetail.jpg:alt:openstackDetails]

4.openstack client send notification to user after deploying composite solution. Notification have endpoint of model connector and databroker.

5.Composite solution endpoint’s also save in database. User can check with UUID number.

 image-mood-classification

 [image: Build Status] [https://jenkins.acumos.org/job/image-mood-classifier-tox-verify-master/]

image-mood-classification

A model example for image mood classification (for emotional impact). This
model relies on a first pass with image classification features and then
learns a secondary classification layer.

 Testing

Testing

This directory provides in-place testing. Please consult the
main documentation for more information.

 Image Mood Classification Guide

 [image: Build Status] [https://jenkins.acumos.org/job/image-classification-tox-verify-master/]

Image Mood Classification Guide

A model example for compound image classification for emotional impact
and metadata tagging.

[image: Sample image and example image mood classification scores]

Background

This model relies on a first pass with image classification features and
then learns a secondary classification layer. To use this model within
Acumos, one would need to use a model connector available through the
design studio. Using classification outputs from image classifier,
predict the mood of an image into classes (here Amusement, Awe,
Contentment, Excitement, Anger, Disgust, Fear, and Sad).

Adapting a task of image mood classification, this model learns a set of
labels on top of the image-classifier output features (some 1000
classification tags). The training data comes from the “art photos”
collection from this academic work [https://dl.acm.org/citation.cfm?id=1873965] also posted on the
authors’ publication website [http://www.imageemotion.org/]:

Jana Machajdik and Allan Hanbury. 2010. *Affective image classification using features
inspired by psychology and art theory*. In Proceedings of the 18th ACM international
conference on Multimedia (MM '10). ACM, New York, NY, USA, 83-92.
DOI: https://doi.org/10.1145/1873951.1873965

Additionally, the images used to train this model came from a dataset
available here [http://www.imageemotion.org/testImages_artphoto.zip].

Following original experimental definitions, the model is evaluated by
separating the data into a training and test set using K-fold Cross
Validation (K = 5). Original performance metrics comparing methods on
this data are shown below, as found in the
original publication [https://dl.acm.org/citation.cfm?id=1873965].

Usage

Input to the model is an array of multiple classification scores for
each image. Specifically, an image index, a class name, and the
probability of that class are expected as inputs. Outputs of the model
will contain a similar format except that they will be created in the
domain of the mood classifier classes: image index, mood class name, and
probability score. The probabilities are normalized to sum to 1.0 over
all values so that they can utilized as relative confidence scores.

A web demo is included with the source code, available via the
Acumos Gerrit repository [https://gerrit.acumos.org/r/gitweb?p=image-mood-classifier.git;a=summary]
or the mirrored
Acumos Github repository [https://github.com/acumos/image-mood-classifier]. It
utilizes a protobuf javascript library and a few image examples to
classify and display the top N detected mood scores, as illustrated in
the model image.

Once deployed, you can quickly jump to the
default webhost page [http://htmlpreview.github.io/?https://github.com/acumos/image-mood-classifier/blob/master/web_demo/image-mood-classes.html]
and point to your model for a demo; see demonstration_image_mood.

Performance

The model has a few training modes, but the algorithm below (random
forest) seemed to perform the best between non neural-net computations.
The training and evaluation is completed wholly though
scikit-learn [http://scikit-learn.org/] to demonstrate the utility
of simple pipeline wrapping for an Acumos model.

(Random Forest - 300 estimators); (the default)

	Class

	precision

	recall

	f1-score

	sample count

	Amusement

	0.29

	0.27

	0.28

	22

	Anger

	0.25

	0.10

	0.14

	10

	Awe

	0.37

	0.37

	0.37

	19

	Contentment

	0.50

	0.45

	0.48

	11

	Disgust

	0.21

	0.27

	0.24

	11

	Excitement

	0.38

	0.31

	0.34

	26

	Fear

	0.38

	0.55

	0.44

	22

	Sad

	0.29

	0.29

	0.29

	41

	avg / total

	0.33

	0.33

	0.33

	162

More Information

Future work for this model may include increased sample count,
additional learning algorithm evaluation, and the inclusion of raw
features in addition to image classes. The image classes alone lack some
deeper information (e.g. color, texture, etc.) that is typically
associated with (and causes variations in) mood. Additionally, there are
some performance differences detected as the resolution of the input
image is varied, likely due to the original image classifier performing
poorly with small-resolution objects.

Source Installation

This section is useful for source-based installations and is not
generally intended for catalog documentation.

Package dependencies

Package dependencies for the core code and testing have been flattened
into a single file for convenience. Instead of installing this package
into your your local environment, execute the command below.

Note: If you are using an anaconda-based environment [https://anaconda.org],
you may want to try installing with conda first and then pip.

conda install --yes --file requirements.txt # suggested first step if you're using conda

Installation of the package requirements for a new environment.

pip install -r requirements.txt

Usage

This package contains runable scripts for command-line evaluation,
packaging of a model (both dump and posting), and simple web-test uses.
All functionality is encapsulated in the classify_image.py script
and has the following arguments.

usage: classify_image.py [-h] [-p PREDICT_PATH] [-i INPUT] [-C CUDA_ENV]
 [-l LABELS] [-m {svm,rf}] [-f] [-n] [-a PUSH_ADDRESS]
 [-A AUTH_ADDRESS] [-d DUMP_MODEL] [-s SUMMARY]

optional arguments:
 -h, --help show this help message and exit

main execution and evaluation functionality:
 -p PREDICT_PATH, --predict_path PREDICT_PATH
 Save predictions from model (model must be provided
 via 'dump_model')
 -i INPUT, --input INPUT
 Absolute path to input training data file. (for now
 must be a header-less CSV)
 -C CUDA_ENV, --cuda_env CUDA_ENV
 Anything special to inject into CUDA_VISIBLE_DEVICES
 environment string

model creation and configuration options:
 -l LABELS, --labels LABELS
 Path to label one-column file with one row for each
 input
 -m {svm,rf}, --model_type {svm,rf}
 specify the underlying classifier type (rf
 (randomforest), svc (SVM))
 -f, --feature_nomask create masked samples on input
 -n, --add_softnoise do not add soft noise to classification inputs
 -a PUSH_ADDRESS, --push_address PUSH_ADDRESS
 server address to push the model (e.g.
 http://localhost:8887/upload)
 -A AUTH_ADDRESS, --auth_address AUTH_ADDRESS
 server address for login and push of the model (e.g.
 http://localhost:8887/auth)
 -d DUMP_MODEL, --dump_model DUMP_MODEL
 dump model to a pickle directory for local running
 -s SUMMARY, --summary SUMMARY
 summarize top N image classes are strong for which
 label class (only in training)

Sample image examples can be found in the
web_demo directory.

Example Images

For the purpose of testing the classifier a few sample images are
provided. These example content files are intended to demonstrate the
performance and functionality of the model included within the Acumos platform.
See the source link for more info on the specific
license of each image.

	example_excitement_2.jpg [https://www.pexels.com/photo/red-green-hot-air-balloon-during-daytime-51377/]

	example_awe_1.jpg [https://www.pexels.com/photo/art-beach-beautiful-clouds-269583/]

	example_excitement_1.jpg [https://www.pexels.com/photo/sea-man-person-holiday-6557/]

	example_sad_1.jpg [https://www.pexels.com/photo/burial-cemetery-countryside-cross-116909/]

Example Usages

Please consult the Tutorial directory for usage
examples or jump right to Deployment: Wrapping and Executing Image Mood Classifier Models
to get started.

Release Notes

The Image Mood Classifier Release Notes catalog additions and
modifications over various version changes.

 Image Mood Classifier

Image Mood Classifier

	Image Mood Classification Guide
	Background

	Source Installation

	Example Usages

	Release Notes

	Tutorial
	Deployment: Wrapping and Executing Image Mood Classifier Models

	Demonstrations: Tutorial for Image Mood Classification

	Image Mood Classifier Release Notes
	0.5.4

	0.5.3

	0.5.2

	0.5.1

	0.5.0

	0.4.4

	0.4.3

	0.4.2

	0.4.1

	0.4.0

	0.3

 Image Mood Classifier Release Notes

Image Mood Classifier Release Notes

0.5.4

	Clean up attribution for image sources

0.5.3

	Clean up tutorial documentation naming and remove deprecated swagger demo app

	Add robustness against parsing incomplete tag classifier set (e.g. reprocessing mood tags)

	Consolidate demo code to use standard framework, use back-buffer, switch to programmatic input

0.5.2

	Clean up documentation for install and parameter descriptions

	Add documentation and functionality for environment variables in push
request

0.5.1

	Update javascript demo to run with better CORS behavior (github
htmlpreview)

	Additional documentation for environmental variables

0.5.0

	Documentation (lesson1) updated with model runner examples.
Deprecation notice in using explicit proto- and swagger-based serves.

	Update the structure of the protobuf input and output to use
flattened (row-based) structure instead of columnar data for all i/o
channels. This should allow other inspecting applications to more
easily understand and reuse implementations for image data.

	Update the demonstration HTML pages for similar modifications.

0.4.4

	Documentation and package update to use install instructions instead
of installing this package directly into a user’s environment.

0.4.3

	Refactor to remote the demo bin scripts and rewire for direct
call of the script classify_image.py as the primary interaction
mechanism.

	Refactor documentation into sections and tutorials.

	Create this release notes document for better version understanding.

0.4.2

	Minor refactor to avoid possibly reserved syntax name

0.4.1

	Refactor for compliant dataframe usage following primary client
library examples for repeated columns (e.g. dataframes) instead of
custom types that parsed rows individually.

	Refactor web, api, main model wrapper code for corresponding changes.

0.4.0

	Migration from previous library structure to new acumos client
library

	Refactor to not need this library as a runtime/installed
dependency

0.3

	Modify to understand batch-output mode from image-classifier
model

 Demonstrations: Tutorial for Image Mood Classification

Demonstrations: Tutorial for Image Mood Classification

This web page sample allows the user to submit an image to an image
classification and image mood classification service in serial
progression.

	images/example_excitement_2.jpg [https://www.pexels.com/photo/red-green-hot-air-balloon-during-daytime-51377/]

	images/example_awe_1.jpg [https://www.pexels.com/photo/art-beach-beautiful-clouds-269583/]

	images/example_excitement_1.jpg [https://www.pexels.com/photo/sea-man-person-holiday-6557/]

	images/example_sad_1.jpg [https://www.pexels.com/photo/burial-cemetery-countryside-cross-116909/]

Browser Interaction

Most browsers should have no
CORS or other cross-domain objections to dropping the file image-mood-classes.html
into the browser and accesing a locally hosted server API, as configured
in Deployment: Wrapping and Executing Image Mood Classifier Models.

Open-source hosted run

Utilizing the generous htmlpreview function [https://htmlpreview.github.io/] available on
GitHub, you can also experiment with the respository-based web resource. This resource
will proxy the repository web_demo directory into a live resource.

Navigate to the
default webhost page [http://htmlpreview.github.io/?https://github.com/acumos/image-mood-classifier/blob/master/web_demo/image-mood-classes.html]
and confirm that the resource load properly. The image at the bottom of this guide
is a good reference for correct page loading and display.

After confirming correct page load, simply replace the value in the Transform URL
field to point at your deployed instance. For example, if you’ve created a
dumped model locally, it might be a localhost port.

Local webserver run

If you want to run the test locally, you can use a supplied python
webserver with the line below while working in the web_demo
directory (assuming you’re running python3).

python simple-cors-http-server-python3.py 5000

Afterwards, just point your browser at
http://localhost:5000/image-mood-classes.html.

Usage of protobuf binaries for testing

Binary (protobuf encoded) data can be downloaded from the web page or directly with curl.
Two demonstration binaries have been included in the source repository for testing, as
captured from the demonstration-image_classification_running_example (awe) image below.

	protobuf.Image.bin - a protobuf-encoded image of the beach (awe) image

	protobuf.classifier.ImageTagSet.bin - a protobuf-encoded classification tag set for the beach (awe) image

	protobuf.mood.ImageTagSet.bin - a protobuf-encoded mood classifier tag set for the beach (awe) image

Within the webpage demo, simply select the correct protobuf method and then drag and
drop the binary file into the Protobuf Payload Input file uploader. It will be
immediately uploaded through javascript to your specified Transform Url.

Example image mood classification demo (docker and protobuf)

To customize this demo, one should change either the included javascript
or simply update the primary classification URL on the page itself
during runtime. This demo utilizes the
javascript protobuf library [https://github.com/dcodeIO/ProtoBuf.js/] to encode
parameters into proto binaries in the browser.

NOTE One version of the model’s protobuf schema is
included with this web page, but it may change over time. If you receive
encoding errors or unexpected results, please verify that your target
model and this web page are using the same .proto file.

	confirm that your target docker instance is configured and running

	download this directory to your local machine

	confirm the host port and classification service URL in the file
image-mood-classes.js

urlDefault: "http://localhost:8887/classify",

	view the page image-mood-classes.html in a Crome or Firefox browser

	you can switch between a few sample images or upload your own by
clicking on the buttons below the main image window

Special decoding example

You can also download a binary, encoded version of
the last image or output that was sent to the remote service. When
available, the Download Encoded Message button will be enabled and a
binary file will be generated in the browser.

protoc --decode=QauAppBBvRcQrVeMxDhdHKrQXsYfYbpD.ImageTagSet model.tag.proto < protobuf.out.bin
protoc --decode=ZmazgwcYOzRPSlAKlNLcoITKjByZchTo.ImageSet model.image.proto < protobuf.in.bin

NOTE The specific package name may have changed since the time of
writing, so be sure to check the contents of the current .proto
file.

Example mood classification demo

To customize this demo, one should change either the included javascript
or simply update the primary classification URL on the page itself
during runtime.

	confirm that your local instance is configured and running

	download this directory to your local machine

	confirm the host port and classification service URL in the file
image-mood-classes.js

classificationServer: "http://localhost:8887/classify",

	view the page image-mood-classes.html in a Crome or Firefox
browser

	probabilities will be updated on the right side fo the screen

	you can switch between a few sample images or upload your own by
clicking on the buttons below the main image window

Example web application with awe mood classification

[image: example web application with *awe* mood]

 Deployment: Wrapping and Executing Image Mood Classifier Models

Deployment: Wrapping and Executing Image Mood Classifier Models

To utilize this classifier model, it trains a meta classifier on top of
produced image classification tags to approximate the mood of the image.
Continue to the Demonstrations: Tutorial for Image Mood Classification to see how to utilize
these models with a simple demo API server.

Model Deployment

Following similar use pattens described by the main client library,
there are two primary modes to export and deploy the generated
classifier: by dumping it to disk or by pushing it to an onboarding
server. Please consult the Usage for more specific arguments
but the examples below demonstrate basic capabilities.

Example for training the classifier on the provided dataset. Note, the
features have already been processed by the image-classification
(v0.3) model and stored in that native format in
features_testImages_artphoto.csv.bz2 [https://github.com/acumos/image-mood-classifier/blob/master/data/features_testImages_artphoto.csv.bz2].

python image_mood_classifier/classify_image.py -l data/labels_testImages_artphoto.txt -i data/features_testImages_artphoto.csv.bz2 -d model_large

Add the --feature_nomask or -f flag to speed up training and
avoid sample simulation. (Recommended)

python image_mood_classifier/classify_image.py -f -l data/labels_testImages_artphoto.txt -i data/features_testImages_artphoto.csv.bz2 -d model

Example for training a model and pushing that model that returns all
scores.

export ACUMOS_USERNAME="user"; \
export ACUMOS_PASSWORD="password";
or
export ACUMOS_TOKEN="a_very_long_token";

export ACUMOS_PUSH="https://acumos-challenge.org/onboarding-app/v2/models"; \
export ACUMOS_AUTH="https://acumos-challenge.org/onboarding-app/v2/auth"; \
python image_mood_classifier/classify_image.py -f -l data/labels_testImages_artphoto.txt -i data/features_testImages_artphoto.csv.bz2

In-place Evaluation

In-place evaluation will utilize a serialized version of the model
and load it into memory for use in-place. This mode is handy for quick
evaluation of images or image sets for use in other classifiers.

Example for evaluating a set of features from the
image-classification model.

python image_mood_classifier/classify_image.py -i data/example_awe_1.csv -d model -p data/example_mood.csv

Example for printing top contributors (in training data) from
image-classification to mood label.

python image_mood_classifier/classify_image.py -f -l data/labels_testImages_artphoto.txt -i data/features_testImages_artphoto.csv.bz2 -s 5

Model Runner: Using the Client Library

Getting even closer to what it looks like in a deployed model, you can
also use the model runner code to run mood classification locally.
(added v0.5.0)

Please note
that this model is a **cascade classifier* that requiures initial classification
of an image into class tags on which this model is trained. For that reason,
you must be running an upstream image classifier that first accepts image data
and then passes the classifications to this model.*

	Determine the ports to run your mood classification and other
source models, like the original image classification model. In the example
below, mood classification runs on port 8887 and image
classification runs on port 8886.

	If not already running, launch the classification model
but make sure to configure port forwarding. For help with
deployment of the image classification (as one potential source model)
please see Model Runner: Using the Client Library.
For the runner to properly forward requests,
provide a simple JSON file example called runtime.json in the
working directory that you run the model runner.
If you modify the ports to run the models, please change them accordingly.

This line creates a configuration file for the modelrunner.
$ cat '{"downstream": ["http://127.0.0.1:8887/classify"]}' > runtime.json

This line launches the model runner, assuming you have the client library one directory up
python ../acumos-python-client/testing/wrap/runner.py --port 8886 --modeldir model/image_classifier

	Dump and launch the image mood classification model. Again,
if you modify the ports to run the models, please change them
accordingly. Aside from the model and port, the main difference
between the model runner line above is that the model runner is instructed to
ignore the port forward configuration file (runtime.json) so that it
doesn’t attempt to forward the request to itself.

python ../acumos-python-client/testing/wrap/runner.py --port 8887 --modeldir model/image_mood_classifier --no_downstream

Performance Analysis

A training analysis of results demonstrates that this problem is not
trivial. Contrary to the results in the original publication, F1 scores
for methods in this model are not that high.

After version 0.3, training also generates additional samples form
feature masking (e.g. missing or zero-based features). This adds some
robustness for image-classifier results that have only partial
information and generally adds importance to the stronger class features
as well. Some classifiers (for example, deep neural nets (DNN)) can
benefit from the additional samples, even if they are similar to the
original.

(Random Forest - 300 estimators); the default
 precision recall f1-score support

 amusement 0.29 0.27 0.28 22
 anger 0.25 0.10 0.14 10
 awe 0.37 0.37 0.37 19
contentment 0.50 0.45 0.48 11
 disgust 0.21 0.27 0.24 11
 excitement 0.38 0.31 0.34 26
 fear 0.38 0.55 0.44 22
 sad 0.29 0.29 0.29 41

avg / total 0.33 0.33 0.33 162

(Support Vector Multiclass - linear kernel)
 precision recall f1-score support

 amusement 0.22 0.23 0.22 22
 anger 0.07 0.10 0.08 10
 awe 0.22 0.21 0.22 19
contentment 0.21 0.27 0.24 11
 disgust 0.12 0.18 0.14 11
 excitement 0.48 0.42 0.45 26
 fear 0.44 0.50 0.47 22
 sad 0.30 0.20 0.24 41

avg / total 0.29 0.28 0.28 162

Using a quick summary analysis, these are the top 5 image classes
associated with mood in the provided training data. Users can explore
data this way and find image that contain these classes/objects to
assert strength for a specific mood. An interesting data observation is
the overlap of the class seashore, coast, seacoast, sea-coast for
excitement, awe, and contentment.

	Label: ‘amusement’, top 5 classes…

	ping-pong ball 3.370771

	seashore, coast, seacoast, sea-coast 3.029028

	bubble 3.007231

	balloon 2.578175

	jean, blue jean, denim 2.178420

	Label: ‘anger’, top 5 classes…

	lipstick, lip rouge 3.039408

	mask 2.279731

	volcano 2.021753

	wig 1.857592

	hair spray 1.239879

	Label: ‘awe’, top 5 classes…

	seashore, coast, seacoast, sea-coast 7.125516

	lakeside, lakeshore 4.629456

	cliff, drop, drop-off 2.226622

	wig 1.824174

	promontory, headland, head, foreland 1.719891

	Label: ‘contentment’, top 5 classes…

	lakeside, lakeshore 13.223093

	seashore, coast, seacoast, sea-coast 5.862702

	promontory, headland, head, foreland 3.135785

	breakwater, groin, groyne, mole, bulwark, seawall, jetty 2.120798

	dock, dockage, docking facility 1.984274

	Label: ‘disgust’, top 5 classes…

	lipstick, lip rouge 4.465127

	mask 2.138739

	syringe 1.250971

	tick 1.146299

	chiton, coat-of-mail shell, sea cradle, polyplacophore 1.090373

	Label: ‘excitement’, top 5 classes…

	seashore, coast, seacoast, sea-coast 4.996619

	daisy 3.273973

	balloon 2.951615

	parachute, chute 2.012220

	rapeseed 1.879177

	Label: ‘fear’, top 5 classes…

	mask 4.021418

	Band Aid 3.958322

	bathtub, bathing tub, bath, tub 3.057594

	lipstick, lip rouge 2.948846

	gasmask, respirator, gas helmet 2.775581

	Label: ‘sad’, top 5 classes…

	lakeside, lakeshore 6.440269

	swing 4.254950

	daisy 3.841010

	mask 3.803346

	park bench 3.333210

 Tutorial

Tutorial

	Deployment: Wrapping and Executing Image Mood Classifier Models
	Model Deployment

	In-place Evaluation

	Performance Analysis

	Demonstrations: Tutorial for Image Mood Classification
	Browser Interaction

	Example image mood classification demo (docker and protobuf)

 web_demo

web_demo

This directory provides a simple web page and demo content for
the image-based classifier demo.

Please consult the tutorial documentation for more information.

 test-models

test-models

This repo contains the open-sourced models from the Acumos LF Community [https://www.acumos.org/community/]
for usage and on-boarding within Acumos [https://www.acumos.org/].

	docs - document only descriptions of models

	python - python-based model examples

	tools - shell-script and helper tools for test models

	web - web app demo platforms

	deprecated_rework - code stubs and samples (from any language) used to produce
models but not fully functional or tested in current form

 Test Datasource

Test Datasource

This project provides a convenient method for a user to provide Protocol Buffer definition files
and corresponding test data using a web UI generated by Swagger. The tool converts the data
appropriately and sends it to an Acumos microservice for processing, then displays the result.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Test Models and Demonstrations

Test Models and Demonstrations

 Digital Customer Segmentation

Digital Customer Segmentation

Identifies key differentiators to divide customers into groups that can be targeted.

Table of Contents

Customer: Telecom

Business Problem:

Business Requirement:

Benefits:

DATA used for the study:

Data Fields Considered for the analysis:

Machine Learning Algorithm Used: Kmeans Clustering

Outcome:

Onboard the model, deploy and run the model

Customer: Telecom

Business Problem:

	Identify key differentiators that divide customers into groups that
can be targeted using Information such as a customers’ demographics
like Bearer type, Browser used, Category of browsing, Region etc.,).

	Marketing materials sent out using customer segmentation is more
valued and appreciated.

Business Requirement:

	Divide the customers into smaller groups with similar attributes.

	Target the specific smaller groups to improve customer service and
assist in customer loyalty and retention.

Benefits:

	Personalized recommendation insights that are Suggestive around their
needs.

	Improve customer service and assist in customer loyalty and
retention.

	Provide deeper understanding of their customers’ preferences and
needs based on demographics.

DATA used for the study:

The dataset has 40000 records with 5 fields.

The sample data is shown below:

[image: image0]

Data Fields Considered for the analysis:

	Region - Customer place of recharge

	TENURE_Days - how long customer associated with service provider

	l4_ul_throughput - internet upload volume (kb’s)

	l4_dl_throughput - internet download volume (kb’s)

Machine Learning Algorithm Used: Kmeans Clustering

	Kmeans clustering method is used for customer segmentation.

	Number of clusters considered are 4 based on the Elbow criteria.

Outcome:

Sample Output :

	Subscriber

	Region

	TENURE_
Days

	
l4_ul_

throughput

	
l4_dl_

throughput

	Predicted
Segment

	19912682

	3

	1235

	16534022

	237360574

	0

	104061393

	3

	1900

	1014474

	8023971

	0

	125802926

	3

	1816

	40799736

	476783830

	1

	387108880

	2

	1876

	74320606

	934266794

	1

	403763030

	3

	1332

	61568963

	586627301

	1

	10003277

	2

	4896

	43041

	186002

	2

	10057763

	2

	4896

	3273753

	150072609

	2

	113602400

	1

	1756

	5782436

	75685429

	3

	115626313

	1

	1738

	3093945

	50925318

	3

	138211329

	1

	1704

	4509669

	27499257

	3

	Inputs - Region, TENURE_Days, l4_ul_throughput, l4_dl_throughput

	Output - Predicted Segment

Predicted Segment clusters description:

	Cluster Number

	Cluster Name

	0

	Platinum Customers

	1

	Gold Customers

	2

	Silver Customers

	3

	Diamond Customers

Onboard the model, deploy and run the model

Steps to test the output for a model are -

Login to Acumos, Search for Model, deploy to cloud and run the script.

[image: image1]

The detailed document for onboarding, downloading and running the models is available on wiki @ https://wiki.acumos.org/display/AC/Soup-to-Nuts+Example:+Onboarding,+Downloading,+Deploying,+and+Using+a+Model+in+Acumos

The deployed model can be run using below command -

1. docker load -i <Model docker image >

e.g. - docker load -i ~/Downloads/3330:3330 “your-server”–nexus01:8001/Customer_Segmentation _1_5_18_592f2cd4-9dbb-4a.tar

2. Docker run -p <external available port>:3330 <Model Docker imageI>

e.g. - Docker run -p 3330:3330 “your-server”-nexus01:8001/Customer Segmentation_1_5_18_592f2cd4-9dbb-4a

3. Generate Model_pb2 script

This description file needs to be compiled into native code for your particular language (Python, in our case). We simply invoke the Protobuf compiler, instructing it to produce Python code in the current directory and need to rename python produced file name to model_pb2

$ protoc model.proto –python_out=.

The model microservice would be listening on the mentioned port. User
can use below script to invoke the model. The sample test data is
included below or user can try with different data in same format. User
should replace the restURL as per the deployment of the model.

The script to execute the model mentioned below.

Script:

[image: image2]

Note - model_pb2 as imported in script is compiled output of the model
proto file as mentioned in the wiki link mentioned above. This file
should be available along with the script file.

Sample Test data -

	Index

	Region

	TENURE_Days

	l4_ul_throughput

	l4_dl_throughput

	0

	-0.620809153

	3.00400887

	-0.459748222

	-0.536581812

	1

	-0.620809153

	3.00400887

	-0.334441139

	0.218128239

	2

	0.383167807

	2.750716471

	0.761938785

	1.025837336

	3

	0.383167807

	2.67161519

	0.309633674

	0.188960848

	4

	-0.620809153

	2.657309639

	0.043946526

	-0.428037468

	5

	0.383167807

	2.933322619

	-0.347781696

	-0.42434145

	6

	-1.624786114

	2.929115104

	-0.461190139

	-0.537411095

	7

	-1.624786114

	2.929115104

	-0.400686362

	-0.428423552

	8

	0.383167807

	2.929115104

	-0.02383975

	-0.389644752

	9

	0.383167807

	2.929115104

	-0.02383975

	-0.281457691

	10

	0.383167807

	2.600928939

	-0.359131007

	-0.499345975

	11

	0.383167807

	2.559695293

	-0.279648865

	-0.387292519

	12

	0.383167807

	2.548755754

	-0.37524951

	-0.453619067

	13

	0.383167807

	2.515937137

	-0.391719106

	-0.464786335

	14

	0.383167807

	-0.076733565

	0.179874477

	0.657641188

	15

	-1.624786114

	2.504997599

	-0.315701774

	-0.3767865

	16

	-0.620809153

	2.504997599

	-0.440543423

	-0.530685142

	17

	0.383167807

	2.464605455

	0.079412096

	-0.219282928

	18

	0.383167807

	2.312293415

	-0.326135421

	-0.37528408

The output will be seen as predicted output 0,1,2,3.

Test Output:

	Index

	Region

	TENURE_Da
ys

	l4_ul_thr
oughput

	l4_dl_thr
oughput

	Predicted
Segmented

	0

	-0.620809
153

	3.0040088
7

	-0.459748
222

	-0.536581
812

	2

	1

	-0.620809
153

	3.0040088
7

	-0.334441
139

	0.2181282
39

	2

	2

	0.3831678
07

	2.7507164
71

	0.7619387
85

	1.0258373
36

	2

	3

	0.3831678
07

	2.6716151
9

	0.3096336
74

	0.1889608
48

	2

	4

	-0.620809
153

	2.6573096
39

	0.0439465
26

	-0.428037
468

	2

	5

	0.3831678
07

	2.9333226
19

	-0.347781
696

	-0.424341
45

	2

	6

	-1.624786
114

	2.9291151
04

	-0.461190
139

	-0.537411
095

	2

	7

	-1.624786
114

	2.9291151
04

	-0.400686
362

	-0.428423
552

	2

	8

	0.3831678
07

	2.9291151
04

	-0.023839
75

	-0.389644
752

	2

	9

	0.3831678
07

	2.9291151
04

	-0.023839
75

	-0.281457
691

	2

	10

	0.3831678
07

	2.6009289
39

	-0.359131
007

	-0.499345
975

	2

	11

	0.3831678
07

	2.5596952
93

	-0.279648
865

	-0.387292
519

	2

	12

	0.3831678
07

	2.5487557
54

	-0.375249
51

	-0.453619
067

	2

	13

	0.3831678
07

	2.5159371
37

	-0.391719
106

	-0.464786
335

	2

	14

	0.3831678
07

	-0.076733
565

	0.1798744
77

	0.6576411
88

	0

	15

	-1.624786
114

	2.5049975
99

	-0.315701
774

	-0.376786
5

	2

	16

	-0.620809
153

	2.5049975
99

	-0.440543
423

	-0.530685
142

	2

	17

	0.3831678
07

	2.4646054
55

	0.0794120
96

	-0.219282
928

	2

	18

	0.3831678
07

	2.3122934
15

	-0.326135
421

	-0.375284
08

	2

	19

	0.3831678
07

	2.2399241
58

	0.1087882
31

	0.1520370
32

	2

 Cross-Sell Analytics

Cross-Sell Analytics

Identify next sellable product to increase the average revenue

Table of Contents

Customer: US Financial Life and Annuity Insurance Company

Business Problem:

Business Requirement:

Benefits:

DATA used for the study:

Data Fields Considered for the analysis with description:

Outcome:

Onboard the model, deploy and run the model

Customer: US Financial Life and Annuity Insurance Company

Business Problem:

	Predict who can be potential buyers for the “Final Expense”
product from the existing customers who have not purchased it yet

Business Requirement:

	Build sales association model

	Identify next sellable products

	Understand key data attributes to increase average revenue per
customer using cross-sell analytics.

Benefits:

	Selling an additional product or service to an existing customer is
adding different additional coverages or including special coverages
like Accidental Death Benefits, Pension Term Benefits, Senior or Pre
need Benefits, etc., in case of an insurance service/product.

	The probability of selling to an existing customer is more beneficial
when compared to selling to a new prospect.

DATA used for the study:

Sample data has 1500 records and 9 fields.

The sample data is shown below:

[image: image0]

Data Fields Considered for the analysis with description:

	Relation Age - tenure/years customer associated with Insurance
Company

	Age - Customer Age

	Gender - Customer gender(Male/Female)

	AnnulPayment - Yearly premium amount

	Faceamt - Total insured value

	Mortgage - Product (1 - Customer already purchased, 0 - Customer not
purchased)

	Life - Product (1 - Customer already purchased, 0 - Customer not
purchased)

	Final expense - Product (1 - Customer already purchased, 0 - Customer
not purchased)

Machine Learning Algorithm Used: Logistic Regression

	Sample dataset is processed, Missing values are imputed with the
previous value in the field.

	Logistic Regression algorithm is trained on the entire dataset and
tested on the same dataset.

**Outcome: **

	Accuracy, precision and recall of the prediction are 65%, 43%and 65%
respectively.

[image: image1]

Target Variable = finalexpense

Independent variables = relationage, age, gender, annulpayment, faceamt,
finalexpense, mortgage, life

Output = finalexpense_Predition (0: means not potential customer for
selling “Final Expense” product and 1: means Potential cutomer for
selling Final Expense product)

Definitions:

	Accuracy=Correctly Predicted out of Total Predicted.

	Sensitivity = true positive rate or the proportion of positives
that are correctly identified (Positive predicted / Total actual
positive)

Onboard the model, deploy and run the model

Steps to test the output for a model are -

Login to Acumos, Search for Model, deploy to cloud and run the script.

[image: image2]

The detailed document for onboarding, downloading and running the models is available on the Acumos wiki page @ https://wiki.acumos.org/display/AC/Soup-to-Nuts+Example:+Onboarding,+Downloading,+Deploying,+and+Using+a+Model+in+Acumos

The deployed model can be run using below command -

1. docker load -i <Model docker image>

e.g. - docker load -i ~/Downloads/3330:3330 “your-server”-nexus01:8001/Cross_Sell_1_5_18_592f2cd4-9dbb-4a.tar

2. Docker run -p <external available port>:3330 <Model Docker imageI>

e.g. - Docker run -p 3330:3330 “your-server”-nexus01:8001/Cross_sell_1_5_18_592f2cd4-9dbb-4a

3. Generate Model_pb2 script

This description file needs to be compiled into native code for your particular language (Python, in our case). We simply invoke the Protobuf compiler, instructing it to produce Python code in the current directory and need to rename python produced file name to model_pb2

$ protoc model.proto –python_out=.

The model microservice would be listening on the mentioned port. User
can use below script to invoke the model. The sample test data is
included below or user can try with different data in same format. User
should replace the restURL as per the deployment of the model.

The script to execute the model is below.

Script:

[image: image3]

Note - model_pb2 as imported in script is compiled output of the model
proto file as mentioned in the wiki link mentioned above. This file
should be available along with the script file.

Sample Test data -

	relationAge

	age

	gender

	annualPayment

	faceamt

	mortgage

	life

	22

	61

	1

	502.72

	84340

	0

	0

	22

	57

	1

	957.16

	137286

	0

	1

	20

	39

	2

	391

	4455

	0

	0

	32

	56

	1

	615.84

	72006

	0

	1

	23

	68

	1

	256.57

	74487

	0

	0

	7

	54

	2

	642.21

	26839

	0

	1

	17

	24

	2

	533

	44115

	0

	0

	15

	73

	2

	305.97

	105889

	0

	1

	15

	46

	2

	582.29

	10871

	0

	0

	55

	83

	1

	191.6

	81965

	1

	0

	5

	44

	1

	275.4

	74832

	0

	1

	42

	52

	2

	138.26

	49093

	0

	1

	2

	21

	2

	874.99

	123890

	1

	0

	28

	52

	2

	698.39

	115516

	0

	1

	19

	83

	1

	126.79

	30525

	0

	0

	29

	54

	2

	747.4

	98702

	1

	0

	6

	47

	2

	683.83

	20900

	0

	0

	20

	44

	1

	994.89

	48429

	0

	1

	11

	37

	2

	364.83

	127783

	0

	0

	17

	38

	1

	356.13

	41247

	0

	1

 Pipeline Application Demo (PAD)

Pipeline Application Demo (PAD)

The Pipeline Application Demo (PAD) demonstrates the linkage (and propagation) of models across instances.

The PAD was created as an interactive demonstration of model interaction with these features.

	payload logs for download of the binary payloads that are sent to (and received from) models as they are called

	timing measurements for round-trip latency (where avaialble) for a single model call and its response

	opportunistic sample dropping and indication of the current sample (best demonstrated in multi-sample assets, like videos) at different
models in the pipeline. The application will automatically drop new samples if a model is currently engaged
in analysis.

[image: Sample execution of PAD with example asset]

Execution

This application utilizes JSON data objects, so you’ll need to access it from an HTTP or HTTPS webserver
instead of dropping it as a file into your browser (most browsers refuse to start with this method). For that
purpose, the simple python script simple-cors-http-server-python3.py has been included in the project root
directory. A set of assets (with _pad_copyright) have also been included for demonstration purposes
with this web application. Version changes are tracked in the _pad_release_notes.

Configuration

The web applcation is configured with a JSON file. At the time of writing, this JSON file must be
adjacent to web application and a default example is included in assets/config/main.json.

Pipelines

Pipelines are collections of functionalies (provided by models), often to compile a single application.
In this application demo, a pipeline is a user-defined construct that includes references to assets
and models that are to be visually avaiable in the main PAD interface.

(More information to be provided)

Models

Models are running instances of different Acumos [https://www.acumos.org/] created model instances. The
uniform wrapping of model input, output, and endpoint specification allows the models to be interchangably
created and used in this application.

(More information to be provided)

 PAD Content Attribution

PAD Content Attribution

Some example content is included as known content within the PAD web application
(see _pad_usage). These
example content files are intended to demonstrate the performance and functionality of
various models included with or available within the Acumos platform.

	
	Face detection and recognition examples

	
	Commercial example (youtube source [https://www.youtube.com/watch?v=34KfCNapnUg])

	Reunion face sample (flickr source [https://flic.kr/p/bEgYbs])

	family face example (pexel source [https://www.pexels.com/photo/adult-affection-beautiful-beauty-265764/])

	DiCaprio celebrity face sample (wikimedia source [https://en.wikipedia.org/wiki/Celebrity#/media/File:Leonardo_DiCaprio_visited_Goddard_Saturday_to_discuss_Earth_science_with_Piers_Sellers_(26105091624)_cropped.jpg])

	Schwarzenegger celebrity (wikimedia source [https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/A._Schwarzenegger.jpg/220px-A._Schwarzenegger.jpg])

	DeGeneres celebrity face sample (wikipedia source [https://en.wikipedia.org/wiki/Ellen_DeGeneres#/media/File:Ellen_DeGeneres-2009.jpg])

	
	Image classification examples

	
	stock-footage-bicycles.mp4 [https://videos.pexels.com/videos/mountain-bikers-during-daytime-857083]

	stock-footage-city-cars.mp4 [https://videos.pexels.com/videos/cars-on-the-road-854745]

	stock-footage-coast-time.mp4 [https://videos.pexels.com/videos/sunset-by-the-sea-857056]

	stock-footage-dogs.mp4 [https://videos.pexels.com/videos/dogs-playing-853846]

	stock-footage-squirrel.mp4 [https://videos.pexels.com/videos/squirrel-eating-855213]

	stock-footage-scuba.mp4 [https://videos.pexels.com/videos/paddle-surfing-and-scuba-diving-video-854387]

	
	Image mood classification examples

	
	example_excitement_2.jpg [https://www.pexels.com/photo/red-green-hot-air-balloon-during-daytime-51377/]

	example_awe_1.jpg [https://www.pexels.com/photo/art-beach-beautiful-clouds-269583/]

	example_excitement_1.jpg [https://www.pexels.com/photo/sea-man-person-holiday-6557/]

	example_sad_1.jpg [https://www.pexels.com/photo/burial-cemetery-countryside-cross-116909/]

	
	Image brand examples

	
	brand_storefront_att.jpg [https://flic.kr/p/nuBnvf/]

 Pipeline Application Demo (PAD)

Pipeline Application Demo (PAD)

	Pipeline Application Demo (PAD)
	Execution

	PAD Content Attribution

	Pipeline Application Demo (PAD) Release Notes
	0.1.1

	0.1.0

 Pipeline Application Demo (PAD) Release Notes

Pipeline Application Demo (PAD) Release Notes

0.1.1

	Fix JSON error on internal model fail (not REST request error)

	Fix default port/hostname to not include port

	Add example image

	Fix attribution link in documentation

0.1.0

	Initial version added to repo

 web

web

This repo contains the web/html based applications to demonstrate components of models
developed by the Acumos LF Community [https://www.acumos.org/community/]
and running with components from Acumos [https://www.acumos.org/].

	pad - the Pipeline Application Demo (PAD) demonstrates linkage and propagation of model data across instances

 Pipeline Application Demo

Pipeline Application Demo

This directory provides a simple web app and demo content for
the Pipieline Application Demo (PAD).

Please see the main documentation file for more detail on this application.

 @fortawesome/fontawesome-free - The Official Font Awesome 5 NPM package

@fortawesome/fontawesome-free - The Official Font Awesome 5 NPM package

“I came here to chew bubblegum and install Font Awesome 5 - and I’m all out of bubblegum”

[image: ../../../../../../../_images/fontawesome-free.svg]npm [https://www.npmjs.com/package/@fortawesome/fontawesome-free]

Installation

$ npm i --save @fortawesome/fontawesome-free

Or

$ yarn add @fortawesome/fontawesome-free

What’s included?

This package includes all the same files available through our Free and Pro CDN.

	/js - All JavaScript files associated with Font Awesome 5 SVG with JS

	/css - All CSS using the classic Web Fonts with CSS implementation

	/sprites - SVG icons packaged in a convenient sprite

	/scss, /less - CSS Pre-processor files for Web Fonts with CSS

	/webfonts - Accompanying files for Web Fonts with CSS

	/svg - Individual icon files in SVG format

Documentation

Get started here [https://fontawesome.com/get-started]. Continue your journey here [https://fontawesome.com/how-to-use].

Or go straight to the API documentation [https://fontawesome.com/how-to-use/font-awesome-api].

Issues and support

Start with GitHub issues [https://github.com/FortAwesome/Font-Awesome/issues] and ping us on Twitter [https://twitter.com/fontawesome] if you need to.

 PAD Content Attribution

PAD Content Attribution

Some example content is included as known content within the PAD web application
(see _pad_usage). These
example content files are intended to demonstrate the performance and functionality of
various models included with or available within the Acumos platform.

	
	Face detection and recognition examples

	
	Commercial example (youtube source [https://www.youtube.com/watch?v=34KfCNapnUg])

	Reunion face sample (flickr source [https://flic.kr/p/bEgYbs])

	family face example (pexel source [https://www.pexels.com/photo/adult-affection-beautiful-beauty-265764/])

	DiCaprio celebrity face sample (wikimedia source [https://en.wikipedia.org/wiki/Celebrity#/media/File:Leonardo_DiCaprio_visited_Goddard_Saturday_to_discuss_Earth_science_with_Piers_Sellers_(26105091624)_cropped.jpg])

	Schwarzenegger celebrity (wikimedia source [https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/A._Schwarzenegger.jpg/220px-A._Schwarzenegger.jpg])

	DeGeneres celebrity face sample (wikipedia source [https://en.wikipedia.org/wiki/Ellen_DeGeneres#/media/File:Ellen_DeGeneres-2009.jpg])

	
	Image classification examples

	
	stock-footage-bicycles.mp4 [https://videos.pexels.com/videos/mountain-bikers-during-daytime-857083]

	stock-footage-city-cars.mp4 [https://videos.pexels.com/videos/cars-on-the-road-854745]

	stock-footage-coast-time.mp4 [https://videos.pexels.com/videos/sunset-by-the-sea-857056]

	stock-footage-dogs.mp4 [https://videos.pexels.com/videos/dogs-playing-853846]

	stock-footage-squirrel.mp4 [https://videos.pexels.com/videos/squirrel-eating-855213]

	stock-footage-scuba.mp4 [https://videos.pexels.com/videos/paddle-surfing-and-scuba-diving-video-854387]

	
	Image mood classification examples

	
	example_excitement_2.jpg [https://www.pexels.com/photo/red-green-hot-air-balloon-during-daytime-51377/]

	example_awe_1.jpg [https://www.pexels.com/photo/art-beach-beautiful-clouds-269583/]

	example_excitement_1.jpg [https://www.pexels.com/photo/sea-man-person-holiday-6557/]

	example_sad_1.jpg [https://www.pexels.com/photo/burial-cemetery-countryside-cross-116909/]

	
	Image brand examples

	
	brand_storefront_att.jpg [https://flic.kr/p/nuBnvf/]

 Loopback Model

Loopback Model

This directory holds a demonstration model for Acumos. The model is
built using Python, and its only behavior is to echo back the data
sent in. This supports testing and deployment activities.

Building the model

Prerequisites for building the model:

	Python version 3.4 or later

	Python module acumos (install via “pip install acumos”)

Build the model by running the included shell script::

create-loopback-bundle.sh

The script serializes the model to disk, then creates a bundle
suitable for onboarding to Acumos. A sample session follows::

$./create-loopback-bundle.sh
./create-loopback-bundle.sh: Invoking python to create the model
Acumos version is 0.6.4
model function says hi
dumping model to subdir bundle-loopback
./create-loopback-bundle.sh: Invoking zip to create the bundle
updating: metadata.json (deflated 47%)
updating: model.proto (deflated 20%)
updating: model.zip (stored 0%)
./create-loopback-bundle.sh: Bundle contents:
Archive: bundle-loopback.zip
 Length Date Time Name
--------- ---------- ----- ----
 441 10-07-2018 07:13 metadata.json
 178 10-07-2018 07:13 model.proto
 2453 10-07-2018 07:13 model.zip
--------- -------
 3072 3 files

On-boarding the model

On-board this model to an Acumos instance using the web-onboarding
feature, which accepts the bundle zip file created here. As part of
on-boarding the model is wrapped inside a model-runner service, which
in turn is dockerized (a docker image is created).

Running the model

Prerequisites for running the model:

	Docker software is running (images can be pulled and started)

	curl command-line tool

	protoc command-line tool, version 3.4 or later

First download the docker tar file from the Acumos site, then import
(“docker load”) the downloaded tar file to create an image. A sample
session follows::

$ docker load -i loopback_e3356398-3038-4a89-83e6-8a2139d65501_1.tar
43efe85a991c: Loading layer [==>] 82.94MB/82.94MB
59a5ed91aa75: Loading layer [==>] 7.85MB/7.85MB
ba3f02ba0d41: Loading layer [==>] 64.06MB/64.06MB
27eba76928b5: Loading layer [==>] 4.608kB/4.608kB
f37f0fd2e625: Loading layer [==>] 7.754MB/7.754MB
842acd08ee57: Loading layer [==>] 1.536kB/1.536kB
693324de1114: Loading layer [==>] 111.6kB/111.6kB
f4f7a5ba5e57: Loading layer [==>] 321.7MB/321.7MB
97f7abd1b39a: Loading layer [==>] 724.4MB/724.4MB
Loaded image: nexus.acumos.org:18002/loopback_e3356398-3038-4a89-83e6-8a2139d65501:1
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nexus.acumos.org:18002/loopback_e3356398-3038-4a89-83e6-8a2139d65501 1 e88905b2ac4e 25 hours ago 1.18GB

Next start the image as a new Docker container with an argument to
map the port where the model runner micro service listens (3330) on
the host. A sample session follows::

docker run -p3330:3330 -d e889
9b7e801c65284d8bb8ef1db8ff6fea256ee1a25a3161504a73c31293399f42b8

Data for the model

This model accepts a simple string message and echoes back its input.
The protocol buffer definition is in file “loopback.proto” included here.
Two versions of a sample message are provided:

	protoc mark-up text format, in file hello-world-msg.txt

	binary format, in file hello-world-msg.bin

The protoc mark-up text format uses “tag: value” entries, and braces to contain nested message types.
A simple example (with no nested message) follows here::

s: "Hello, world."

The protoc command can be used to encode text in this format to binary format that is
sent to the model, and decode a binary response back to the same text format.
These operations are performed by the included test shell script.

Posting data to the model

Use the included shell script to send data to the model, and it will
be echoed back. This confirms the deployment is working as expected.
A sample session follows::

$./test-model.sh hello-world-msg.txt
./test-model.sh config: host=localhost, port=3330
./test-model.sh config: protocol buffer definition file=loopback.proto, package=simplepackage
./test-model.sh config: input message=SimpleMessage, output message=SimpleMessage, endpoint=loopback
./test-model.sh config: POST data URL=http://localhost:3330/loopback
./test-model.sh input: file=hello-world-msg.txt
* Trying ::1...
* Connected to localhost (::1) port 3330 (#0)
> POST /loopback HTTP/1.1
> Host: localhost:3330
> User-Agent: curl/7.47.0
> Accept: */*
> Content-Type: application/protobuf
> Content-Length: 15
>
} [15 bytes data]
* upload completely sent off: 15 out of 15 bytes
< HTTP/1.1 201 CREATED
< Server: gunicorn/19.9.0
< Date: Mon, 08 Oct 2018 12:12:54 GMT
< Connection: close
< Content-Type: text/plain;charset=UTF-8
< Content-Length: 15
< Access-Control-Allow-Origin: *
<
{ [15 bytes data]
* Closing connection 0
s: "Hello, world."

License

Copyright (C) 2018 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 IRIS Model

IRIS Model

This directory holds a demonstration model for Acumos. The model is
built using R, and is the famous IRIS classifier. This supports
testing and deployment activities.

Building the model

Prerequisites for building the model:

	R version 3.0.0 or later

	R packages as listed below

The following R packages must be installed, sample commands shown:

install.packages("acumos", repos=c("http://cloud.r-project.org","http://rforge.net"), dep=T)

install.packages(randomForest)
library(randomForest)

install.packages(c("Rcpp","RCurl","RUnit","rmarkdown","knitr","pinp","xml2"))
library(Rcpp,Rcurl,RUnit,rmarkdown,knitr,pinp)

install.packages("RProtoBuf")

Build the model by running this command:

acumos::compose(predict=function(..., inputs=lapply(iris[-5], class))
 print(as.character(predict(rf, as.data.frame(list(...))))),
 aux = list(rf = randomForest(Species ~ ., data=iris)),
 name="the_model_name_you_want", file="the_model_bundle_file_name_you_want.amc")

The script serializes the model to disk, then creates a model bundle (.amc file) suitable for onboarding
to Acumos. The model bundle, (.amc file) is in fact a ZIP file with meta.json defining the component and
its metadata, component.bin the binary payload and component.proto with the protobuf specs.

On-boarding the model

You can On-board this model bundle to an Acumos instance using the web-onboarding feature by drag
and drop it to the Acumos ON-BOARDING MODEL page. Or you can use the push function like this:

acumos::push("push_URL","location_of_the_model_bundle_file","your_acumos_login:API_token")

The value for “push_URL” can be found in the Acumos portal, in the ON-BOARDING MODEL page.
The value for “API_token” can be found in the Acumos portal, in the settings of your account.

Running the model

Prerequisites for running the model:

	Docker software is running (images can be pulled and started)

	curl command-line tool

	protoc command-line tool, version 3.4 or later

First download the docker tar file from the Acumos site, then import (“docker load”) the downloaded
tar file to create an image. A sample session follows:

$ docker load -i iris-3038-4a89-83e6-8a2139d65501_1.tar
43efe85a991c: Loading layer [==>] 82.94MB/82.94MB
59a5ed91aa75: Loading layer [==>] 7.85MB/7.85MB
ba3f02ba0d41: Loading layer [==>] 64.06MB/64.06MB
27eba76928b5: Loading layer [==>] 4.608kB/4.608kB
f37f0fd2e625: Loading layer [==>] 7.754MB/7.754MB
842acd08ee57: Loading layer [==>] 1.536kB/1.536kB
693324de1114: Loading layer [==>] 111.6kB/111.6kB
f4f7a5ba5e57: Loading layer [==>] 321.7MB/321.7MB
97f7abd1b39a: Loading layer [==>] 724.4MB/724.4MB
Loaded image: nexus.acumos.org:18002/iris-3038-4a89-83e6-8a2139d65501:1
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nexus.acumos.org:18002/iris-3038-4a89-83e6-8a2139d65501 1 e88905b2ac4e 25 hours ago 1.18GB

Next start the image as a new Docker container with an argument to map the port where the model
runner micro service listens (3330) on the host.

A sample session follows:

docker run -p3330:3330 -d e889
9b7e801c65284d8bb8ef1db8ff6fea256ee1a25a3161504a73c31293399f42b8

License

Copyright (C) 2019 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 LUM - Application Programming Interface (API)

LUM - Application Programming Interface (API)

LUM provides http based API under specification of openapi 3.0.3 [https://swagger.io/specification/].

If lum-server is not installed

	download lum-server-API.yaml

	use https://editor.swagger.io/ on the downloaded
lum-server-API.yaml
to see the API specification in UI.

Warning

Do not execute any commands from inside https://editor.swagger.io/,
because the swagger spec of LUM server only has a relative path to lum-server
and that does not point to the running lum-server.

If lum-server is installed and running

	open the web browser of your choice

	navigate to the swagger ui web-page on the running lum-server at the url path
/ui/openapi.

Tip

	For instance, if the lum-server is running at your localhost at port 2080,
open http://localhost:2080/ui/openapi page in the web-browser.

	If using a reverse proxy with the url like this https://localhost/lum/ pointing to
lum-server, then

	Open https://localhost/lum/ui/openapi page in the web-browser
(append /ui/openapi to /lum path of the lum-server).

	Change Servers selector from default "/ - Root" to
"/lum - Helm Chart with ingress" (going through the reverse proxy)
on that page to be able to execute the commands against the running lum-server.

See Specification for denials on asset-usage for the list of possible denials on asset-usage request

back to LUM index

 Specification for denials on asset-usage

Specification for denials on asset-usage

When LUM API /api/v1/asset-usage returns 402 indicating that the asset usage is denied,
it provides a list of denials in assetUsageDenial element for each assetUsage
and/or includedAssetUsage.

The AssetUsageDenial are defined in API spec

See LUM - Application Programming Interface (API)

API spec lum-server-API.yaml

AssetUsageDenial:
 description: denials for the response to assetUsageReq request
 type: object
 properties:
 assetUsageDenialSummary:
 description: human readable summary for denial of the asset-usage
 type: string
 example: "swid-tag(ee48b699-3b16-4391-884c-1bec557f32b9) has been found
 but asset-usage is prohibited by
 prohibition(acumos://software-licensor/Company A/permission/98378924-84ff-41f5-87ac-02fd2012c727)
 under asset-usage-agreement(acumos://software-licensor/Company A/agreement/3eb8c43a-bf19-46ab-8392-99c7efdf4106)
 for action(acumos:deploy)"

 assetUsageDenial:
 description: collection of denial info to assetUsageReq request
 type: array
 default: []
 nullable: true
 items:
 description: single denial info
 type: object
 required:
 - denialCode
 - denialType
 - denialReason
 properties:
 denialCode:
 description: unique code for the reason of denial.
 Use denialCode value to construct the denial message from other parts of denial
 beside the denialReason
 type: string
 enum:
 - denied_due_swidTagNotFound
 - denied_due_swidTagRevoked
 - denied_due_licenseProfileNotFound
 - denied_due_licenseProfileRevoked
 - denied_due_agreementNotFound
 - denied_due_rightToUseRevoked
 - denied_due_usageProhibited
 - denied_due_countUniqueUsersOnAssignee
 - denied_due_usersOnAssignee
 - denied_due_swPersistentIdOnTarget
 - denied_due_swTagIdOnTarget
 - denied_due_swProductNameOnTarget
 - denied_due_swCategoryOnTarget
 - denied_due_swCatalogIdOnTarget
 - denied_due_swCatalogTypeOnTarget
 - denied_due_expireOn
 - denied_due_goodFor
 - denied_due_enableOn
 - denied_due_usageCount

 denialType:
 description: type of the reason for denial. It can contain one or many values of denialCode
 type: string
 enum:
 - swidTagNotFound
 - swidTagRevoked
 - licenseProfileNotFound
 - licenseProfileRevoked
 - agreementNotFound
 - rightToUseRevoked
 - usageProhibited
 - matchingConstraintOnAssignee
 - matchingConstraintOnTarget
 - timingConstraint
 - usageConstraint

 denialReason:
 description: human readable explanation why the entitlement was denied.
 It consumes all other parts of denial
 type: string

 deniedAction:
 description: either requested action on the asset
 like download, publish, execute, etc. or special value of use
 type: string

 deniedAssetUsageAgreementId:
 description: uid of Asset-Usage-AssetUsageAgreement that caused the denial or not match
 type: string

 deniedAssetUsageAgreementRevision:
 description: 1,2,3,... revision of the AssetUsageAgreement
 type: integer
 format: int64

 deniedRightToUseId:
 description: id of rightToUse that caused the denial
 type: string

 deniedRightToUseRevision:
 description: 1,2,3,... revision of the rightToUse - auto-incremented by LUM
 type: integer
 format: int64

 denialReqItemName:
 description: name of the item that came from req or NOW()
 type: string

 denialReqItemValue:
 description: value of the item that came from req or NOW()
 It can be either string or number

 deniedConstraint:
 description: data from usageConstraint or assignee refinement record that caused the denial
 type: object

 deniedConstraintInvalid:
 description: whether the denied constraint is invalid (true) or valid (false).
 It is invalid when rightOperand == null.
 When this is true, the asset-usage-agreement contains error on this constraint
 type: boolean

 deniedMetrics:
 description: current statistical data that caused the denial. It is optional and its structure can very
 type: object

The examples for each denial are as follows

swidTag not found denied_due_swidTagNotFound

{
 "denialCode": "denied_due_swidTagNotFound",
 "denialType": "swidTagNotFound",
 "denialReason": "swid-tag(unit-test-swTagId-not-to-be-found) not found",
 "deniedAction": "acumos:deploy",
 "denialReqItemName": "swTagId",
 "denialReqItemValue": "unit-test-swTagId-not-to-be-found"
}

swidTag revoked denied_due_swidTagRevoked

{
 "denialCode": "denied_due_swidTagRevoked",
 "denialType": "swidTagRevoked",
 "denialReason": "swid-tag(unit-test-swTagId) revoked",
 "deniedAction": "acumos:deploy",
 "denialReqItemName": "swTagId",
 "denialReqItemValue": "unit-test-swTagId"
}

license-profile not found denied_due_licenseProfileNotFound

{
 "denialCode": "denied_due_licenseProfileNotFound",
 "denialType": "licenseProfileNotFound",
 "denialReason": "license-profile(b03ad842-c8d3-4138-b5f0-c33d77a0f87e) not found for swid-tag(unit-test-swTagId)",
 "deniedAction": "acumos:deploy",
 "denialReqItemName": "licenseProfileId",
 "denialReqItemValue": "b03ad842-c8d3-4138-b5f0-c33d77a0f87e"
}

license-profile revoked denied_due_licenseProfileRevoked

{
 "denialCode": "denied_due_licenseProfileRevoked",
 "denialType": "licenseProfileNotFound",
 "denialReason": "license-profile(b03ad842-c8d3-4138-b5f0-c33d77a0f87e) not found for swid-tag(unit-test-swTagId)",
 "deniedAction": "acumos:deploy",
 "denialReqItemName": "licenseProfileId",
 "denialReqItemValue": "b03ad842-c8d3-4138-b5f0-c33d77a0f87e"
}

agreement not found denied_due_agreementNotFound

{
 "denialCode": "denied_due_agreementNotFound",
 "denialType": "agreementNotFound",
 "denialReason": "swid-tag(unit-test-swTagId-2) has been found but no asset-usage-agreement from unit-test-softwareLicensorId-2 currently provide the right to use this asset for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "denialReqItemName": "softwareLicensorId",
 "denialReqItemValue": "unit-test-softwareLicensorId-2"
}

	

right-to-use revoked denied_due_rightToUseRevoked

{
 "denialCode": "denied_due_rightToUseRevoked",
 "denialType": "rightToUseRevoked",
 "denialReason": "rightToUse revoked on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 15,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 15,
 "denialReqItemName": "rightToUseActive",
 "denialReqItemValue": true
}

Usage is prohibited denied_due_usageProhibited

{
 "denialCode": "denied_due_usageProhibited",
 "denialType": "usageProhibited",
 "denialReason": "swid-tag(unit-test-swTagId) has been found but asset-usage is prohibited by prohibition(unit-test-prohibition-2) under asset-usage-agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 6,
 "deniedRightToUseId": "unit-test-prohibition-2",
 "deniedRightToUseRevision": 6,
 "denialReqItemName": "action",
 "denialReqItemValue": "acumos:deploy",
 "deniedConstraint": {
 "action": "acumos:deploy"
 }
}

count unique users denied_due_countUniqueUsersOnAssignee

{
 "denialCode": "denied_due_countUniqueUsersOnAssignee",
 "denialType": "matchingConstraintOnAssignee",
 "denialReason": "too many users: (unit-test-userId-2 not in {\"users\": [\"unit-test-userId\"]}) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "userId",
 "denialReqItemValue": "unit-test-userId-2",
 "deniedConstraint": {
 "dataType": "integer",
 "operator": "lteq",
 "leftOperand": "lum:countUniqueUsers",
 "rightOperand": 1
 },
 "deniedConstraintInvalid": false,
 "deniedMetrics": {
 "users": [
 "unit-test-userId"
]
 }
}

users denied_due_usersOnAssignee

{
 "denialCode": "denied_due_usersOnAssignee",
 "denialType": "matchingConstraintOnAssignee",
 "denialReason": "user not in assignee lum:users: (unit-test-userId-2 not lum:in [\"alex\", \"justin\", \"michelle\", \"unit-test-userId\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "userId",
 "denialReqItemValue": "unit-test-userId-2",
 "deniedConstraint": {
 "origin": "fromRestriction",
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:users",
 "rightOperand": [
 "alex",
 "justin",
 "michelle",
 "unit-test-userId"
]
 },
 "deniedConstraintInvalid": false
}

not targeted by swPersistentId denied_due_swPersistentIdOnTarget

{
 "denialCode": "denied_due_swPersistentIdOnTarget",
 "denialType": "matchingConstraintOnTarget",
 "denialReason": "not targeted by lum:swPersistentId: (e2a90c73-f0a0-400d-a35d-0df36aa33b82 not lum:in [\"a218c795-ae2c-4ff9-894d-462baa768dfc\", \"cbf31f26-4590-4323-8991-000d9f290901\", \"fab0954c-d4e5-443a-8d3e-cf7620e80455\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "swPersistentId",
 "denialReqItemValue": "e2a90c73-f0a0-400d-a35d-0df36aa33b82",
 "deniedConstraint": {
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:swPersistentId",
 "rightOperand": [
 "a218c795-ae2c-4ff9-894d-462baa768dfc",
 "cbf31f26-4590-4323-8991-000d9f290901",
 "fab0954c-d4e5-443a-8d3e-cf7620e80455"
]
 },
 "deniedConstraintInvalid": false
}

not targeted by swTagId denied_due_swTagIdOnTarget

{
 "denialCode": "denied_due_swTagIdOnTarget",
 "denialType": "matchingConstraintOnTarget",
 "denialReason": "not targeted by lum:swTagId: (unit-test-swTagId-2 not lum:in [\"unit-test-swTagId\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "swTagId",
 "denialReqItemValue": "unit-test-swTagId-2",
 "deniedConstraint": {
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:swTagId",
 "rightOperand": [
 "unit-test-swTagId"
]
 },
 "deniedConstraintInvalid": false
}

not targeted by productName denied_due_swProductNameOnTarget

{
 "denialCode": "denied_due_swProductNameOnTarget",
 "denialType": "matchingConstraintOnTarget",
 "denialReason": "not targeted by lum:swProductName: (unit-test-product-2 not lum:in [\"unit-test-product253\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "swProductName",
 "denialReqItemValue": "unit-test-product-2",
 "deniedConstraint": {
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:swProductName",
 "rightOperand": [
 "unit-test-product253"
]
 },
 "deniedConstraintInvalid": false
}

not targeted by swCategory denied_due_swCategoryOnTarget

{
 "denialCode": "denied_due_swCategoryOnTarget",
 "denialType": "matchingConstraintOnTarget",
 "denialReason": "not targeted by lum:swCategory: (image-processing-2 not lum:in [\"image-processing\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "swCategory",
 "denialReqItemValue": "image-processing-2",
 "deniedConstraint": {
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:swCategory",
 "rightOperand": [
 "image-processing"
]
 },
 "deniedConstraintInvalid": false
}

not targeted by swCatalogId denied_due_swCatalogIdOnTarget

{
 "denialCode": "denied_due_swCatalogIdOnTarget",
 "denialType": "matchingConstraintOnTarget",
 "denialReason": "not targeted by lum:swCatalogId: (none of [\"ABC models-2\",\"XYZ models-2\"] lum:in [\"XYZ models\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "swCatalogId",
 "denialReqItemValue": [
 "ABC models-2",
 "XYZ models-2"
],
 "deniedConstraint": {
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:swCatalogId",
 "rightOperand": [
 "XYZ models"
]
 },
 "deniedConstraintInvalid": false
}

not targeted by swCatalogType denied_due_swCatalogTypeOnTarget

{
 "denialCode": "denied_due_swCatalogTypeOnTarget",
 "denialType": "matchingConstraintOnTarget",
 "denialReason": "not targeted by lum:swCatalogType: (none of [\"public\"] lum:in [\"restricted\"]) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "swCatalogType",
 "denialReqItemValue": [
 "public"
],
 "deniedConstraint": {
 "dataType": "string",
 "operator": "lum:in",
 "leftOperand": "lum:swCatalogType",
 "rightOperand": [
 "restricted"
]
 },
 "deniedConstraintInvalid": false
}

rightToUse expired denied_due_expireOn

{
 "denialCode": "denied_due_expireOn",
 "denialType": "timingConstraint",
 "denialReason": "rightToUse expired: (today(2020-06-25) > expireOn(1999-12-31)) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 7,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 7,
 "denialReqItemName": "date",
 "denialReqItemValue": "2020-06-25",
 "deniedConstraint": {
 "expireOn": "1999-12-31"
 }
}

rightToUse expired denied_due_goodFor

{
 "denialCode": "denied_due_goodFor",
 "denialType": "timingConstraint",
 "denialReason": "rightToUse too late: (now(2020-06-25T17:44:13.745Z) > end-of-good-for(2020-06-25T17:44:13.737Z)), usage started(2020-05-26T17:44:13.737Z), was good for(30 days) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 11,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 12,
 "denialReqItemName": "datetime",
 "denialReqItemValue": "2020-06-25T17:44:13.745Z",
 "deniedConstraint": {
 "leftOperand": "lum:goodFor",
 "operator": "lteq",
 "rightOperand": "P30D"
 },
 "deniedMetrics": {
 "usageStarted": "2020-05-26T17:44:13.737Z",
 "usageEnded": "2020-06-25T17:44:13.737Z"
 }
}

rightToUse not enabled yet denied_due_enableOn

{
 "denialCode": "denied_due_enableOn",
 "denialType": "timingConstraint",
 "denialReason": "rightToUse not enabled yet: (today(2020-06-26) < enableOn(2029-01-02)) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 17,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 17,
 "denialReqItemName": "date",
 "denialReqItemValue": "2020-06-26",
 "deniedConstraint": {
 "enableOn": "2029-01-02"
 }
}

exceeding the usage count denied_due_usageCount

{
 "denialCode": "denied_due_usageCount",
 "denialType": "usageConstraint",
 "denialReason": "exceeding the usage count: (5 not lteq 4) on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 16,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 16,
 "denialReqItemName": "usageCount",
 "denialReqItemValue": 1,
 "deniedConstraint": {
 "dataType": "integer",
 "operator": "lteq",
 "leftOperand": "count",
 "rightOperand": 4
 },
 "deniedConstraintInvalid": false,
 "deniedMetrics": {
 "count": 4,
 "users": [
 "unit-test-userId"
]
 }
}

invalid constraint for denied_due_usageCount when rightOperand == null

{
 "denialCode": "denied_due_usageCount",
 "denialType": "usageConstraint",
 "denialReason": "invalid constraint count on permission(unit-test-permission-1) under agreement(unit-test-assetUsageAgreementId) for action(acumos:deploy)",
 "deniedAction": "acumos:deploy",
 "deniedAssetUsageAgreementId": "unit-test-assetUsageAgreementId",
 "deniedAssetUsageAgreementRevision": 13,
 "deniedRightToUseId": "unit-test-permission-1",
 "deniedRightToUseRevision": 13,
 "denialReqItemName": "usageCount",
 "denialReqItemValue": 2,
 "deniedConstraint": {
 "dataType": "integer",
 "operator": "lt",
 "leftOperand": "count",
 "rightOperand": null
 },
 "deniedConstraintInvalid": true,
 "deniedMetrics": {
 "count": 4,
 "users": [
 "unit-test-userId"
]
 }
}

back to LUM index

 LUM - Developer Guide

LUM - Developer Guide

Data model and high-level flow

[image: ../../../_images/lum-architecture.svg]

LUM does the following steps to select the ODRL [https://www.w3.org/TR/odrl-model/] based prohibition [https://www.w3.org/TR/odrl-model/#prohibition] or permission [https://www.w3.org/TR/odrl-model/#permission] for the action [https://www.w3.org/TR/odrl-model/#action] on the swidTag.

	LUM matches the softwareLicensorId value on swidTag versus the softwareLicensorId on the right-to-use [https://www.w3.org/TR/odrl-model/#rule]

	LUM verifies timing of the right-to-use [https://www.w3.org/TR/odrl-model/#rule]. Do not select the expired or not effective right-to-use [https://www.w3.org/TR/odrl-model/#rule] -
date in GMT timezone in ISO "CCYY-MM-DD" format

timing constraints on the right-to-use [https://www.w3.org/TR/odrl-model/#rule]

	timing

	sample

	comment

	enable on specific GMT date

	{"leftOperand": "date",
 "operator": "gteq",
 "rightOperand": {"@value": "2019-08-01",
 "@type": "xsd:date"}}

	right-to-use [https://www.w3.org/TR/odrl-model/#rule] will start on "2019-08-01" in GMT timezone

	expire on specific GMT date

	{"leftOperand": "date",
 "operator": "lteq",
 "rightOperand": {"@value": "2019-12-31",
 "@type": "xsd:date"}}

	expires after "2019-12-31" in GMT timezone

	“lum:goodFor” for 30 days or 1 year

	{"leftOperand": "lum:goodFor",
 "operator": "lteq",
 "rightOperand": {"@value": "30"}}

or

{"leftOperand": "lum:goodFor",
 "operator": "lteq",
 "rightOperand": "P1Y"}

	asset usage is good for the duration of 30 days after the first entitlement by the permission [https://www.w3.org/TR/odrl-model/#permission] on any action [https://www.w3.org/TR/odrl-model/#action].
"P1Y" - for 1 year. rightOperand formatted either as ISO-8601 [https://en.wikipedia.org/wiki/ISO_8601#Durations] for duration
or just a number that is converted by LUM to days ("30" -> "P30D")

Note

“lum:goodFor”.

	rightOperand is expected to be formatted as duration from ISO-8601 [https://en.wikipedia.org/wiki/ISO_8601#Durations]

	ISO-8601 [https://en.wikipedia.org/wiki/ISO_8601#Durations] formats for duration always start with P and put T to separate date from time -
at least one number part is required, but any combination is ok:
PnYnMnDTnHnMnS, PnW

"P30D" = 30 days,
"P3Y6M4DT12H30M5S" = 3 years 6 mons 4 days 12:30:05,
"P123.5DT23H" = 123 days 35:00:00,
"P4.7Y" = 4 years 8 mons,
"P1.3M" = 1 mon 9 days,
"P1.55W" = 10 days 20:24:00,
"P0.5Y" = 6 mons,
"PT36H" = 36:00:00,
"P1YT5S" = 1 year 00:00:05

	in addition to ISO-8601 [https://en.wikipedia.org/wiki/ISO_8601#Durations] format, when the value of the rightOperand is a stringified number,
LUM assumes that is the duration in days (default)

For instance, "30" is converted by LUM to "P30D" and is 30 days

{ "leftOperand": "lum:goodFor", "operator": "lteq",
 "rightOperand": "30" }

is the same as the following

{ "leftOperand": "lum:goodFor", "operator": "lteq",
 "rightOperand": "P30D" }

	LUM matches swidTag to all the populated refinement [https://www.w3.org/TR/odrl-vocab/#term-refinement] on the target [https://www.w3.org/TR/odrl-model/#relation] of the right-to-use [https://www.w3.org/TR/odrl-model/#rule]

refinement [https://www.w3.org/TR/odrl-vocab/#term-refinement] on target [https://www.w3.org/TR/odrl-model/#relation]

	match by

	sample

	comment

	swPersistentId is either "abc456" or "def789"

	{"leftOperand": "lum:swPersistentId",
 "operator": "lum:in",
 "rightOperand": ["abc456", "def789"]}

	solutionId in Acumos

	swTagId is "xyz123"

	{"leftOperand": "lum:swTagId",
 "operator": "lum:in",
 "rightOperand": ["xyz123"]}

	revisionId in Acumos

	swProductName is "Face Detection"

	{"leftOperand": "lum:swProductName",
 "operator": "lum:in",
 "rightOperand": ["Face Detection"]}

	model name in Acumos

	swCategory is "image-processing"

	{"leftOperand": "lum:swCategory",
 "operator": "lum:in",
 "rightOperand": ["image-processing"]}

	category is the model type in Acumos. Each model has a single model type

	swCatalogId is "XYZ models"

	{"leftOperand": "lum:swCatalogId",
 "operator": "lum:in",
 "rightOperand": ["XYZ models"]}

	catalogId in Acumos

	swCatalogType is "restricted"

	{"leftOperand": "lum:swCatalogType",
 "operator": "lum:in",
 "rightOperand": ["restricted"]}

	catalogType in Acumos

	LUM matches user to all the populated refinement [https://www.w3.org/TR/odrl-vocab/#term-refinement] on the assignee [https://www.w3.org/TR/odrl-model/#function] of the right-to-use [https://www.w3.org/TR/odrl-model/#rule]

refinement [https://www.w3.org/TR/odrl-vocab/#term-refinement] on assignee [https://www.w3.org/TR/odrl-model/#function]

	match by

	sample

	comment

	number of users

	{"leftOperand": "lum:countUniqueUsers",
 "operator": "lteq",
 "rightOperand": {"@value": "5",
 "@type": "xsd:integer"}}

	for constraint [https://www.w3.org/TR/odrl-model/#constraint] by count of users

	restrict users by the subscriber company

	{"leftOperand": "lum:users",
 "operator": "lum:in",
 "rightOperand": ["alex",
 "justin",
 "michelle"]}

	set of unique userIds comes from agreement-restriction

	LUM matches the action value received from Acumos versus the action [https://www.w3.org/TR/odrl-model/#action] on the right-to-use [https://www.w3.org/TR/odrl-model/#rule]

	LUM verifies the usage count [https://www.w3.org/TR/odrl-vocab/#term-count] on the permission [https://www.w3.org/TR/odrl-model/#permission] for the specific action [https://www.w3.org/TR/odrl-model/#action]

usage constraints on permission [https://www.w3.org/TR/odrl-model/#permission]

	count [https://www.w3.org/TR/odrl-vocab/#term-count]

	sample

	comment

	action "acumos:download"

	{"action": "acumos:download",
 "constraint": [
 {"leftOperand": "count",
 "operator": "lteq",
 "rightOperand": {"@value": "25",
 "@type": "xsd:integer"}}]}

	download up to 25 times

	action "acumos:deploy"

	{"action": "acumos:deploy",
 "constraint": [
 {"leftOperand": "count",
 "operator": "lteq",
 "rightOperand": {"@value": "35",
 "@type": "xsd:integer"}}]}

	deploy up to 35 times

	action in ["transfer", "aggregate"]

	{"action": ["transfer", "aggregate"],
 "constraint": [
 {"leftOperand": "count",
 "operator": "lteq",
 "rightOperand": {"@value": "45",
 "@type": "xsd:integer"}}]}

	each action has a separate limit of 45

Note

please refer to Acumos Right to Use Actions
for the actual list of supported actions

Note

each action [https://www.w3.org/TR/odrl-model/#action] is treated separately from any other action [https://www.w3.org/TR/odrl-model/#action] and has its own usage count [https://www.w3.org/TR/odrl-vocab/#term-count] in metrics.

	
	LUM picks the first right-to-use [https://www.w3.org/TR/odrl-model/#rule] after ranking/sorting them by the following criteria

	
	most restrictive first by picking prohibition [https://www.w3.org/TR/odrl-model/#prohibition] before permission [https://www.w3.org/TR/odrl-model/#permission]

	most recent last by ordering by rtu.created timestamp - prefering to
pick older right-to-use [https://www.w3.org/TR/odrl-model/#rule] first

	LUM increments the usage count [https://www.w3.org/TR/odrl-vocab/#term-count] in the metrics per action [https://www.w3.org/TR/odrl-model/#action]

Technology and frameworks

	framework

	version

	link

	node.js

	12.18.1

	https://nodejs.org

	express.js

	4.17.1

	http://expressjs.com/

	node-postgres

	8.2.1

	https://node-postgres.com/

	openapi

	3.0.3

	https://swagger.io/specification/

	postgres database

	11.5

	https://www.postgresql.org/

Project resources

	LUM - Application Programming Interface (API)

	Gerrit repo [https://gerrit.acumos.org/r/gitweb?p=license-usage-manager.git;a=tree;h=refs/heads/master;hb=refs/heads/master]

	Jira [https://jira.acumos.org/browse/ACUMOS-3649]

	LF Jenkins jobs [https://jenkins.acumos.org/view/license-usage-manager/]

	LF Sonar reports [https://sonarcloud.io/dashboard?id=acumos_license-usage-manager]

back to LUM index

 License Usage Manager (LUM)

License Usage Manager (LUM)

	License Usage Manager (LUM) - Overview
	Overview

	Integration and interaction of LUM-server with Acumos and RTU-editor

	LUM assumptions and functions

	LUM - Application Programming Interface (API)
	If lum-server is not installed

	If lum-server is installed and running

	LUM - Developer Guide
	Data model and high-level flow

	Technology and frameworks

	Project resources

	LUM - Installation Guide
	Overview

	Prerequisites

	Preparing for Installation

	Installation

	Verifying the Installation

	Optional Post Installation Configuration

	Upgrading From a Previous Release

	Uninstalling

	LUM - Release Notes
	Version 1.4.0, 30 June 2020

	Version 1.3.4, 23 April 2020

	Version 1.3.3, 21 April 2020

	Version 1.3.2, 17 April 2020

	Version 1.3.1, 10 April 2020

	Version 1.3.0, 3 April 2020

	Version 1.2.0, 23 March 2020

	Version 1.1.0, 16 March 2020

	Version 1.0.0, 7 February 2020

	Version 0.28.2, 13 January 2020

	Version 0.28.1, 24 October 2019

	Version 0.28.0, 23 October 2019

	Version 0.27.2, 21 October 2019

	Version 0.27.1, 17 October 2019

	Version 0.27.0, 11 October 2019

	Version 0.26.5, 9 October 2019

	Version 0.26.4, 7 October 2019

	Version 0.26.3, 1 October 2019

	Version 0.26.2, 30 September 2019

	Version 0.25.2, 13 September 2019

	Version 0.23.1, 11 September 2019

	Version 0.23.0, 09 September 2019

	Version 0.20.0, 29 August 2019

LUM clients

LMCL

	Search Page

 LUM - Installation Guide

LUM - Installation Guide

Overview

License Usage Manager (LUM) is a standalone micro-service (lum-server)
with its own database (lum-database).

	The birds-view of the licensing process in Acumos contains the high level overview on the integration of the lum-server with Acumos.

	Technology and frameworks contains the details on the technologies used by the LUM services

Both lum-server and lum-database are dockerized and
should be deployed as docker containers.

docker images are stored in nexus repo at acumos.org

	lum-server image [https://nexus3.acumos.org/#browse/browse:docker.release:v2%2Facumos%2Flum-server%2Ftags]

	lum-database image [https://nexus3.acumos.org/#browse/browse:docker.public:v2%2Facumos%2Flum-db%2Ftags]

lum-server container

	exposes port 2080 for json based communication over http

	provides swagger-ui at the path of /ui/openapi.
See LUM - Application Programming Interface (API)

	can be preconfigured at startup to connect to the non-default lum-database container
through providing etc/config.json mounted as volume and/or by providing
environment variables like $DATABASE_PASSWORD

	is expected to be hidden behind the firewall and should not be exposed
to a non-authorized access

lum-database container

	is a Postgres [https://www.postgresql.org/] database with the schema
dedicated to LUM

	exposes the standard Postgres [https://www.postgresql.org/] port 5432

	expects the internal folder /var/lib/postgresql/data
to be mounted to a dedicated docker volume [https://docs.docker.com/engine/reference/commandline/volume_create/] for persisting of the database data

	is expected to be hidden behind the firewall and should not be exposed
to a non-authorized access

Note

Any technology that is based on docker [https://www.docker.com/] can be used to deploy the LUM services.

In this guide the instructions for docker-compose [https://docs.docker.com/compose/] are provided.

Prerequisites

Hardware and Software Requirements

	Either one or two Linux based virtual machine(s) with running docker-engine [https://docs.docker.com/get-started/overview/#docker-engine]

	Ideally, the lum-database should be installed on a dedicated vm with
dedicated reliable and high-performance docker volume [https://docs.docker.com/engine/reference/commandline/volume_create/] for data storage

Preparing for Installation

Populate the docker-compose.yml

	pick the latest or specific version for LUM

	find the version in the repo of lum-server image [https://nexus3.acumos.org/#browse/browse:docker.release:v2%2Facumos%2Flum-server%2Ftags] and lum-database image [https://nexus3.acumos.org/#browse/browse:docker.public:v2%2Facumos%2Flum-db%2Ftags]

	for these instructions let’s assume we selected the version 1.3.1

services:
 lum-database:
 image: nexus3.acumos.org:10004/acumos/lum-db:1.3.1
 lum-server:
 image: nexus3.acumos.org:10004/acumos/lum-server:1.3.1
 depends_on:
 - lum-database

	decide on and map the external port to the exposed port 2080 on lum-server

	for these instructions let’s assume lum-server maps to external port 8600

lum-server:
 ...
 ports:
 - "8600:2080"

	mount the volumes

	letting lum-database to persist its database data to the precreated
docker volume [https://docs.docker.com/engine/reference/commandline/volume_create/] lum-data-volume on the hosting virtual machine

	letting lum-server to write the log file log-acu/lum-server/lum-server.log
into precreated docker volume [https://docs.docker.com/engine/reference/commandline/volume_create/] cognita-logs for ELK on Acumos platform

services:
 lum-database:
 ...
 volumes:
 - lum-data-volume:/var/lib/postgresql/data

 lum-server:
 ...
 volumes:
 - cognita-logs:/opt/app/lum/log-acu

volumes:
 lum-data-volume:
 external: true
 cognita-logs:
 external: true

	configure lum-server clients to find it at the selected port 8600

	assuming lum-server runs at that external port 8600

	assuming acumos-portal-be finds lum-server through the docker-compose [https://docs.docker.com/compose/]
network

acumos-portal-be:
 environment:
 SPRING_APPLICATION_JSON: '{
 ...
 "lum": {"url" : "http://lum-server:8600"},
 ...
 }'

The resulting subset of docker-compose.yml that is related to LUM

version: "3.4"
services:
 lum-database:
 image: nexus3.acumos.org:10004/acumos/lum-db:1.3.1
 ports:
 - "5432:5432"
 volumes:
 - lum-data-volume:/var/lib/postgresql/data
 restart: always

 lum-server:
 image: nexus3.acumos.org:10004/acumos/lum-server:1.3.1
 depends_on:
 - lum-database
 ports:
 - "8600:2080"
 volumes:
 - cognita-logs:/opt/app/lum/log-acu
 restart: always

 acumos-portal-be:
 environment:
 SPRING_APPLICATION_JSON: '{
 ...
 "lum": {"url" : "http://lum-server:8600"},
 ...
 }'

volumes:
 lum-data-volume:
 external: true
 cognita-logs:
 external: true

Additional configuration options

Advanced configuration of lum-database

It is possibe to change the configuration of lum-database by providing
specific Postgres environment variables [https://github.com/docker-library/docs/tree/master/postgres/#environment-variables] in docker-compose.yml. For instance,

services:
 lum-database:
 ...
 environment:
 POSTGRES_USER: ${LUM_POSTGRES_USER}
 POSTGRES_PASSWORD: ${LUM_POSTGRES_PASSWORD}

Configuring the lum-server by etc/config.json file

lum-server reads the /opt/app/lum/etc/config.json file at startup
as the source for the initial configuration.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	{
 "lumServer": {
 "database": {
 "user": "lumdb",
 "password": "lumdb",
 "host": "lum-database",
 "database": "lumdb",
 "port": 5432,
 "max": 100,
 "idleTimeoutMillis": 30000
 },
 "serverName": "lum-server",
 "maxTxRetryCount": 10,
 "logging": {
 "logLevel": "info",
 "logTo": {
 "console": true,
 "devLog": false,
 "healthcheck": false,
 "acumos": true
 }
 }
 }
}

Field definition for etc/config.json file

	field

	required

	description

	{"lumServer": {}}

	required

	top level

	{"lumServer": {
 "database": {}}}

	required

	configuration of the database client

	{"lumServer": {"database": {
 "user": "lumdb"}}}

	required

	database user must be lumdb to match the owner of the schema
in lum-database

	{"lumServer": {"database": {
 "password": "lumdb"}}}

	optional

	database user password. When not provided, must be overriden
by the environment variable DATABASE_PASSWORD

	{"lumServer": {"database": {
 "host": "lum-database"}}}

	required

	hostname of the database

	{"lumServer": {"database": {
 "port": 5432}}}

	required

	port of the database

	{"lumServer": {"database": {
 "max": 100}}}

	optional

	maximum number of clients the pool of connections to
the database should contain. By default this is set to 10

	{"lumServer": {"database": {
 "idleTimeoutMillis": 30000}}}

	optional

	number of milliseconds a client must sit idle in the pool and not be checked out
before it is disconnected from the backend and discarded.
Default is 10000 (10 seconds) - set to 0 to disable auto-disconnection of idle clients

	{"lumServer": {
 "serverName": "lum-server"}}

	optional

	the name of the lum-server to be used in logging and healthcheck.
Defaults to lum-server

	{"lumServer": {
 "maxTxRetryCount": 10}}

	optional

	number of times the lum-server will retry to connect to the database or
retry the dead-locked transaction. Defaults to 20

	{"lumServer": {
 "logging": {}}}

	optional

	configure logging

	{"lumServer": {"logging": {
 "logLevel": "debug"}}}

	optional

	log level in LUM server. enum: (error, warn, info, debug). Defaults to “info”

	{"lumServer": {"logging": {
 "logTo": {}}}}

	optional

	collection of loggers to turn off or on in LUM server

	{"lumServer":
 {"logging": {"logTo": {
 "console": true}}}}

	optional

	logging the dev info to console. Defaults to true

	{"lumServer":
 {"logging": {"logTo": {
 "devLog": true}}}}

	optional

	whether to log the dev info into file logs/dev_lum-server.log
in LUM’s internal format.
Defaults to false.
When a non empty environment variable $LOGDIR is provided, defaults to true.

	{"lumServer":
 {"logging": {"logTo": {
 "healthcheck": true}}}}

	optional

	whether to log healthcheck into file logs/healthcheck_lum-server.log.
Defaults to false.
When a non empty environment variable $LOGDIR is provided, defaults to true.

	{"lumServer":
 {"logging": {"logTo": {
 "acumos": true}}}}

	optional

	whether to log info in Acumos specific format (json)
to file log-acu/lum-server/lum-server.log.
Defaults to true.

Overriding the etc/config.json file in lum-server container

When required, the default internal file etc/config.json can be substituted
in the lum-server container through the docker volume mounting [https://docs.docker.com/compose/compose-file/#volumes] mechanism.

For instance, the local read-only file ../config/lum-config.json from the
hosting virtual machine is used by lum-server instead of the default internal
file /opt/app/lum/etc/config.json

services:
 lum-server:
 ...
 volumes:
 ...
 - ../config/lum-config.json:/opt/app/lum/etc/config.json:ro

Changing the lumdb user password in lum-server

In case the password of the schema owner lumdb has changed from the default value,
the new value ${LUMDB_PASSWORD} can be provided to lum-server
through environment variable DATABASE_PASSWORD.
The environment variable DATABASE_PASSWORD will override the value of
lumServer.database.password field taken from etc/config.json file.

services:
 lum-server:
 ...
 environment:
 DATABASE_PASSWORD: ${LUMDB_PASSWORD}

Note

currently, the initdb scripts do not provide the automated
way to change the password for lumdb user in lum-database

Installation

Use the docker-compose [https://docs.docker.com/compose/] up command from the folder that contains docker-compose.yml

docker-compose up -d

Verifying the Installation

Tip

Assuming that the hostname of the virtual machine is my-acumos-vm.mycompany.com
and that the lum-server runs at that external port 8600

get the healthcheck of the lum-server

curl -X GET "http://my-acumos-vm.mycompany.com:8600/"

The sample healthcheck response

{
 "requestId": "10fff4f5-f731-4ccc-8ed7-58397741a418",
 "requested": "2020-04-23T17:23:56.584Z",
 "healthcheck": {
 "serverName": "lum-server",
 "serverVersion": "1.3.3",
 "apiVersion": "1.3.3",
 "nodeVersion": "12.18.0",
 "databaseInfo": {
 "pgVersion": "PostgreSQL 11.5 on x86_64-pc-linux-musl, compiled by gcc (Alpine 8.3.0) 8.3.0, 64-bit",
 "databaseVersion": "0.28.2",
 "schemaCreated": "2020-01-09T17:12:31.791Z",
 "schemaModified": "2020-01-09T17:12:31.791Z",
 "databaseStarted": "2020-03-02T15:27:31.590Z",
 "databaseUptime": "52 days 01:56:24.999634",
 "checked": "2020-04-23T17:23:56.589Z"
 },
 "serverRunInstanceId": "d3c8d742-4402-4384-aebf-d4d04fe1b6bc",
 "serverStarted": "2020-04-21T18:53:14.137Z",
 "serverUptime": "1 day 22:30:42.481911",
 "pathToOpenapiUi": "/ui/openapi"
 }
}

Optional Post Installation Configuration

Tip

Assuming that the hostname of the virtual machine is my-acumos-vm.mycompany.com
and that the lum-server runs at that external port 8600

Get current config of the lum-server

curl -X GET "http://my-acumos-vm.mycompany.com:8600/admin/config"

The sample GET /admin/config response

{
 "requestId": "37f61860-be03-4bef-a53d-32f51f82fb29",
 "requested": "2020-04-23T16:36:22.536Z",
 "config": {
 "database": {
 "user": "lumdb",
 "password": "hmac(8e97a9ac003fccfd332b)",
 "host": "lum-database",
 "database": "lumdb",
 "port": 5432,
 "max": 100,
 "idleTimeoutMillis": 30000
 },
 "serverName": "lum-server",
 "maxTxRetryCount": 10,
 "logging": {
 "logLevel": "info",
 "logTo": {
 "console": true,
 "devLog": "/opt/app/lum/logs/dev_lum-server.log",
 "healthcheck": "/opt/app/lum/logs/healthcheck_lum-server.log",
 "acumos": "/opt/app/lum/log-acu/lum-server/lum-server.log"
 }
 },
 "port": 2080
 }
}

Change the log level and log destination on the lum-server

The following request will change the log level to debug and
turn off logging of healthcheck

curl -X PUT "http://my-acumos-vm.mycompany.com:8600/admin/config" \
-H "accept: application/json; charset=utf-8" \
-H "Content-Type: application/json; charset=utf-8" \
-d "{\"config\":{\"logging\":{\"logLevel\":\"debug\", \
 \"logTo\":{\"healthcheck\":false,\"acumos\":true}}}}"

The sample PUT /admin/config response

{
 "requestId": "5f6efc69-bbad-4418-8ccd-f82501f0b278",
 "requested": "2020-04-23T17:33:23.800Z",
 "config": {
 "database": {
 "user": "lumdb",
 "password": "hmac(8e97a9ac003fccfd332b)",
 "host": "lum-database",
 "database": "lumdb",
 "port": 5432,
 "max": 100,
 "idleTimeoutMillis": 30000
 },
 "serverName": "lum-server",
 "maxTxRetryCount": 10,
 "logging": {
 "logLevel": "debug",
 "logTo": {
 "console": true,
 "devLog": "/opt/app/lum/logs/dev_lum-server.log",
 "healthcheck": false,
 "acumos": "/opt/app/lum/log-acu/lum-server/lum-server.log"
 }
 },
 "port": 2080
 }
}

Upgrading From a Previous Release

Note

The database schema of lum-database was not changed in Demeter release
in comparison to Clio release. This might not be the case in the future.

Uninstalling

Use the docker stop [https://docs.docker.com/engine/reference/commandline/stop/] or docker-compose [https://docs.docker.com/compose/] down and related commands to stop and remove
the containers and images and volumes.

Danger

Only if you do not need the database data anymore -
then manually remove the files from precreated volumes like lum-data-volume
by OS commands like rm -rf.

back to LUM index

 License Usage Manager (LUM) - Overview

License Usage Manager (LUM) - Overview

Overview

License Usage Manager (LUM) is a standalone micro-service with its own database.
LUM is intended for answering the question on whether the specific action on the software
asset is entitled for specific user.
From licensing point of view, the company that uses Acumos can either be the software licensor
(supplier) that produces the software (model) or the licensee (subscriber) that consumes the
software (model).

For LUM to answer the question on whether the user is entitled to perform an action on the software asset,
it needs to have the following information

	the software identifying tag information swidTag. The key to swidTag record is
swTagId that is the same as the revisionId in Acumos

	the indication on swidTag of whether the right-to-use [https://www.w3.org/TR/odrl-model/#rule] is required for asset usage
isRtuRequired that is found in the license profile of the software

	when isRtuRequired==true, LUM also needs to have the agreement [https://www.w3.org/TR/odrl-model/#policy-agreement] provided from supplier
to the subscriber that contains one or many right-to-use [https://www.w3.org/TR/odrl-model/#rule] items (permission [https://www.w3.org/TR/odrl-model/#permission] and/or
prohibition [https://www.w3.org/TR/odrl-model/#prohibition]) that target [https://www.w3.org/TR/odrl-model/#relation] the swidTag and limiting the user usage through
constraint [https://www.w3.org/TR/odrl-model/#constraint] on assignee [https://www.w3.org/TR/odrl-model/#function], limiting the time of usage through the enable-on constraint [https://www.w3.org/TR/odrl-model/#constraint]
and/or the expire-on constraint [https://www.w3.org/TR/odrl-model/#constraint], as well as limiting the usage count for each action [https://www.w3.org/TR/odrl-model/#action]
on the asset usage identified by assetUsageId

Integration and interaction of LUM-server with Acumos and RTU-editor

The birds-view of the licensing process in Acumos

[image: ../../../_images/lum-in-acumos.svg]

Description of the user licensing activities in Acumos and its busness supporting systems (BSS)

creator of the model onboards the model to Acumos on supplier side

	step

	action

	supplier or subscriber

	user role or component

	activity description

	c1

	onboard

	supplier

	creator

	model creator creates the model and globally identifies it with swidTag.
Optionally, the creator can also provide the license profile

	c2

	onboard

	supplier

	creator

	model creator onboards the model and swidTag into Acumos

publisher of the model publishes or federates the model from supplier to subscriber

	step

	action

	supplier or subscriber

	user role or component

	activity description

	p1

	prepare

	supplier

	publisher

	model publisher uses the license-profile-editor to fill out the license profile
and specify isRtuRequired

	p2 and p3

	publish or federate

	supplier

	publisher

	model publisher uploads the license profile into Acumos and initiates the publish or federate
action on the model

	p4

	publish or federate

	supplier

	LMCL inside Acumos-1

	registers the software in LUM-server-1 by sending swidTag and isRtuRequired

	p5, p6, p7

	publish or federate

	supplier

	Acumos-1

	sends the model, swidTag, and the license-profile with isRtuRequired to
Acumos-2 on supplier (licensee) side through the Acumos peer-to-peer tunnel

	p8

	publish or federate

	subscriber

	Acumos-2

	receives the model, swidTag, and the license-profile with isRtuRequired

	p9

	publish or federate

	subscriber

	Acumos-2

	registers the software in LUM-server-2 by sending swidTag and isRtuRequired

user of the model requests to perform an action [https://www.w3.org/TR/odrl-model/#action] on the model

	step

	action

	supplier or subscriber

	user role or component

	activity description

	u1

	request

	subscriber

	user

	model user is trying to perform an action on the model in Acumos-2

	u2

	ask for entitlement

	subscriber

	LMCL inside Acumos-2

	asks LUM-server-2 whether the asset-usage with action [https://www.w3.org/TR/odrl-model/#action] is entitled
for the userId on assetUsageId with software identifier swTagId
(revisionId in Acumos)

	u2

	yes or no

	subscriber

	LUM-server-2

	LUM-server-2 answers with yes or no

	u2

	allow or error

	subscriber

	LMCL inside Acumos-2

	if the asset usage is not entitled, an error with denial(s) is shown to the user.
If the asset usage is entitled, LMCL
allows Acumos-2 to perform the action.

sales rep creates the agreement with right-to-use [https://www.w3.org/TR/odrl-model/#rule] on supplier side

	step

	action

	supplier or subscriber

	user role or component

	activity description

	s1

	open RTU-editor
in browser

	supplier

	sales rep

	open RTU-editor
web page from RTU-Editor-web-server-1

	s2

	open RTU-editor
in browser

	supplier

	sales rep

	open RTU-editor
web page is served by RTU-Editor-web-server-1

	s2

	RTU-editor
in browser

	supplier

	sales rep

	enter agreement with the right-to-use [https://www.w3.org/TR/odrl-model/#rule] into the
RTU-editor
web page

	s3

	download

	supplier

	sales rep

	download the agreement with the right-to-use [https://www.w3.org/TR/odrl-model/#rule] into the RTU-agreement.json file

	s4

	send

	supplier

	sales rep

	send the email with the attached RTU-agreement.json file to subscriber

RTU rep uploades the agreement with the right-to-use [https://www.w3.org/TR/odrl-model/#rule] into LUM

	step

	action

	supplier or subscriber

	user role or component

	activity description

	r1

	receive

	subscriber

	RTU rep

	receives the email with the attached RTU-agreement.json file from the supplier

	r2

	open RTU-editor
in browser

	subscriber

	RTU rep

	open RTU-editor
web page from RTU-Editor-web-server-2

	r3

	open RTU-editor
in browser

	subscriber

	RTU rep

	open RTU-editor
web page is served by RTU-Editor-web-server-2

	r4

	import

	subscriber

	RTU rep

	import the RTU-agreement.json into the
RTU-editor
web page

	r4

	verify

	subscriber

	RTU rep

	verify the agreement with the right-to-use [https://www.w3.org/TR/odrl-model/#rule] in the
RTU-editor
web page

	r5

	save

	subscriber

	RTU rep

	save the agreement with the right-to-use [https://www.w3.org/TR/odrl-model/#rule] into LUM-server-2

alternative: admin uploades the agreement with the right-to-use [https://www.w3.org/TR/odrl-model/#rule] into LUM

	step

	action

	supplier or subscriber

	user role or component

	activity description

	r1

	receive

	subscriber

	RTU rep

	receives the email with the attached RTU-agreement.json file from the supplier

	a1

	hand it to admin

	subscriber

	RTU rep + LUM admin

	RTU rep hands the RTU-agreement.json file to LUM admin

	a2

	http PUT through swagger-ui

	subscriber

	LUM admin

	LUM admin uploads the content of the RTU-agreement.json file into LUM-server-2
through swagger-ui on LUM-server-2. See LUM - Application Programming Interface (API)

LUM assumptions and functions

	LUM expects the software-management-system (Acumos) to globally identify
the software up to its unique version and provide the software-identifying
tag data (swidTag) along with the license-profile to LUM.
License-Manager-Client-Library (LMCL)
in Acumos is responsible for determining whether the swidTag requires the
right-to-use [https://www.w3.org/TR/odrl-model/#rule] or not. Open source software usually does not require the
right-to-use [https://www.w3.org/TR/odrl-model/#rule] from the licensor.

	LUM expects the software-management-system (License-management-client
in Acumos) to identify the software asset usage. In other words, it is Acumos’s
responsibility to differentiate between separate copies of the software and
come up with globally unique identifier for the asset-usage of that specific
copy of the software.

	Open Digital Rights Language (ODRL [https://www.w3.org/TR/odrl-model/])
is used for defining the agreement [https://www.w3.org/TR/odrl-model/#policy-agreement]/entitlement with multiple permission [https://www.w3.org/TR/odrl-model/#permission]
rules - rights-to-use that contain multiple constraint [https://www.w3.org/TR/odrl-model/#constraint]/limits.

Note

	LUM only implements a subset of ODRL [https://www.w3.org/TR/odrl-model/] features that include
agreement [https://www.w3.org/TR/odrl-model/#policy-agreement], permission [https://www.w3.org/TR/odrl-model/#permission], and prohibition [https://www.w3.org/TR/odrl-model/#prohibition].

	LUM does not support logical constraint [https://www.w3.org/TR/odrl-model/#constraint-logical] and some other features of ODRL [https://www.w3.org/TR/odrl-model/].
Please refer to LUM API for more details.

	However, LUM has its own set of additional values with the prefix lum:
and a special operator lum:in to find the match in a list of
rightOperand values.

	The ODRL [https://www.w3.org/TR/odrl-model/] based agreement [https://www.w3.org/TR/odrl-model/#policy-agreement] between the software licensor (supplier)
and software licensee (subscriber) that contains one or more permission [https://www.w3.org/TR/odrl-model/#permission]
and/or prohibition [https://www.w3.org/TR/odrl-model/#prohibition] is expected to be uploaded to LUM through admin API.

	On request for entitlement of the asset-usage, LUM goes through the
following sequence

	finds swidTag with the license-profile in LUM database

	identifies whether the swidTag requires the right-to-use [https://www.w3.org/TR/odrl-model/#rule] or not

	if the right-to-use [https://www.w3.org/TR/odrl-model/#rule] is required, LUM finds the matching right-to-use [https://www.w3.org/TR/odrl-model/#rule]
(prohibition [https://www.w3.org/TR/odrl-model/#prohibition] or permission [https://www.w3.org/TR/odrl-model/#permission]) for the software and determines whether
the asset-usage is entitled or not based on the constraint [https://www.w3.org/TR/odrl-model/#constraint]

back to LUM index

 LUM - Release Notes

LUM - Release Notes

Version 1.4.0, 30 June 2020

lum-server

	fixed SQL Error [22023]: ERROR: cannot cast jsonb null to type integer
for invalid rightOperand that occurs when data type that is provided
on permission constraint does not match the expectation by leftOperand
in RTU agreement (ACUMOS-4194 [https://jira.acumos.org/browse/ACUMOS-4194])

	for instance, when count data @type is received as xsd:date

{"leftOperand": "count", "operator": "lt",
 "rightOperand": {"@value": "2099-01-01", "@type": "xsd:date"}}

	or date constraint received @type as xsd:integer

{"leftOperand": "date", "operator": "lt",
 "rightOperand": {"@value": "125", "@type": "xsd:integer"}}

	added deniedConstraintInvalid to denials to indicate that the constraint is invalid

	added Specification for denials on asset-usage with the description and examples of
denials generated by LUM for asset-usage requests
(ACUMOS-4230 [https://jira.acumos.org/browse/ACUMOS-4230])

	upgraded to node:12.18.1-alpine that is LTS now

	upgraded other dependencies

	cleanup of installation files

	removed $BUILD_DEVELOPMENT and nodemon from Dockerfile.
Dockerfile is used for building the production image only.

	docker-compose.yaml now has the explicit external volume for lum-database.
This file is not used for installation of lum-server and lum-database and is only
provided as an example. See LUM - Installation Guide for more info.

	docker-compose-dev.yaml has been discarded

	refactoring to resolve some of sonar smells

	logging and reporting the password values now shows the first 20 chars of hmac

	removed the unused scripts from package.json

	renamed .eslintrc.js to .eslintrc.json

	added a link to LUM docs into swagger spec

	openapi-ui

	now autodetects the server url - no need to select the server path
from the dropdown

	openapi-ui site title now shows that this is LUM with a bunch of info like this
License Usage Manager (LUM) API version 1.4.0 at localhost:2088

	new API GET /admin/recent-errors returns the last 20 exceptions on LUM server

	fix for properly converting the date fields to contain the datatype of date,
rather than datetime, in the snapshot record

	refactored the unit tests - added new unit tests to cover all possible denials and
the provided fixes

Version 1.3.4, 23 April 2020

docs

	updated docs with features of Demeter and more instructions
(ACUMOS-3939 [https://jira.acumos.org/browse/ACUMOS-3939])

	added LUM - Installation Guide

	updated LUM - Developer Guide

	updated LUM - Application Programming Interface (API)

	updated License Usage Manager (LUM) - Overview

lum-server

	etc/config.json: set logLevel to info and turned off logging to devLog and healthcheck

	tox.ini: added skipsdist = true that allowed to remove the empty setup.py

	minor refactoring

Version 1.3.3, 21 April 2020

lum-server

	fixed replacing the server version in package.json and package-lock.json (ACUMOS-4114 [https://jira.acumos.org/browse/ACUMOS-4114])

Version 1.3.2, 17 April 2020

lum-db, lum-server, lum-java-rest-client

	Refactored versioning to reduce the number of places needing changes
when the version number changes. The version number now appears only
in lum-java-rest-client/pom.xml (and in these release notes).
lum-server and lum-db now derive their version number from the client
pom.xml (ACUMOS-4114 [https://jira.acumos.org/browse/ACUMOS-4114])

	Added support for Sonar scanning of lum-server

	Made the version number configurable in the example helm and docker-compose
scripts.

Version 1.3.1, 10 April 2020

lum-server

	Enhanced lum-server logging for Acumos logging platform to match logging behavior
on other components (ACUMOS-4110 [https://jira.acumos.org/browse/ACUMOS-4110])

	LUM now writes the Acumos log to log-acu/lum-server/lum-server.log and precreates
the folder log-acu/lum-server/. The docker-compose should be able to do the volume mount as

volumes:
 - cognita-logs:/opt/app/lum/log-acu

The logging platform should be able to find the log file lum-server.log in
the subfolder lum-server/ on the cognita-logs volume

	implemented the file rolling for the log file to prevent it from growing forever.
Max file size is 100MiB, maxFiles: 20, zippedArchive: true

	unit test code coverage stats

Statements 81.24% 1711/2106
Branches 60.08% 584/972
Functions 94.63% 194/205
Lines 82.85% 1657/2000

Version 1.3.0, 3 April 2020

lum-server

	"lum:goodFor" constraint on ODRL permission
(ACUMOS-3734 [https://jira.acumos.org/browse/ACUMOS-3734])

	"lum:goodFor" is using formats ISO-8601 formats for duration [https://en.wikipedia.org/wiki/ISO_8601#Durations]

	in addition to ISO-8601 formats for duration [https://en.wikipedia.org/wiki/ISO_8601#Durations], when the value of the rightOperand
is a stringified number, LUM assumes that is the duration in days (default)

For instance, "30" is converted by LUM to "P30D" and is 30 days

{ "leftOperand": "lum:goodFor", "operator": "lteq",
 "rightOperand": "30" }

is the same as the following

{ "leftOperand": "lum:goodFor", "operator": "lteq",
 "rightOperand": "P30D" }

	ISO-8601 formats for duration [https://en.wikipedia.org/wiki/ISO_8601#Durations] always start with P and put T to separate
date from time - at least one number part is required, but any combination is ok:
PnYnMnDTnHnMnS, PnW

"P30D" = 30 days,
"P3Y6M4DT12H30M5S" = 3 years 6 mons 4 days 12:30:05,
"P123.5DT23H" = 123 days 35:00:00,
"P4.7Y" = 4 years 8 mons,
"P1.3M" = 1 mon 9 days,
"P1.55W" = 10 days 20:24:00,
"P0.5Y" = 6 mons,
"PT36H" = 36:00:00,
"P1YT5S" = 1 year 00:00:05

	added denialCode to denial that is a unique code for the reason of denial.
UI can use the denialCode value to construct the denial message from other parts of the denial
beside the denialReason.

	upgraded to openapi 3.0.3 [https://swagger.io/specification/] on API specification

	for unit-test runs

	option to turn off logging to console $LOG_CONSOLE_OFF=yes

	removed $COUT_LEVEL

	unit test code coverage stats

Statements 81.24% 1711/2106
Branches 60.08% 584/972
Functions 94.63% 194/205
Lines 82.85% 1657/2000

Version 1.2.0, 23 March 2020

lum-server

	added optional filtering by start and end date-time or date to
GET /api/v1/asset-usage-tracking/software-licensor
(ACUMOS-3630 [https://jira.acumos.org/browse/ACUMOS-3630])

	softwareLicensorId: <Company A>
// required identifier of the entity that issued the licenseProfile

	startDateTime: <2020-03-10T10:05:02.123Z>
// start date-time or date of the asset-usage request to filter the results by.
It is optional and the filtering is inclusive (startDateTime<=requested)

	endDateTime: <2020-03-20T15:26:38.033Z>
// end date-time or date of the asset-usage request to filter the results by.
It is optional and the filtering is inclusive (requested<=endDateTime).
When date is provided in the query, it is converted to
the maximal date-time of the same date in GMT time zone.
For instance, 2020-03-19 converted to 2020-03-19T23:59:59.999Z

	added unit test cases for the changed API

	upgraded to node:12.16.1-alpine that is LTS now

	made two docker compose configurations

	docker-compose.yaml for testing and production.
This config contains the volume mapping with comments on the usage

	docker-compose-dev.yaml for development with nodemon

	added Acumos logging to PUT /swid-tag-creators requests (ACUMOS-3175 [https://jira.acumos.org/browse/ACUMOS-3175], ACUMOS-3820 [https://jira.acumos.org/browse/ACUMOS-3820])

	enhanced the unit tests for the Acumos logging of release 1.1.0

	unit test code coverage stats

Statements 81.82% 1647/2013
Branches 59.78% 541/905
Functions 94.5% 189/200
Lines 83.28% 1594/1914

Version 1.1.0, 16 March 2020

lum-server

	logging PUT /asset-usage requests, PUT /asset-usage-event and PUT + DELETE /swid-tag
modifications into file /opt/app/lum/log-acu/lum-server.log for Acumos logging platform
to gather from (ACUMOS-3175 [https://jira.acumos.org/browse/ACUMOS-3175], ACUMOS-3820 [https://jira.acumos.org/browse/ACUMOS-3820])

	new API endpoint GET-PUT /admin/config to see the LUM-server config and allow the admin to

	change the logLevel

	turn on or off the selected file loggers for devLog, healthcheck, acumos

	hide secrets now uses sha256 has instead of * for passwords

	http status message on response is now populated with LUM values

	using X-ACUMOS-RequestID from headers if requestId is not provided in the request

	logging refactored

	moved some logging to debug level

	added unit test cases for the new API

	unit test code coverage stats

Statements 81.6% 1601/1962
Branches 58.98% 509/863
Functions 94.5% 189/200
Lines 83.03% 1546/1862

Version 1.0.1, 4 March 2020

lum-server

	fixed bug on GET /api/v1/swid-tags/available-entitlement
that was returning the false positives - the swidTags that require RTU but not having the agreement
(ACUMOS-4051 [https://jira.acumos.org/browse/ACUMOS-4051])

	unit test code coverage stats

Stmts 81.74 %
Branch 58.51 %
Funcs 93.62 %
Lines 83.2 %

Version 1.0.0, 7 February 2020

lum-server

	new API endpoint GET /api/v1/swid-tags/available-entitlement that returns the collection of
swidTag records with available-entitlement for the userId to perform the requested action at this moment.
(ACUMOS-3735 [https://jira.acumos.org/browse/ACUMOS-3735])

	This API GET /api/v1/swid-tags/available-entitlement does not increment the usage counters
since the asset is not used

	AcuCompose is expected to check on action=aggregate to get the entitlement
for the model to be included into composition by the current userId

	LUM does not expect AcuCompose to call PUT /api/v1/asset-usage API
to record the asset-usage since the model in catalog is not treated as the asset.
That also implies that there are no count limits on the number of inclusions in composition -
only the yes-no restriction

	new API endpoint GET /api/v1/swid-tags that returns the collection of active swidTag
records stored in LUM database.

	major refactoring of the logic behind PUT /api/v1/asset-usage and PUT /api/v1/asset-usage-event
that is related to the new API GET /api/v1/swid-tags/available-entitlement to avoid code duplication.
Moved most of denial reason detection into SQL, reduced the number of lum-server to database calls.

	API spec - cleanup and removed duplicates that are not used by LUM

	minor code refactoring

	unit test code coverage stats

Stmts 81.79 %
Branch 58.51 %
Funcs 93.62 %
Lines 83.2 %

	docs - added overview.rst and lum-in-acumos.svg to show the high level view on integration
of LUM-server with Acumos

Version 0.28.2, 13 January 2020

lum-server

	LUM-server unit-tests with code coverage of 80% (ACUMOS-3509 [https://jira.acumos.org/browse/ACUMOS-3509])

	all api endpoints are covered in sunny day scenarios

	unit tests are a part of Docker build process as a preliminary stage unit-test-stage

	fixed the broken call to PUT /api/v1/asset-usage-event that was not providing usage count per request

	fixed the sort of the merged arrays in expansion of prohibition constraint in ODRL grooming

	healthcheck: added schemaCreated and schemaModified timestamps into databaseInfo

	changed lum-architecture.svg image from png to svg in developer-guide.rst

	for unit-test runs - option to reduce logging to console to error level $COUT_LEVEL=error

	added debug level and the logger level to exclude debug

	minor code cleanup

	froze the versions in package.json

	code coverage stats

Stmts 81.02 %
Branch 58.38 %
Funcs 92.31 %
Lines 82.5 %

Version 0.28.1, 24 October 2019

lum-server

	LUM-server now returns a single denial reason for the expiration when the right-to-use expired instead
of two denials - one for non-active RTU (removed) and another one for expired (stays)
(ACUMOS-3636 [https://jira.acumos.org/browse/ACUMOS-3636])

	writing a single snapshot per asset-usage-agreement and/or asset-usage-agreement-restriction change
instead of two

Version 0.28.0, 23 October 2019

lum-server

	changed API and asset-usage-denial data that LUM returns (ACUMOS-3601 [https://jira.acumos.org/browse/ACUMOS-3601])

	assetUsageDenialSummary that is human readable summary for denial of the asset-usage
to be shown on UI

	unique denialReason values that contain all the keys and the constraint condition
from the denial in human readable format

	added assetUsageDenialSummary field to assetUsageHistory table in database

Version 0.27.2, 21 October 2019

lum-server

	LUM not to return denialType of the agreementNotFound when LUM returns other denials
as an indication of agreements that do not match
(ACUMOS-3598 [https://jira.acumos.org/browse/ACUMOS-3598])

	specific indication of permission versus prohibition in denialReason instead of generic rightToUse

Version 0.27.1, 17 October 2019

lum-server

	LUM open API spec change (for LUM Java Client) to correctly generate
types for AssetUsage (ACUMOS-3082 [https://jira.acumos.org/browse/ACUMOS-3082])

Version 0.27.0, 11 October 2019

lum-server

	API change - params are now passed in query instead of through path – per discussion in 0.26.4

	added softwareLicensorId as param in query on /api/v1/asset-usage-agreement
and /api/v1/asset-usage-agreement-restriction

	applying ODRL agreement-restriction provided by the subscriber company
over ODRL agreement from supplier-licensor company (ACUMOS-3222 [https://jira.acumos.org/browse/ACUMOS-3222])

	agreement APIs now return groomedAgreement for debugging

	healthcheck: added databaseInfo with databaseVersion (to compare versus LUM server version)
and databaseStarted+databaseUptime. Moved pgVersion under databaseInfo.

	fixed false positive reporting of denials on swCatalogId/Type mismatch even when
there is an intersection between swidTag and rightToUse target (ACUMOS-3506 [https://jira.acumos.org/browse/ACUMOS-3506])

	fixed-added populating the rightToUse and metrics data on assetUsageHistory table

	using operator from constrain to evaluate the constraint instead of deducting the operator from leftOperand.
Not fully flexible, but covers all use cases for Clio (ACUMOS-3507 [https://jira.acumos.org/browse/ACUMOS-3507])

	jsdoc

	logging healthcheck requests into a separate log file when LOGDIR is provided to uncongest the main log file

Version 0.26.5, 9 October 2019

	Open api changes to support fixes in LUM Java client - fixed typing of AssetUsageResponse and AssetUsageDenialAssetUsageDenial –
Java code gen has a problem with the same property referenced by multiple schemas .. treats it as object

	Object getAssetUsage() -> AssetUsageDenialOrEntitlement getAssetUsage()

	List<Object> getAssetUsageDenial() -> List<AssetUsageDenialAssetUsageDenial> getAssetUsageDenial()

	Removed wrapper schema for assetUsageDenial #/components/schemas/AssetUsageDenials

	Removed wrapper schemas for assetUsage property - for AssetUsageResponse schema

- $ref: '#/components/schemas/AssetUsageResponseBase'

- $ref: '#/components/schemas/AssetUsageMixedResponse'

- $ref: '#/components/schemas/IncludedAssetUsageMixedResponse'

Fix caused some overlap between AssetUsageResponseBase and AssetUsageMixedResponse.

Version 0.26.4, 7 October 2019

	LUM integration support (ACUMOS-3534 [https://jira.acumos.org/browse/ACUMOS-3534])
- Added new helm chart for lum + postgresql
- New environment variable DATABASE_PASSWORD to help seperate config from secret config
- Updated docker-compose - to handle debugging and skipping over production build steps
- Support integration with AIO / K8 / Helm chart behind nginx proxy

	Fixed issue with nginx-proxy decoding url causing issues with encoded url as path params
changed /api/v1/asset-usage-agreement/[encodedIRI]
to /api/v1/asset-usage-agreement/?assetUsageAgreementId=[encodedIRI]

	Added support for handling query param vs path param for assetUsageAgreementId

	Added server back into lum-server-API.yaml to help with serving from different
base path after adding nginx proxy

	Fixed docker-compose debugging and reloading after adding multi-stage build

	Added support for base url to be under /lum/ and support servers dropdown in swagger ui

	Bug in swagger lint - disabled rule server-trailing-slash – caused error for server /

Version 0.26.3, 1 October 2019

	Added support for nodemon support for faster reloads in docker container

	adding examples to make dredd apiary happy easier to test

	docker build change to use multi stage builds

	Include open api spec lint to docker build

	Clean up API for open api lint errors

	Update eslint

	Reserved variable name - package changed to pkg

	Adding .dockerignore to ensure node_modules are installed in docker not locally

Version 0.26.2, 30 September 2019

lum-server

	bringing ODRL (ACUMOS-3219 [https://jira.acumos.org/browse/ACUMOS-3219])
(ACUMOS-3060 [https://jira.acumos.org/browse/ACUMOS-3060])

	added openAPI spec for ODRL agreement, permission, prohibition, refinement on target,
assignee and constraints

	added a few examples to openAPI spec

	support for the ODRL variety of structures on the rightOperand and action

	the new concept of grooming the agreement and merging the constraints
keyed by leftOperand on the load of agreement instead of storing all
the constraints and applying all of them at the matching and usage
constraint evaluation steps

	LUM-server now finds the rightToUse under agreement for the swidTag
on the asset-usage, returns either the entitlement with keys of the assetUsageDenial
with the details of denial (ACUMOS-3040 [https://jira.acumos.org/browse/ACUMOS-3040])
(ACUMOS-3042 [https://jira.acumos.org/browse/ACUMOS-3042])

	LUM is using the “use” action that is equivalent to any action
as soon as we bring prohibition to agreement. LUM does not need to know all the
possible action values. The count constraint for action: “use” will be the total count
for any action value, rather than separate count per each action value.
LUM will apply either the constraint on specific action, or the constraint on “use”
when the specific action not found.

	LUM always resolves the conflict between prohibition and permission in favor of prohibition.
That is not be controlled by the ODRL conflict clause. No need for RTU editor to convert
the prohibition into permission with count = 0 constraint.

	new and changed values for denialType: swidTagNotFound, swidTagRevoked,
licenseProfileNotFound, licenseProfileRevoked, agreementNotFound,
rightToUseRevoked, usageProhibited, matchingConstraintOnAssignee,
matchingConstraintOnTarget, timingConstraint, usageConstraint

	added deniedMetrics to denials to report the current stats that caused the denial

	minimalistic validation of input data on agreement and permission/prohibition
to make sure they have the uid values on them. Otherwise, LUM-server returns
http status 400. More validation is due later

	reports show the latest denials based on ODRL agreement (ACUMOS-3229 [https://jira.acumos.org/browse/ACUMOS-3229])

	jsdoc - work in progress

lum-database

	including softwareLicensorId as partial PK on assetUsageAgreement, rightToUse,
snapshot tables

	storing groomedAgreement in assetUsageAgreement

	changed PK on rightToUse to uuid (assetUsageRuleId) - not trusting
rightToUseId received from outside LUM to be globally unique

	rightToUse now contains the groomed targetRefinement, assigneeRefinement,
usageConstraints and assigneeMetrics - dicts to easily find the
matching right-to-use for the swidTag

	removed the no longer needed tables swToRtu, matchingConstraint, usageConstraint

	that was possible due to the new concept of merging the constraints

	using SQL to find the matching rightToUse on the fly instead

	using JSON functionality of Postgres

	renamed table rtuUsage to usageMetrics

	storing LUM version into database table lumInfo

Version 0.25.2, 13 September 2019

lum-server

	added first denials (ACUMOS-3061 [https://jira.acumos.org/browse/ACUMOS-3061])

	return http status 402 for denied assetUsage

	refactored iteration over the assetUsages

	refactored SqlParams class

	node:10.16.3-alpine

	moved eslintrc into package.json as eslintConfig

	removed assetUsageDenial table from DDL - denials are stored in assetUsageHistory

	new denialType for licenseProfileNotFound

	renamed denialType for swidTagNotFound from swTagIdNotFound

	new denialType for revoked state of swidTag, licenseProfile

	new denialType for not active state of assetUsageAgreement

	unrestricted asset-usage flow for software creators (ACUMOS-3063 [https://jira.acumos.org/browse/ACUMOS-3063])

	added isUsedBySwCreator flag to assetUsage API and assetUsageHistory

	minor changes to API

	jsdoc - work in progress

Version 0.23.1, 11 September 2019

lum-java-client

	Fixed allOfWarnings - required changes to swagger

	bumped version to 0.23.1 for all components

	Removed user from lum-db setup

	Add support for development without docker

Version 0.23.0, 09 September 2019

local dev setup fixes

	Setup NodeJS server to work without docker for quicker debugging

	adding .gitignore to not include local folders / files that are only for development

first incarnation of the lum-server with basic functionality of API

	API for lum-server (ACUMOS-3342 [https://jira.acumos.org/browse/ACUMOS-3342])

	improved API definition

	openapi-ui on lum-server

	Posgres database initdb and setup (ACUMOS-3006 [https://jira.acumos.org/browse/ACUMOS-3006])

	defined DDL for the database

first iteration of APIs on lum-server

	basic CRUD on swid-tag combined with license-profile (ACUMOS-3035 [https://jira.acumos.org/browse/ACUMOS-3035])

	basic CRUD on software-creators (ACUMOS-3062 [https://jira.acumos.org/browse/ACUMOS-3062])

	basic CRUD on asset-usage-agreement and asset-usage-agreement-restriction (ACUMOS-3037 [https://jira.acumos.org/browse/ACUMOS-3037])

	entitlement on asset-usage as for FOSS that does not require RTU (ACUMOS-3038 [https://jira.acumos.org/browse/ACUMOS-3038])

	recording the asset-usage-event (ACUMOS-3044 [https://jira.acumos.org/browse/ACUMOS-3044])

	reporting asset-usage-tracking per software-licensor-id (ACUMOS-3230 [https://jira.acumos.org/browse/ACUMOS-3230])

	reporting the healthcheck (ACUMOS-3039 [https://jira.acumos.org/browse/ACUMOS-3039])

	using alpine versions for Postgres and node.js

	eslint clean with disabled require-atomic-updates

	run eslint in docker build

What is not done yet

	asset-usage-agreement and asset-usage-agreement-restriction are just objects

	no RTUs, no matching, no usage constraints

	no relation between the asset-usage-agreement and swid-tag

	no denials - everything is entitled so far

Version 0.20.0, 29 August 2019

defining LUM API in lum_server-API.yaml (ACUMOS-3342. [https://jira.acumos.org/browse/ACUMOS-3342/])

	fix for tracking

	not using oneOf that breaks the java code gen

	merged softwareCreators into swid-tag as swCreators [userId]

	using http code 204 with no body for record not found.
Header fields are returned for requestId, requested, status, params

	using http code 224 for record revoked

	req body for revoke-delete - should we use header instead ?

	healthcheck api

	removed userRole and userInfo

	asset-usage-agreement - better structure

	asset-usage-agreement-restriction - improvements

	asset-usage-event data

	having revision numbers on responses

back to LUM index

 http://www.apache.org/licenses/LICENSE-2.0

 #===============LICENSE_START===
#Acumos Apache-2.0
#===
#Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
#===
#This Acumos software file is distributed by AT&T and Tech Mahindra
#under the Apache License, Version 2.0 (the “License”);
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

#This file is distributed on an “AS IS” BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#===============LICENSE_END===

Acumos Azure Client

This repository holds the Acumos Azure feature, a Spring-Boot RESTful server.

Please see the documentation in the “docs” folder.

 Acumos Azure Client Developers Guide

Acumos Azure Client Developers Guide

1. Introduction

Microsoft Azure is a cloud computing service created by Microsoft for building, testing, deploying, and managing applications and services through a global network of Microsoft-managed data centers.

1.1 What is Azure Client?

Acumos provides deployment of model in Azure cloud :

	Deploy single solution from Acumos marketplace in Azure clould.

	Deploy composite solution from Acumos marketplace in Azure clould.

1.2 Target Users

This guide is targeted towards the open source user community that:

	Intends to understand the functionality of the Acumos Azure client.

1.3 Acumos Azure client - Flow Chart

[image: Azure client flow chart]

1.5 Acumos Azure client Flow Structure:

Page Name: Model/Solution Landing Page

	Clicking on <Deploy to Cloud> for Deploy model .

	<Deploy to Cloud> should prompt details about MS Azure (Inputs
TBD),Rackspace etc..

	Select <Microsoft Azure> from Drop down and fill all details for Deployment.

2. Model Deployment

[image: ../../../_images/AzureDetails.jpg]

	Application ID The ID for application during registrations in Azure Active Directory

	TenantID The ID of the AAD (Azure Active Directory) in which application is created

	Secret key Client Secret key for a web application registered with Azure Active Directory

	Subscription Key Subscription grants access to Azure services and to the Azure Platform Management Portal

	Resource Group Resource groups provide a way to monitor, control access, provision and manage billing for collections of assets that are required to run an application, or used by a client or company department

	Acr Name Same as ApplicationID

	Storage Account An Azure storage account provides a unique namespace to store and access Azure Storage data objects. All objects in a storage account are billed together as a group

Steps

	Acumos Marketplace: Users can go marketplace and discover models by browsing, direct search, or by applying any of a number of filter criteria to explore the marketplace. Models are presented on the Marketplace as “tiles”, showing the Name, image, ratings and usage statistics.

	Azure client: User can deploy model in azure cloud if Deploy to cloud button is enable in model detail page. User select Microsoft azure to deploy model in azure cloud. Acumos have two type of model to deploy azure cloud.

	User can fill azure authentication detail and deploy simple solution in azure cloud.

	Composite model is combination of more than one solutions. Model connector also deploy with composite models. Model connector is use for communication between models in virtual machine.

	User can set databroker details with composite mode. Databroker image is available in composite solution then it will also deploy with composite solution.

	Azure client send notification to user after deploying composite solution. Notification have endpoint of model connector and databroker.

	Composite solution endpoint’s also save in database. User can check with UUID number.

API

2.1 Azure Single Image Deployment

- Trigger

This API is used to deploy single solution in Azure cloud.
Check with your Cloud Administrator for values to populate the request.

- Request

{
“acrName”: “<acr name>”,

“client”: “<client ID>”,

“imagetag”: “<image tag>”,

“key”: “<key>”,

“rgName”: “<rg name>”,

“solutionId”: “<your model solution id>”,

“solutionRevisionId”: “<your model solution revision id>”,

“storageAccount”: “<storage account name>”,

“subscriptionKey”: “<your subscription key>”,

“tenant”: “<your tenant ID>”,

“userId”: “<your user ID>”

}

- Response

{
“status”: “SUCCESS”,
“UIDNumber”: “Unique Transaction Number”
}

2.2 Azure Composite Solution

- Trigger:

This API is used to deploy Composite solution in Azure cloud.
Check with your Cloud Administrator for values to populate the request.

- Request:

{
“acrName”: “<acr name>”,

“client”: “<client ID>”,

“jsonMapping”: “testMapping”,

“jsonPosition”: “testPosition”,

“key”: “<key>”,

“rgName”: “<rg name>”,

“solutionId”: “<your model solution id>”,

“solutionRevisionId”: “<your model solution revision id>”,

“storageAccount”: “<storage account name>”,

“subscriptionKey”: “<your subscription key>”,

“tenant”: “<your tenant ID>”,

“urlAttribute”: “testUrl”,

“userId”: “<your user ID>”
}

- Response:

{
“status”: “SUCCESS”,
“UIDNumber”: “Unique Transaction Number”
}

 Acumos Azure Client

Acumos Azure Client

	Azure Client Release Notes
	Version 3.0.5, 31 January 2020

	Version 3.0.4, 30 December 2019

	Version 3.0.3, 11 December 2019

	Version 3.0.2, 18 October 2019

	Version 3.0.0, 19 September 2019

	Version 2.0.15, 17 May 2019

	Version 2.0.14, 3 May 2019

	Version 2.0.13, 18 April 2019

	Version 2.0.12, 28 March 2019

	Version 2.0.8, 1 March 2019

	Version 2.0.7, 15 February 2019

	Version 2.0.5, 4 February 2019

	Version 2.0.0, 28 January 2019

	Version 1.2.22, 4 October 2018

	Version 1.2.21, 20 September 2018

	Version 1.2.20, 17 September 2018

	Version 1.2.18, 12 September 2018

	Version 1.2.17, 6 September 2018

	Version 1.2.16, 27 August 2018

	Version 1.2.15, 16 August 2018

	Version 1.2.14, 9 August 2018

	Version 1.2.12, 3 August 2018

	Version 1.2.11, 30 July 2018

	Version 1.2.10, 20 July 2018

	Version 1.2.9, July 7 th 2018

	Version 1.2.8, July 3 rd 2018

	Version 1.2.4, May 24 th 2018

	Version 1.96.0, May 2018

	Acumos Azure Client Developers Guide
	1. Introduction

	2. Model Deployment

	API

 Azure Client Release Notes

Azure Client Release Notes

Version 3.0.5, 31 January 2020

	update acumos-azure-client, openstack-client,kubernetis-client and deployment-client for cds 3.1.1(ACUMOS-3957 [https://jira.acumos.org/browse/ACUMOS-3957])

Version 3.0.4, 30 December 2019

	update logging-demo-3.0.5 for Azure-client (ACUMOS-3880 [https://jira.acumos.org/browse/ACUMOS-3880])

Version 3.0.3, 11 December 2019

	update CDS 3.1.0 for Azure-client (ACUMOS-3835 [https://jira.acumos.org/browse/ACUMOS-3835])

Version 3.0.2, 18 October 2019

	IST2 | Deploy to Azure | On click Deploy button application taking user out of the application(ACUMOS-3018 [https://jira.acumos.org/browse/ACUMOS-3018])

Version 3.0.0, 19 September 2019

	update CDS 3.0.0 for Azure-client (ACUMOS-3448 [https://jira.acumos.org/browse/ACUMOS-3448])

Version 2.0.15, 17 May 2019

	Deploy to Azure on IST showing Error in vm creation (ACUMOS-2907 [https://jira.acumos.org/browse/ACUMOS-2907])

Version 2.0.14, 3 May 2019

	Use docker base image openjdk:8-jre-slim (ACUMOS-2542 [https://jira.acumos.org/browse/ACUMOS-2542])

	Upgrade to CDS 2.2.2

	Upgrade to Spring-Boot 2.1.4.RELEASE

Version 2.0.13, 18 April 2019

	update CDS 2.2.1 for Azure-client (ACUMOS-2767 [https://jira.acumos.org/browse/ACUMOS-2767])

	Azure deployer signals no error when it fails to deploy all requested models(ACUMOS-1413 [https://jira.acumos.org/browse/ACUMOS-1413])

Version 2.0.12, 28 March 2019

	Logging Standardization (ACUMOS-2330 [https://jira.acumos.org/browse/ACUMOS-2330])

	Increase Sonar coverage to at least 40% (ACUMOS-2367 [https://jira.acumos.org/browse/ACUMOS-2367])

	update CDS 2.1.2 for Azure-client (ACUMOS-2669 [https://jira.acumos.org/browse/ACUMOS-2669])

Version 2.0.8, 1 March 2019

	update CDS 2.1.1 for Azure-client (ACUMOS-2589 [https://jira.acumos.org/browse/ACUMOS-2589])

Version 2.0.7, 15 February 2019

	update CDS 2.0.7 for Azure-client (ACUMOS-2528 [https://jira.acumos.org/browse/ACUMOS-2528])

Version 2.0.5, 4 February 2019

	IST2: Deploy to Azure : Message Improvements(ACUMOS-863 [https://jira.acumos.org/browse/ACUMOS-863])

Version 2.0.0, 28 January 2019

	Model Deployment in existing Vm in (ACUMOS-2254 [https://jira.acumos.org/browse/ACUMOS-2254])

	Deploy solution in Azure VM with K8s (ACUMOS-2257 [https://jira.acumos.org/browse/ACUMOS-2257])

	Azure deployer must accept user-specified username and password for VM (ACUMOS-1351 [https://jira.acumos.org/browse/ACUMOS-1351])

	Setup a cleanup script weekly to delete all VMs (ACUMOS-2132 [https://jira.acumos.org/browse/ACUMOS-2132])

	update CDS 2.0.4 for Azure-client (ACUMOS-2412 [https://jira.acumos.org/browse/ACUMOS-2412])

Version 1.2.22, 4 October 2018

	update CDS 1.18.2 for Azure-client (ACUMOS-1820 [https://jira.acumos.org/browse/ACUMOS-1820])

Version 1.2.21, 20 September 2018

	Upgrade Spring-Boot version (ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754])

	Upgrade Springfox version

Version 1.2.20, 17 September 2018

	Azure-client logs not written to location same as others (ACUMOS-1635 [https://jira.acumos.org/browse/ACUMOS-1635])

Version 1.2.18, 12 September 2018

	Set path for Log in azure project

	Upgrade to Spring-Boot 1.5.15

	Upgrade to CDS 1.18.1

Version 1.2.17, 6 September 2018

	CDS 1.18.0 Upgrade

Version 1.2.16, 27 August 2018

	Revise service logging so Azure credentials are not exposed (ACUMOS-1636 [https://jira.acumos.org/browse/ACUMOS-1636])

Version 1.2.15, 16 August 2018

	Unable to deploy model and composite solution to azure (ACUMOS-1539 [https://jira.acumos.org/browse/ACUMOS-1539])

	CDS 1.17.1 Upgrade

Version 1.2.14, 9 August 2018

	CDS 1.16.1 Upgrade

Version 1.2.12, 3 August 2018

	code issues remove for azure client

Version 1.2.11, 30 July 2018

	CDS 1.16.0 Upgrade

Version 1.2.10, 20 July 2018

	CDS 1.15.4 Upgrade

Version 1.2.9, July 7 th 2018

	CDS 1.15.3 Upgrade and Library fixes (ACUMOS-659 [https://jira.acumos.org/browse/ACUMOS-659])

Version 1.2.8, July 3 rd 2018

	Fix the issues with Blueprint and Probe end points required for Model Connector (ACUMOS-659 [https://jira.acumos.org/browse/ACUMOS-659])

Version 1.2.4, May 24 th 2018

	Enable log level in the azure-client component from Docker (ACUMOS-921 [https://jira.acumos.org/browse/ACUMOS-921])

Version 1.96.0, May 2018

	Success/ Failure message is not displaying on the UI after VM created or timeout (ACUMOS-676 [https://jira.acumos.org/browse/ACUMOS-676])

	acumos-azure-client contains cognita-specific code (ACUMOS-689 [https://jira.acumos.org/browse/ACUMOS-689])

 Acumos Security Verification

Acumos Security Verification

Please see the documentation in the “docs” folder.

 Developer Guide for the Security Verification (SV) Client

Developer Guide for the Security Verification (SV) Client

This library provides a client for using the Security Verification Service in
the Acumos machine-learning platform. It depends on many Spring libraries. This
document offers guidance for both client developers and client users
(developers who want to use the client in their Java projects).

Maven Dependency

The client jar is deployed to these Nexus repositories at the Linux Foundation:

<repository>
 <id>snapshots</id>
 <url>https://nexus.acumos.org/content/repositories/snapshots</url>
</repository>
<repository>
 <id>releases</id>
 <url>https://nexus.acumos.org/content/repositories/releases</url>
</repository>

Use this dependency information, ideally with the latest version number shown
in the release notes:

<dependency>
 <groupId>org.acumos.security-verification</groupId>
 <artifactId>security-verification-client</artifactId>
 <version>x.x.x</version>
</dependency>

Building and Packaging

As of this writing the build (continuous integration) process is fully automated
in the Linux Foundation system using Gerrit and Jenkins. This section describes
how to perform local builds for development and testing.

Prerequisites

The build and test machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central to download required jars

Use maven to build and package the client jar using this command:

mvn package

 Acumos Security-Verification Design Specification

Acumos Security-Verification Design Specification

This document describes the design for the Acumos platform Security-Verification
component and related capabilities. This component will be delivered in the
Boreas release.

Scope

The Security-Verification component (referred to here as SV) addresses the
following goals of the Acumos project, as outlined by the
Acumos TSC Security Committee [https://wiki.acumos.org/display/SEC]:

	models and related metadata that are contributed to an Acumos platform and
distributed through a federated ecosystem of Acumos platforms must be
verified to the extent possible, as

	contributed under clear and compatible licenses

	free from security vulnerabilities

This in turn is based upon the
bylaws of the Acumos project [https://www.acumos.org/wp-content/uploads/sites/61/2018/03/charter_acumos_mar2018.pdf]
which include the following responsibilities as described in section 2.i.vii

vii. establishing: (1) a vetting process for maintaining security and integrity of
new and/or changed code and documentation, including vetting for
malicious code and spyware and (2) a security issue reporting policy and
resolution procedure;

The above bylaws apply to both the Acumos platform code and the federated
ecosystem of Acumos platform instances and models (referred to also as
“solutions” here) distributed through them. This document addresses the
Acumos project support for the latter goal.

Note that for license scanning, the SV service is focused on the presence and
appropriateness of model license, as they related to the policies of the
Acumos platform operator. The SV service is not specifically designed to verify
other potential “licensing” concerns, such as the RTU (right to use) of the user
for a model, as would be governed by a license contract between a model supplier
and model user. Those concerns go beyond the verification of a license as
provided by the model supplier, as a simple expression of the terms under which
that model is made available to users. The two purposes may share common
concepts and controls as provided by the Acumos platform, but this design only
addresses the former concern.

The SV service will be scoped to address the essential concerns that we have
the resources and technology to address in an open source context. Beyond that,
Acumos community policies and offline practices will need to address the rest.
Following is a short list of some potential concerns, not all of which may be
considered of essential focus for machine-learning models which are collaborated
upon and distributed through a federated ecosystem such as Acumos. Acumos
community discussions will be used to determine which concerns we should put
in scope for implementation.

	Vulnerabilities in solutions and metadata distributed with those solutions
including real/demo applications of the solutions, test data, documentation,
etc. Such vulnerabilities can range across the following example set of risk
categories, which can be viewed as “soft risks” (things which can be used by
bad actors to increase risks) and “hard risks” (things which represent overt
malicious risks, when embedded in the solutions and metadata):

	soft risks, such as bad coding/documentation practices, e.g.

	incluson of sensitive personal information (SPI) about real individuals,
assumed to be a risk mostly in test data

	inclusion of real system addresses or API URLs, along with credentials
providing access to those systems/APIs

	unprotected, potentially sensitive APIs

	code quality issues that can result in unreliable behavior or create
attack opportunities

	hard risks, such as

	malicious or compromised design in software components, either overt or
inadvertent (e.g. by compromised/malicious code reuse, or importation),
enabling e.g.

	host system hacking

	intrusion behavior, e.g. host/port probing

	network behavior outside expected norms (e.g. for models, network
behavior other than serving protobuf interfaces)

	DDOS/botnets

	creation of backdoors

	known threats, e.g. viruses, trojans, etc as embedded in binaries,
documents, rich media, etc

	Unclear, incomplete, incorrect, or incompatible licenses and/or copyright
attribution

	soft risks

	lack of trust, inhibiting adoption of the solutions

	perpetuating bad licensing/attribution practices

	hard risks

	unclear liabilities, e.g. due to

	inclusion of undisclosed, GPL-family licensed code or other licenses
with specific use-limitations or reservations

	failure to properly license or attribute included solution software, or
metadata (e.g. source code, documentation, test data, rich media, etc)

Implementation Approach Considerations

Given the importance of managing risks such as above, the key question is how
that capability needs to, or can be, implemented. This design assumes that the
goal of the SV component of the Acumos platform is to provide a comprehensive,
as-much-automated-as-possible, platform-integrated service that fulfills the
goals. Thus the design below attempts to lay out an approach to that. This
design however may not be achievable in a single release or in full, since:

	project resource may be insufficient

	technical solutions to some of the goals may be unavailable, e.g.

	machine-learning technologies are fairly new, and ability
to detect malicious design in compiled models (e.g. in pickle files) may be
limited technically

	when compared to signatures of well-known or new threats to host systems or
consumer devices (e.g. PCs) as supported by open source virus/malware scan
tools, there may be limited experience thus limited libraries of threat
signatures for compiled ML models

Thus alternate/fallback implementation approaches are described below, so that
as much of the goals as possible can be delivered in the Boreas release, or as
soon as possible afterward. These alternate approaches are based upon the
following assessments of how the bylaws goals related to potential implementation
approaches, such as:

	a comprehensive, as-much-automated-as-possible, platform-integrated service

	this is the stated approach, given that resources and technical
solutions are available

	a hybrid approach of some manual processes, supplementing the automated
platform capabilities, e.g.

	manual admin of the platform capabilities, through configuration files that
are provisioned on the platform hosts, and used by the components in the
absence of portal-marketplace admin UI support for the same configuration

	exporting solution packages (artifacts and metadata) for offline scanning,
in the absence of integrated, automated scanning tools

	maintaining the status of scans (e.g. unrequested, in-progress, successful,
failed) as a key input to enabling/blocking workflows for solutions, through
a manual but API-supported process, in the absence of automated updates of
status based upon integrated scanning

	a fully manual, open source toolset-supported process that is ensured by
establishment of community policies and related practices

	in this case there may be no specific platform-integrated support for
scanning, verification status management, policy definition or control of
workflows per those policies, etc

	open source toolsets and user guides however could be provided to help
operators/admins to fulfill the requirements of their company and of the
Acumos ecosystem

	beyond the above, a priority would be placed on a “trust but verify”
approach to policy adherence and modeler behaviors that support best
practices and policies

Depending on how the Acumos community prioritizes the goals of SV, the
various approaches above, and how successful the SV team is in resourcing and
addressing technical challenges of the design below, various of these
hybrid/manual approach elements may be implemented in the Athena release.

Current Release Features

The Clio release will include these features for SV:

	separation of the license scanning process from the sv-scanning component,
which will be refocused on providing the Acumos platform integration with
external scanning tools/processes, and recording the results of scans

	implementation of the current scanning scripts as Jenkins jobs, that will
be invoked by the sv-scanning component when needed

	delivery of the result of scans to the Acumos platform through the
/scanresult API exposed by the sv-scanning component

Previously Released Features

Boreas Release

The features planned for delivery in the current release (“Boreas”) are:

	scanning for license/vulnerability issues in all models and related data

	a default set of open source license/security scan tools, which can be
replaced in a “plug and play” manner with tools as preferred by Acumos
platform operators

	customization of the default scan tools, e.g. to define new licenses and scan
tool configuration to support detecting the licenses
for detecting them

	a default set of success criteria for license/security scans, which can
be easily customized by Acumos platform operators

	integration of scanning at various points in Acumos platform workflows

	integration of scan result checking gates at various points in Acumos
platform workflows

	Acumos platform admin control of the scanning and gate check points

	option to use the default internal scan tools, or an offline process for
scanning

	option to invoke scanning in workflows

	upon completion of model onboarding

	upon completed addition/update of artifacts or “documents” (documents,
test data, source code archives)

	upon request to deploy a model

	upon request to download model artifacts or documents

	upon request to share a model with another user

	upon request to publish a model to a marketplace

	option to define workflow gates that must be passed, in order to allow the
workflow to be executed, including

	enable checking prior to workflows

	deploy a model

	download a model

	share a model

	publish a model

	what must have been checked, and what are the acceptable results

	license scan successful: yes, no

	security scan successful: yes, no

	ability of the model owner to execute any workflow except for publishing
without needing to pass the workflow gate-check; this is essential to
prevent the SV feature from unecessarily burdening the model developer
experience, and is critial to ensure that the model developer can correct
issues that may resulting in scan failures, e.g. upload new documents or
licenses to correct earlier-detected issues

	support for both open-source and proprietary licensed models

	incorporation of RTU (“right to use”) checks for proprietary models as part
of workflow gates; except for model owners, users who do not have a provisioned
RTU for a proprietary model will be blocked from the following workflows

	download

	deploy

The combination of the two gate-check options enables the platform to support
customization and optimization of SV processes for an Acumos instance.
For example:

	scans can be invoked as early or as late as desired, in the lifecycle of a
model, to accommodate local Acumos platform processes or policies

	since “scans” may include offline processes that take time to complete,
the admin may allow some workflows to be proceed, while others are blocked.
For example, if licensing has not been verified/approved, the admin may allow
deployment to a private cloud to publishing to a company marketplace, but not
deployment to a public cloud or publishing to a public marketplace.

	the Scanning Service will only execute scans as needed for any new/updated
artifacts/metadata, since a record of earlier scans will be retained as a
artifact related to the solution.

Architecture

The following diagram illustrates the integration of SV into an Acumos platform.
The items in gray are planned for future releases.

[image: ../../../../_images/security-verification-arch1.png]

Functional Components

The SV service will include two components, one of which is a component microservice:

	Security Verification Library (“SV Library”): implemented as a Java library
that Acumos components include in their build processes, this library provides
an interface that abstracts the status checking and scan invocation processes,
and determines for the current workflow:

	whether a scan process needs to be invoked, and invoking it if so

	whether the workflow should be blocked based upon the SV requirements
established by the platform admin, given the current status of SV for
the model, and based upon the need for and availability of a related RTU

	uses CDS site-config data to determine when to invoke scanning

	uses CDS site-config data, solution, and revision data to determine if
workflows are allowed

	runs as a always-on service under docker or kubernetes

	Scanning Service: this is the backend to the SV service, which

	provides a scanning API to execute scan operations as needed using scanning
tools for license and vulnerabilities

	allows Acumos operators to use a default set of scan tools, or to integrate
other tools via a plugin-style interface

	runs as an always-on service under docker or kubernetes

Interfaces

The SV service provides the following library functions and APIs.

Security Verification Client Library

This Java library is included in the build specification (pom.xml) of calling
components in order to assess the SV status of components as it affects
Acumos workflows, and to scan invocation as needed.

The SV library function will take the following parameters:

	solutionId: ID of a solution present in the CDS

	revisionId: ID of a version for a solution present in the CDS

	workflowId: one of

	created: model has been onboarded

	updated: model artifacts/metadata have been updated

	deploy: request to deploy received

	download: request to download received

	share: request to share received

	publishCompany: request to publish to company marketplace received

	publishPublic: request to publish to public marketplace received

	loggedInUserId: ID of the user who is requesting the workflow, used to
compare with the owner of the solution

In response, the SV library will provide the following result parameters:

	workflow allowed: boolean (true|false)

	true: the SV service is either not configured to gate the current
workflow, or the gate conditions have been fulfilled

	false: the gate conditions for the workflow have not been fulfilled, as
defined by the Acumos system admin and/or the RTU check

	reason: text description of the reason for workflow being blocked, for
presentation to the user; NOTE: configuration of these messages is a planned
feature, but not supported in the Boreas release

	$path license($license) is incompatible with root license $root_license

	a file ($path identifies the file in the structure of scanned files) has
a detected license which is incompatible with the detected root license
(the license in the artifact ‘license.json’)

	$file license($name) is not allowed

	a license detected in a file is not in the allowedLicense set

	no license artifact found, or license is unrecognized

	either no license.json artifact was found, or the license keyword in the
artifact.json was not recognized

	root license($root_license) is not allowed

	the license keyword in license.json was recognized but is not in the
allowedLicense set

	Internal error: $root_license not found in compatible license list

	only applies when the site configuration is incomplete (a license was
added to the allowedLicense set but not the compatibleLicenses set)

Security Verification Scanning Service

Scan

This API initiates an SV scan process.

The base URL for this API is: http://<scanning-service-host>:<port>, where
‘scanning-service-host’ is the routable address of the scanning service in the
Acumos platform deployment, and port is the assigned port where the service is
listening for API requests.

	URL resource: /scan/solutionId/{solutionId}/revisionId/{revisionId}/userId/{userId}

	{solutionId}: ID of a solution present in the CDS

	{revisionId}: ID of a version for a solution present in the CDS

	{userId}: ID of the user requesting the workflow that triggered the scan

	Supported HTTP operations

	POST

	Body

	None

	Response

	200 OK

	meaning: request accepted

	400 BAD REQUEST

	meaning: solution/revision not found, or other error

Scan Result

This API delivers the result of an SV scan.

The base URL for this API is: http://<scanning-service-host>:<port>, where
‘scanning-service-host’ is the routable address of the scanning service in the
Acumos platform deployment, and port is the assigned port where the service is
listening for API requests.

	URL resource: /scanresult/solutionId/{solutionId}/revisionId/{revisionId}

	{solutionId}: ID of a solution present in the CDS

	{revisionId}: ID of a version for a solution present in the CDS

	Supported HTTP operations

	POST

	Body

	JSON content to be saved as scanresult.json

	Response

	200 OK

	meaning: request accepted

	400 BAD REQUEST

	meaning: solution/revision not found, or other error

Component Design

Common Data Service Data Model

The following data model elements are defined/used by the SV service:

	solution

	revision

	artifact: the Scanning Service will retrieve all solution artifacts in the
process of scanning or verifying status of earlier scans, and create one
new type SR artifact named scanresult.json, as a record of scan results

	a new artifact type is needed as below, with a related artifact type

	Scan Result, attribue type SR, which will be used to identify scan
related artifacts

	“scanresult.json”: the summary of a scan; with each new scan of a
revision, this file will be updated in Nexus

	“scancode.json”: the detailed result from the Scancode Toolkit utility

	new revision attributes are needed as below, and a new API is needed to
retrieve and set values for these attributes

	verifiedLicense: success | failure | in-progress | unrequested (default)

	verifiedVulnerability: success | failure | in-progress | unrequested (default)

	this is reserved for future use

Security Verification Library

The Security Verification Library (“SV Library”) will be integrated as a
callable library function by Java-based components, through reference in their
pom.xml files. The SV library has the following dependencies, which must be
specified in the template used to create the calling component:

	environment

	common-data-svc API endpoint and credentials

	scanning-service API endpoint

Acumos components will call the SV library function when they need to check
if a workflow should proceed, based upon the admin requirements for verification
related to that workflow, and the status of verification for a solution/revision.
In addition to checking if the requested workflow should proceed the SV library
will invoke scan operations as needed.

The SV client follows this procedure when invoked:

	initialize “workflow allowed” to “true” and reason to “”

	retrieves the solution and revision details from the CDS, and if either
are not found, return “workflow allowed”=”false” and
reason=”solution/revision not found” as appropriate

	if the modelTypeCode is PR (predictor) and the toolkitTypeCode is CP
(composite solution)

	retrieves the CD (CDUMP) artifact for the revision

	deserializes the CDUMP artifact and for each member of the nodes array
included in the CDUMP object

	using the member nodeSolutionId, retrieves the list of revisions for the
solution

	for the revision that matches the nodeVersion for the member of the nodes
array, executes the “revision processing” using its revisionId

	the “revision processing” below is executed for the solution and all of its
component solutions, with the “workflow allowed” result result returned being
the logical AND of the result for all, i.e. if the workflow gate is blocked
for the composite solution or any of its components, the summary result is
that the workflow is blocked.

	the SV library uses this procedure for revision processing

	determines whether the workflow should be blocked based upon RTU

	if a scanresult.json artifact exists and indicates that the solution has a
proprietary license

	if the user is not the solution owner, and the requested workflow is
“download” or “deploy”

	if the user does not have an RTU for the solution, block the workflow

	invokes a scan if the licenseScan flag for the workflow is “true”

	if the site config verifyLicense flag for the workflow is “true”, determines
whether the workflow should be blocked based upon status of license scanning

	if the verifiedLicense attribute of the solution is null, “IP” (in-progress),
or “FA” (failed), block the workflow, and provide the reason

	null: “license scan not yet started”

	IP: “license scan in-progress”

	FA: the reason attribute of the scanresult.json artifact

	Return the values for “workflow allowed” and “reason”

Scanning Service

The Scanning Service will be deployed as an always-running platform
service under docker or kubernetes. It has the following dependencies, which
must be specified in the service template used to create the service:

	environment

	common-data-svc API endpoint and credentials

	nexus-service API endpoint and credentials

	site-config verification key default

	ports: Acumos platform-internal port used for serving APIs (NOTE: this must
also be mapped to an externally-accessible port so that the service can
provide the /scanresult API to external scanning services)

	conf volume: a host-mapped folder (for docker) or configmap (for kubernetes)
with the following folders/files as needed to customize the Scanning Service
for a particular operator

	licenses: metadata files for additional licenses to be scanned for, in
addition to the default of licenses supported by the Scancode Toolkit

	rules: license-detection rules for the additional licenses

	scripts: bash scripts that can be customized as needed, e.g. to

	update the default site config for SV (the “verification” config key)

	customize the startup of the SV service

	customize what metadata is downloaded from the Acumos platform for
scanning

	customize the scan process, e.g. modify the use of Scancode, or replace
it with a different utility

	implement/integrate an offline process for scanning, e.g. invoke an
external service, and process scanresult events from that service

	fix issues that arise during use of the scanning service, without having
to rebuild a new service container image

	logs volume: persistent store where the service will save logs

The Scanning Service will record and use the results of scans in a new artifact
type as described in `Scan Result`_, associated with the scanned revision. This
artifact is central to various design goals of the SV service, e.g.:

	maintaining a semantic, human-readable, and easily exportable record of scans
related to a revision

	making the scan results available to those who obtain the solution though
sharing, downloading, or federated subscription

Site-Config Data

The SV Service leverages a new site-config key “verification”, which as
a serialized JSON object defines the related policies for the platform, as a set
of flags that control the four main features of the SV service per the needs of
the Acumos platform operator:

	workflow gates, i.e. when evidence of successful license and vulnerability
scans is required, for a workflow to be allowed

	at which workflows license and security scans should be invoked

	whether an internal or external license scanning service should be used

	which license types are pre-approved for use with solutions

	which license types are considered compatible with other licenses

	this ensures that in addition to verifying the root license (in
license.json), scans can verify that any license in files included as
metadata (documents) associated with the revision, is compatible with the
root license

Default values for these options are set through the component configuration data
for the Scanning Service, and can be customized by the platform operator prior
to deployment of the SV Service by updating the SV Scanning service template
or the siteconfig-verification.json file in the scripts folder of the conf
volume described above. When the SV Scanning Service starts, the verification
site-config key will be created or replaced with the current value from the
SV Scanning template, or siteconfig-verification.json in the conf volume. This
process is needed since in Boreas there is no specific Acumos Portal support for
managing the configuration through an admin UI.

The key structure is described below:

	verification

	allowedLicense: array of attributes that can be used to recognize licenses
that are pre-approved for use with models in the platform

	type: SPDX | <other type identifiers, e.g. “VendorX”>

	name: a unique string that can be used to identify the license in
LICENSE.txt files associated with models as a document, or in other files
(e.g. source code or other documents). Examples include
SPDX license identifiers [https://spdx.org/licenses/] and other values
e.g. identifying a vendor-specific license.

	compatibleLicenses: array of licenses compatible with the set of allowed
licenses

	name: name as present under allowedLicense

	compatible: array of license names that are considered compatible

	externalScan: boolean indicating whether the Scanning Service should use an
external scan process as described in `External Scan`_. Defaults to “false”.

	Note: external scans are not explicitly supported in Boreas, although this
site config flag may be useful to operators that choose to implemented their
own process for external scans

	licenseScan: license scanning requirements for workflows. See the
definition of workflowId above for explanation of the workflow names. Each
workflow is associated with a boolean value, which if “true” indicates
that a license scan should be invoked at this workflow point.

	created: true | false

	updated: true | false

	deploy: true | false

	download: true | false

	share: true | false

	publishCompany: true | false

	publishPublic: true | false

	securityScan: security scanning requirements for workflows. See
the definition of workflowId above for explanation of the workflow names.
Each workflow is associated with a boolean value, which if “true” indicates
that a security scan should be invoked at this workflow point.

	created: true | false

	updated: true | false

	deploy: true | false

	download: true | false

	share: true | false

	publishCompany: true | false

	publishPublic: true | false

	licenseVerify: license scanning verification requirements for workflows.
See the definition of workflowId above for explanation of the workflow
names. Each workflow is associated with a boolean value, which if “true”
indicates that a successful license scan must have been completed before
the workflow begins.

	deploy: true | false

	download: true | false

	share: true | false

	publishCompany: true | false

	publishPublic: true | false

	securityVerify: security scanning verification requirements
for workflows. See the definition of workflowId above for explanation of
the workflow names. Each workflow is associated with a boolean value,
which if “true” indicates that a successful security scan must have
been completed before the workflow begins.

	deploy: true | false

	download: true | false

	share: true | false

	publishCompany: true | false

	publishPublic: true | false

An example serialized value for the site-config verification key is shown below.

{
 "externalScan":"false",
 "allowedLicense":[
 {
 "type":"SPDX",
 "name":"Apache-2.0"
 },
 {
 "type":"SPDX",
 "name":"CC-BY-4.0"
 },
 {
 "type":"SPDX",
 "name":"BSD-3-Clause"
 },
 {
 "type":"Vendor-A",
 "name":"Vendor-A-OSS"
 },
 {
 "type":"Company-B",
 "name":"Company-B-Proprietary"
 }
],
 "compatibleLicenses":[
 { "name":"Apache-2.0", "compatible":[
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"BSD-3-Clause", "compatible":[
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"MIT-License", "compatible":[
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"Vendor-A-OSS", "compatible":[
 { "name":"Vendor-A-OSS" },
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"Company-B-Proprietary", "compatible":[
 { "name":"Company-B-Proprietary" },
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 }
],
 "licenseScan":{
 "created":"true",
 "updated":"true",
 "deploy":"true",
 "download":"true",
 "share":"true",
 "publishCompany":"true",
 "publishPublic":"true"
 },
 "securityScan":{
 "created":"true",
 "updated":"true",
 "deploy":"false",
 "download":"false",
 "share":"false",
 "publishCompany":"false",
 "publishPublic":"false"
 },
 "licenseVerify":{
 "deploy":"true",
 "download":"true",
 "share":"true",
 "publishCompany":"true",
 "publishPublic":"true"
 },
 "securityVerify":{
 "deploy":"true",
 "download":"true",
 "share":"false",
 "publishCompany":"true",
 "publishPublic":"true"
 }
}

Scan Result

Revision artifacts of type SR (scanresult.json, referred to here as the
“Scan Result”) will record the result of scanning for a revision. For each scan,
a new Scan Result version will be created, so that the history of scanning
is preserved. This or later releases will provide admins with the ability to
limit the number of Scan Result versions maintained for a revision.

The Scan Result will be initialized at the start of a scan, and be created in
this schema:

{
 "schema": "1.0",
 "verifiedLicense": "<true|false>",
 "reason": "<reason for scan failure, if any>",
 "solutionId" : "<solutionId from the API request>",
 "revisionId" : "<revisionId from the API request>",
 "scanTime" : "<epoch time value when the scan was started>",
 "root_license": {
 "type": "<type value from the allowedLicense array>",
 "name": "<name value from the allowedLicense array>"
 },
 "files": [
 {
 "path": "<folder path of the file as scanned>",
 "licenses": [
 {
 "name": "<name of a license detected in the file>"
 }
]
 }
]
}

The “files” array references files for which a license was detected. The path
value for each file helps identify the file in the hierarchy of scanned files, e.g.

	model descriptions as defined for catalogs will be in the root folder and
named per the catalog name, e.g. “description-My-Public-Models.txt”

	files that were contained in the “model.zip” artifact (if any) will be
in a subfolder “model-zip”

	documents associated with a particular catalog will be contained in a
subfolder named for the catalog, e.g. “My-Public-Models”

	any archives (.zip extension files) associated with the revision as a
catalog document (e.g. source code archives) will be contained in a subfolder
of the catalog folder, named for the archive. For example, an archive
model-source.zip will be unpacked into a folder named “model-source-zip”

Scan Execution

The SV library will call the Scan Invocation API when a scan is required per
the admin options for the SV service.

In Boreas, a scan will always occur when invoked, and update the scanresult.json
artifact. In subsequent releases, optimizations may be implemented which avoid
re-scans if nothing has changed related to the solution.

Boreas also has explicit, default support only for internal scans, i.e. scans
executed by the SV Scanning service. However through the conf volume,
operators can customize the scan process arbitrarily, to support external
scan tools and processes. Those approaches are not described here.

The CDS holds three types of data for revisions: descriptions, sets of
documents, and a set of artifacts. Notes on the approach to scanning these types
of data objects:

	The description is a text object related to a catalog, and used for UI
presentation of the model on the Portal. It will only be scanned for license
notices.

	documents are files related to solution publication in a catalog, and may be
of any arbitrary type, e.g. media (images, video), archives
(e.g. training data, source code, documentation), or rich/plain text
documents. Documents uploaded as a single text file and text files inside
archive documents will be scanned. Files that are recognized as code will be
scanned for license and vulnerability, and other text documents will be
scanned for license only.

	artifacts are the modeler-onboarded or platform-generated files which make up
the model revision. Of these, only the type MI (model.zip or model.proto)
MD (metadata.json) will be scanned. As an archive, the model.zip will be
scanned using the same approach as described for archive documents.

The license scan process includes these steps:

	download all to-be-scanned artifacts and documents into a uniquely named
folder (unique naming prevents conflict from two potentially in-progress scans
for the same solution)

	invoke the Scancode Toolkit for the folder

	process the result from the Scancode Toolkit (scancode.json) and create the
scanresult.json file

	create a “files” array entry for each file with a recognized license

	verify that a root license was found (a license in a root folder file named
lincense.json), and if found, that it is approved

	for each file in the “files” array, verify that the found license is
approved, and compatible with the root license

When all documents and artifacts have been scanned, the Scanning Service:

	updates the revision licenseScan attribute to match the Scan Result

	adds or updates the revision type SR artifacts “scanresult.json” and
“scancode.json”

Impacts to other Acumos Components

Common Data Service

The Common Data Service will implement the new CDS data model elements
described in Common Data Service Data Model, and provide APIs to read/update
that data.

Portal-Marketplace

Calls will be required to the SV library per the supported workflow scanning
options and workflow verification gates described under the
Security Verification Library section.

The Portal-Marketplace UI for users will be impacted in various ways. The impacts
are expected to include at a high level:

	UI elements conveying that workflows are blocked due to required/incomplete
solution verification, e.g. grayed out workflow options with tooltip hints,
popup dialogs explaining why a workflow can’t be completed at this time, or
additional notification entries.

Portal-Marketplace support for UI-based update of the SV site config is planned
for a future release, and will include features such as:

	admin of the options for SV service as described under
Current Release Features. This could for example take the form of a single
tab under the Site Admin section, in which the four sub-keys of the
“verification” key are presented in table format, with the flags of each
sub-key represented by a checkbox, where unchecked represents “false”. For
example:

	NOTE: in the following example, “[]” represents an unchecked box, and
“[NA]” represents a greyed-out box

	Workflow

	licenseScan

	SecurityScan

	licenseVerify

	SecurityVerify

	created

	[]

	[]

	[NA]

	[NA]

	updated

	[]

	[]

	[NA]

	[NA]

	deploy

	[]

	[]

	[]

	[]

	download

	[]

	[]

	[]

	[]

	share

	[]

	[]

	[]

	[]

	publishCompany

	[]

	[]

	[]

	[]

	publishPublic

	[]

	[]

	[]

	[]

Recommended Tests for Feature Verification

The following test descriptions provide a guide to the expected user experience
and SV service behavior, for common use cases. These can be used as a guide for
testers to verify that user experience and system features.

Tests for Simple Solutions

Scan invocation per verification.licenseScan flags

As applicable for the flags below from the “verification” siteConfig key
(default values shown), verify that a scan is invoked (either from the
sv-scanning-service logs, or by watching the revision.verifiedLicense attribute
become “IP”).

"licenseScan": {
 "created": "true",
 "updated": "true",
 "deploy": "true",
 "download": "true",
 "share": "true",
 "publishCompany": "true",
 "publishPublic": "true"
},

These workflows should trigger the scan as applicable:

	created: web-onboarding

	updated: adding/modifying solution description or documents through the
“Manage My Model” / “Publish to Marketplace” screen

	deploy: deploy request for any target environment

	download: request to download any artifact or document

	share: request to share a model

	publish: request to publish a model

Workflow gating per verification.licenseVerify flags

As applicable for the flags below from the “verification” siteConfig key (default
values shown), verify that workflows are either (1) allowed, if
revision.verifiedLicense=SU; or (2) blocked (with reason displayed to the user
and added to the notification tool for later review) if
revision.verifiedLicense=FA or revision.verifiedLicense=IP.

"licenseVerify": {
 "deploy": "true",
 "download": "true",
 "share": "false",
 "publishCompany": "true",
 "publishPublic": "true"
},

These workflows should be allowed or blocked as applicable:

	deploy: deploy request for any target environment

	download: request to download any artifact or document

	share: request to share a model

	publish: request to publish a model

License Scan Failures

Any of these scenarios should result in revision.verifiedLicense=FA, with the
reason in parentheses:

	no license.json artifact (“no license artifact found, or license is
unrecognized”)

	license.json does not have a recognized license (“no license artifact found,
or license is unrecognized”)

	license.json does not have an approved license (“root license($root_license)
is not allowed”)

	a license from any other scanned file is not allowed ($file license($name)
is not allowed)

	a license from any scanned file is incompatible with the root license
(“$path license($name) is incompatible with root license $root_name”)

License Scan Success

In the absence of any of the conditions in License Scan Failures, the
license scan completes with revision.verifiedLicense=SU.

Storage of scanresult.json and scancode.json artifacts

At the end of each scan the resulting scanresult.json and scancode.json artifacts
are created or updated as applicable, and avaiable in the Portal UI list of
artifacts as “scanresult-<version>.json and scancode-<version>.json, where
<version> is the version of the solution scanned.

Tests for Composite Solutions

Scan invocation for all composite solution components

When a scan invocation is required per the verification.licenseScan flags, all
sub-component solutions of the composite solution are scanned, and their
revision.verifiedLicense attributes are updated.

Workflow determination considers verification.licenseVerify for all sub-component solutions

When workflow gating is required per the verification.licenseVerify flags, the
revision.verifiedLicense attribute for every sub-component solution must be “SU”
for the workflow to be allowed.

 Security Verification

Security Verification

Contents:

	Security Verification User Guide
	Introduction

	license.json and the Acumos License Schema

	Licenses in other Solution Files

	SV Scanning Artifacts

	Workflows, Gates, and Scan Triggering

	For Modelers

	For End-Users

	For Admins

	Acumos Security-Verification Design Specification
	Scope

	Architecture

	Component Design

	Impacts to other Acumos Components

	Recommended Tests for Feature Verification

	Developer Guide for the Security Verification (SV) Client
	Maven Dependency

	Building and Packaging

	Developer Guide for the Security Verification Service
	Supported Methods and Objects

	Building and Packaging

	Development and Local Testing

	Security Verification Service API
	SV APIs in Boreas Release

	Security Verification (SV) Library Release Notes
	Version 1.2.2, 13 Dec 2019

	Version 1.2.1, 03 Dec 2019

	Version 1.2.0, 10 Oct 2019

	Version 1.1.0, 01 Oct 2019

	Version 1.0.1, 19 Sept 2019

	Version 0.0.24, 09 Jun 2019

	Version 0.0.22, 25 Jun 2019

	Version 0.0.21, 07 Jun 2019

	Version 0.0.20, 30 May 2019

	Version 0.0.19, 28 May 2019

	Version 0.0.18, 23 May 2019

	Version 0.0.17, 14 May 2019

	Version 0.0.16, 10 May 2019

	Version 0.0.15, 10 May 2019

	Version 0.0.12, 01 May 2019

	Version 0.0.11, 30 April 2019

	Version 0.1.0, 12 April 2019

	Version 0.0.3, 05 April 2019

	Version 0.0.1, 04 April 2019

	Security Verification (SV) Scanning Service Release Notes
	Version 1.2.2, 13 Dec 2019

	Version 1.2.1, 03 Dec 2019

	Version 1.2.0, 16 Oct 2019

	Version 1.1.0, 01 Oct 2019

	Version 1.0.1, 19 Sept 2019

	Version 0.0.24, 09 Jun 2019

	Version 0.0.22, 25 Jun 2019

	Version 0.0.21, 07 June 2019

	Version 0.0.20, 30 May 2019

	Version 0.0.19, 28 May 2019

	Version 0.0.18, 23 May 2019

	Version 0.1.0, 12 April 2019

	Version 0.0.1, 04 April 2019

	Search Page

 Security Verification (SV) Library Release Notes

Security Verification (SV) Library Release Notes

Version 1.2.2, 13 Dec 2019

	ACUMOS-3428: Security Verification License Scan migration to Jenkins [https://jira.acumos.org/browse/ACUMOS-3428]

	6114: Release notes 1.2.2 [https://gerrit.acumos.org/r/#/c/security-verification/+/6114/]

	ACUMOS-3840: Update to CDS 3.1.0 [https://jira.acumos.org/browse/ACUMOS-3840]

	6093: Update to CDS 3.1.0 [https://gerrit.acumos.org/r/#/c/security-verification/+/6093/]

Version 1.2.1, 03 Dec 2019

This version corrects an issue with SV Scanning Service API endpoints. One
configuration change is necessary:

	for the Portal-BE, Onboarding, and Federation components, remove the path
element in the SV API URL:

	for Portal-BE, in the Spring environment under “portal.feature.sv”

"api": "http://sv-scanning-service:9082"

	for Onboarding amd Microservice Generation, in the Spring environment under
“security.verificationApiUrl”

"verificationApiUrl": "http://sv-scanning-service:9082"

	for Federation, in the Spring environment under “verification.url”

"url": "http://sv-scanning-service:9082"

	ACUMOS-3660: Security Verification endpoint mapping [https://jira.acumos.org/browse/ACUMOS-3660]

	5999: update release notes [https://gerrit.acumos.org/r/#/c/security-verification/+/5999/]

	5777: Release SV 1.2.1 Client Library [https://gerrit.acumos.org/r/#/c/security-verification/+/5777/]

	5773: Correct SV endpoint mapping [https://gerrit.acumos.org/r/#/c/security-verification/+/5773/]

Version 1.2.0, 10 Oct 2019

	Removal of LMCL dependency - ACUMOS-3505 [https://jira.acumos.org/browse/ACUMOS-3505]

	Changed docker image for SV to follow acumos/ prefix

Version 1.1.0, 01 Oct 2019

	5317: Security Verification 1.1.0 - jenkins and rtu [https://gerrit.acumos.org/r/#/c/security-verification/+/5317/]

	ACUMOS-3125: As a model User, when LUM provides denial of action to Acumos, Security Verification will not allow user action and Portal will display notification to user. [https://jira.acumos.org/browse/ACUMOS-3125]

Version 1.0.1, 19 Sept 2019

	ACUMOS-3031: A scan must occur to verify License Profile metadata [https://jira.acumos.org/browse/ACUMOS-3031]

	4888: Support License ArtifactType [https://gerrit.acumos.org/r/#/c/security-verification/+/4888/]

	4965: Fix SV build on master [https://gerrit.acumos.org/r/#/c/security-verification/+/4965/]

Version 0.0.24, 09 Jun 2019

Version update only; changes were to the SV Scanning Service

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4796: Bump sv-client version [https://gerrit.acumos.org/r/#/c/security-verification/+/4796/]

Version 0.0.22, 25 Jun 2019

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4603: Wait for CDS, init scancode on startup [https://gerrit.acumos.org/r/#/c/security-verification/+/4754/]

Version 0.0.21, 07 Jun 2019

	4632: Changing API - SV needs to accept logged in userId [https://gerrit.acumos.org/r/#/c/security-verification/+/4632/]

	4616: Rtu Verifier fixes [https://gerrit.acumos.org/r/#/c/security-verification/+/4616/]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4634: Update release notes, scan scripts [https://gerrit.acumos.org/r/#/c/security-verification/+/4634/]

	4621: Fix workflow check [https://gerrit.acumos.org/r/#/c/security-verification/+/4621/]

	4603: Support proprietary licences [https://gerrit.acumos.org/r/#/c/security-verification/+/4603/]

	Uprev to allow release of License Manager client library

Version 0.0.20, 30 May 2019

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	4555: Update versions for release [https://gerrit.acumos.org/r/#/c/security-verification/+/4555/]

	4554: Upload single copy of scancode.json etc [https://gerrit.acumos.org/r/#/c/security-verification/+/4554/]

	4545: Update artifact creation logic [https://gerrit.acumos.org/r/#/c/security-verification/+/4545/]

	4534: Update artifact creation logic [https://gerrit.acumos.org/r/#/c/security-verification/+/4534/]

Version 0.0.19, 28 May 2019

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	4524: Correct return of failure reason to user [https://gerrit.acumos.org/r/#/c/security-verification/+/4524/]

	4522: Correct check for getVerifiedLicense result [https://gerrit.acumos.org/r/#/c/security-verification/+/4522/]

	4518: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/security-verification/+/4518/]

Version 0.0.18, 23 May 2019

	Update license-manager-client-library version-0.0.7 in security-verification-client-library (ACUMOS-2954 [https://jira.acumos.org/browse/ACUMOS-2954])

	4489: Update design doc with recommended tests [https://gerrit.acumos.org/r/#/c/security-verification/+/4489/]

	ACUMOS-2358: S-V design documentation [https://jira.acumos.org/browse/ACUMOS-2358]

	4366: Updated release note [https://gerrit.acumos.org/r/#/c/security-verification/+/4366/]

	ACUMOS-2886: update security verification for cds 2.2.2 [https://jira.acumos.org/browse/ACUMOS-2886]

	4291: Update SV and LM version for LF release [https://gerrit.acumos.org/r/#/c/security-verification/+/4291/]

	ACUMOS-2830: Update license-manager-client-library, security-verification-client and security-verification-service For LF release [https://jira.acumos.org/browse/ACUMOS-2830]

	4262: Sonar 40% code coverage requirement on every repo [https://gerrit.acumos.org/r/#/c/security-verification/+/4262/]

	ACUMOS-1095: Sonar 40% code coverage requirement on every repo [https://jira.acumos.org/browse/ACUMOS-1095]

	ACUMOS-2815: Security Verification throwing Unexected Error Message [https://jira.acumos.org/browse/ACUMOS-2815]

	4206: S-V library implementation (https://gerrit.acumos.org/r/#/c/security-verification/+/4202/)

	4202: S-V library implementation (https://gerrit.acumos.org/r/#/c/security-verification/+/4202/)

	4202: S-V library implementation (https://gerrit.acumos.org/r/#/c/security-verification/+/4202/)

	4201: S-V library implementation (https://gerrit.acumos.org/r/#/c/security-verification/+/4201/)

Version 0.0.17, 14 May 2019

	Artifact type cdump not found – when publishing in portal (ACUMOS-2860 [https://jira.acumos.org/browse/ACUMOS-2860])

Version 0.0.16, 10 May 2019

	SecurityVerificationServiceImpl.createSiteConfig (ACUMOS-2865 [https://jira.acumos.org/browse/ACUMOS-2865])

Version 0.0.15, 10 May 2019

	SecurityVerificationServiceImpl.createSiteConfig (ACUMOS-2865 [https://jira.acumos.org/browse/ACUMOS-2865])

	Artifact type cdump not found – when publishing in portal (ACUMOS-2860 [https://jira.acumos.org/browse/ACUMOS-2860])

	Dependencies should be installed part of the docker image of the component rather than directly in yaml file (ACUMOS-2845 [https://jira.acumos.org/browse/ACUMOS-2845])

Version 0.0.12, 01 May 2019

	Update license-manager-client-library, security-verification-client and security-verification-service For LF release (ACUMOS-2830 [https://jira.acumos.org/browse/ACUMOS-2830])

Version 0.0.11, 30 April 2019

	Security Verification throwing Unexected Error Message (ACUMOS-2815 [https://jira.acumos.org/browse/ACUMOS-2815])

Version 0.1.0, 12 April 2019

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	4137: Release 0.1.0 [https://gerrit.acumos.org/r/#/c/4137/]

	4113: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/4113/]

	4101: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/4101/]

	4091: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/4091/]

Version 0.0.3, 05 April 2019

	4085: Updated release note [https://gerrit.acumos.org/r/#/c/4085/]

	ACUMOS-2555: S-V Library base module [https://jira.acumos.org/browse/ACUMOS-2555]

	4065: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/4065/]

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

Version 0.0.1, 04 April 2019

	3990: S-V library implementation [https://gerrit.acumos.org/r/#/c/3990/]

	ACUMOS-1956: S-V library implementation [https://jira.acumos.org/browse/ACUMOS-1956]

	ACUMOS-2546: Reorganize security-verification git repo to support multiple maven projects [https://jira.acumos.org/browse/ACUMOS-2546]

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	3977: S-V library implementation [https://gerrit.acumos.org/r/#/c/3977/]

	ACUMOS-1956: S-V library implementation [https://jira.acumos.org/browse/ACUMOS-1956]

	ACUMOS-2546: Reorganize security-verification git repo to support multiple maven projects [https://jira.acumos.org/browse/ACUMOS-2546]

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	3948: S-V library implementation [https://gerrit.acumos.org/r/#/c/3948/]

	ACUMOS-1956: S-V library implementation [https://jira.acumos.org/browse/ACUMOS-1956]

	ACUMOS-2555: S-V Library base module [https://jira.acumos.org/browse/ACUMOS-2555]

	ACUMOS-2557: S-V Library solution/revision processing [https://jira.acumos.org/browse/ACUMOS-2557]

	ACUMOS-2558: S-V Library scan invocation logic [https://jira.acumos.org/browse/ACUMOS-2558]

	ACUMOS-2546: Reorganize security-verification git repo to support multiple maven projects [https://jira.acumos.org/browse/ACUMOS-2546]

	3914: S-V library implementation [https://gerrit.acumos.org/r/#/c/3914/]

	ACUMOS-2555: S-V Library base module [https://jira.acumos.org/browse/ACUMOS-2555]

	ACUMOS-2557: S-V Library solution/revision processing [https://jira.acumos.org/browse/ACUMOS-2557]

	ACUMOS-2558: S-V Library scan invocation logic [https://jira.acumos.org/browse/ACUMOS-2558]

Security Verification (SV) Scanning Service Release Notes

Version 1.2.2, 13 Dec 2019

	ACUMOS-3428: Security Verification License Scan migration to Jenkins [https://jira.acumos.org/browse/ACUMOS-3428]

	6114: Release notes 1.2.2 [https://gerrit.acumos.org/r/#/c/security-verification/+/6114/]

	6113: Fix location of logs: [https://gerrit.acumos.org/r/#/c/security-verification/+/6113/]

	ACUMOS-3840: Update to CDS 3.1.0 [https://jira.acumos.org/browse/ACUMOS-3840]

	6093: Update to CDS 3.1.0 [https://gerrit.acumos.org/r/#/c/security-verification/+/6093/]

Version 1.2.1, 03 Dec 2019

	ACUMOS-3660 [https://jira.acumos.org/browse/ACUMOS-3660]

	5774: Correct SV endpoint mapping, part 2 [https://gerrit.acumos.org/r/#/c/security-verification/+/5774/]

	5982: SV-Scanning-Service release 1.2.1 [https://gerrit.acumos.org/r/#/c/security-verification/+/5982/]

	ACUMOS-3428: Security Verification License Scan migration to Jenkins [https://jira.acumos.org/browse/ACUMOS-3428]

	5985: Include nexus auth for artifact retrieval [https://gerrit.acumos.org/r/#/c/security-verification/+/5985/]

	5927: Updates to SV jenkins job setup [https://gerrit.acumos.org/r/#/c/security-verification/+/5927/]

Version 1.2.0, 16 Oct 2019

	ACUMOS-3428: Security Verification License Scan migration to Jenkins [https://jira.acumos.org/browse/ACUMOS-3428]

	5607: Revision version format change [https://gerrit.acumos.org/r/#/c/security-verification/+/5607/]

	Fix Sv-Scanning service for new revision version format.

	Add verbose output to scan scripts.

	Remove unused scripts.

Version 1.1.0, 01 Oct 2019

	5317: Security Verification 1.1.0 - jenkins and rtu [https://gerrit.acumos.org/r/#/c/security-verification/+/5317/]

	ACUMOS-3428: Security Verification License Scan migration to Jenkins [https://jira.acumos.org/browse/ACUMOS-3428]

	ACUMOS-3125: As a model User, when LUM provides denial of action to Acumos, Security Verification will not allow user action and Portal will display notification to user. [https://jira.acumos.org/browse/ACUMOS-3125]

	Add LUM URL env parameter for LMCL

	Code formatting clean up

	Licensing RTU check updates

	Relocate/update scripts for Jenkins.

	Scan invokes Jenkins job.

	ScanResult handling from Jenkins.

Version 1.0.1, 19 Sept 2019

	ACUMOS-3436: Security Verification update to Java 11 [https://jira.acumos.org/browse/ACUMOS-3436]

	5246: Security Verification - Java 11 [https://gerrit.acumos.org/r/#/c/security-verification/+/5246/]

	ACUMOS-3428: Implement scan job queuing [https://jira.acumos.org/browse/ACUMOS-3428]

	5292: Release 1.0.1 [https://gerrit.acumos.org/r/#/c/security-verification/+/5292/]

	5271: Update to CDS 3.0.0 [https://gerrit.acumos.org/r/#/c/security-verification/+/5271/]

	5241: Ignore license type field for now [https://gerrit.acumos.org/r/#/c/security-verification/+/5241/]

	5210: Implement scan job queueing [https://gerrit.acumos.org/r/#/c/security-verification/+/5210/]

Version 0.0.24, 09 Jun 2019

This release restores the ability to deploy the SV Scanning Service with
full functionality embedded in the docker container image. Updates with external
configuration files (e.g. to update licenses/rules, or the scanning tool/scripts)
is optional, as described by the updated user-guide.

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4800: Handle exception cases and large scan sets [https://gerrit.acumos.org/r/#/c/security-verification/+/4800/]

	4795: Deployment with config updates optional [https://gerrit.acumos.org/r/#/c/security-verification/+/4795/]

	ACUMOS-2358: S-V design documentation [https://jira.acumos.org/browse/ACUMOS-2358]

	4789: Update design, add user guide [https://gerrit.acumos.org/r/#/c/security-verification/+/4789/]

Version 0.0.22, 25 Jun 2019

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	`4603: Wait for CDS, init scancode on startup<https://gerrit.acumos.org/r/#/c/security-verification/+/4754/>`_

Version 0.0.21, 07 June 2019

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4603: Support proprietary licences [https://gerrit.acumos.org/r/#/c/security-verification/+/4603/]

Version 0.0.20, 30 May 2019

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	Update artifact creation logic

Version 0.0.19, 28 May 2019

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

	4524: Correct return of failure reason to user [https://gerrit.acumos.org/r/#/c/security-verification/+/4524/]

	switch to curl (wget hangs), add logging

Version 0.0.18, 23 May 2019

This release includes improvements and other updates as below, for the merged
commits and related Jira items:

	4489: Update design doc with recommended tests [https://gerrit.acumos.org/r/#/c/security-verification/+/4489/]

	ACUMOS-2358: S-V design documentation [https://jira.acumos.org/browse/ACUMOS-2358]

	4362: SecurityVerificationServiceImpl createSiteConfig [https://gerrit.acumos.org/r/#/c/security-verification/+/4362/]

	ACUMOS-2865: SecurityVerificationServiceImpl.createSiteConfig [https://jira.acumos.org/browse/ACUMOS-2865]

	ACUMOS-2860: Artifact type cdump not found – when publishing in portal [https://jira.acumos.org/browse/ACUMOS-2860]

	4462: Artifact type cdump not found in portal [https://gerrit.acumos.org/r/#/c/security-verification/+/4462/]

	4449: Artifact type cdump not found in portal [https://gerrit.acumos.org/r/#/c/security-verification/+/4449/]

	4443: Artifact type cdump not found in portal [https://gerrit.acumos.org/r/#/c/security-verification/+/4443/]

	4418: Artifact type cdump not found in portal [https://gerrit.acumos.org/r/#/c/security-verification/+/4418/]

	4408: Artifact type cdump not found in portal [https://gerrit.acumos.org/r/#/c/security-verification/+/4408/]

	4397: Artifact type cdump not found in portal [https://gerrit.acumos.org/r/#/c/security-verification/+/4397/]

	4351: Artifact type cdump not found when publishing [https://gerrit.acumos.org/r/#/c/security-verification/+/4351/]

	4338: Updated SV code [https://gerrit.acumos.org/r/#/c/security-verification/+/4338/]

	ACUMOS-2845: Dependencies should be installed part of the docker image of the component rather than directly in yaml file [https://jira.acumos.org/browse/ACUMOS-2845]

	4262: Sonar 40% code coverage requirement on every repo [https://gerrit.acumos.org/r/#/c/security-verification/+/4262/]

	ACUMOS-1095: Sonar 40% code coverage requirement on every repo [https://jira.acumos.org/browse/ACUMOS-1095]

	ACUMOS-2815: Security Verification throwing Unexected Error Message [https://jira.acumos.org/browse/ACUMOS-2815]

	4179: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/security-verification/+/4179/]

	ACUMOS-2774: Security Verification run containerized process as unprivileged user [https://jira.acumos.org/browse/ACUMOS-2774]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4455: Script updates in testing [https://gerrit.acumos.org/r/#/c/security-verification/+/4455/]

	4450: Script updates in testing [https://gerrit.acumos.org/r/#/c/security-verification/+/4450/]

	4409: Script updates in testing [https://gerrit.acumos.org/r/#/c/security-verification/+/4409/]

	4204: Script updates in testing [https://gerrit.acumos.org/r/#/c/security-verification/+/4204/]

	4188: Move config to /tmp [https://gerrit.acumos.org/r/#/c/security-verification/+/4188/]

	4187: Add license type to scanresult.json [https://gerrit.acumos.org/r/#/c/security-verification/+/4187/]

	4156: S-V Library workflow permission determination [https://gerrit.acumos.org/r/#/c/security-verification/+/4156/]

	ACUMOS-1956:S-V library implementation [https://jira.acumos.org/browse/ACUMOS-1956]

	ACUMOS-2559: S-V Library workflow permission determination [https://jira.acumos.org/browse/ACUMOS-2559]

Version 0.1.0, 12 April 2019

This is the first test release of the SV Scanning Service. Docker-compose and
kubernetes templates are in the
system-integration [https://github.com/acumos/system-integration] repo
folders AIO/docker/acumos and AIO/kubernetes, respectively. The implementation
includes a combination of:

	A springboot application that serves the “/scan” API, per the
design document [https://docs.acumos.org/en/latest/submodules/security-verification/security-verification-service/docs/design.html]

	A set of bash scripts as prototype implementations of the following functions,
built into the generated SV Scanning Service image. These will be migrated to
Java code as time permits:

	dump_model.sh: dump all to-be-scanned data for a model revision

	license_scan.sh: invoke the
Scancode Toolkit [https://github.com/nexB/scancode-toolkit] on the dumped
model data

	scan_all.sh: test script to scan all revisions in the CDS

	setup_verification_site_config.sh: test script to initialize the CDS site
config for the SV Library and Scanning Service

Includes the merged commits and related Jira items:

	4137: Release 0.1.0 [https://gerrit.acumos.org/r/#/c/4137/]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4135: Add scan_all.sh script, fix license_scan.sh bugs [https://gerrit.acumos.org/r/#/c/4135/]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4098: Updates for testing [https://gerrit.acumos.org/r/#/c/4098/]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4090: Integrate scripts into sv-scanning-service [https://gerrit.acumos.org/r/#/c/4090/]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

	4069: Add script to populate verification site key [https://gerrit.acumos.org/r/#/c/4069/]

	ACUMOS-1373: S-V Scanning Service component with spring-based API [https://jira.acumos.org/browse/ACUMOS-1373]

Version 0.0.1, 04 April 2019

Includes the merged commits and related Jira items:

	3881: Baseline license scan scripts [https://gerrit.acumos.org/r/#/c/3881/]

	ACUMOS-1958: S-V License Scan process implementation [https://jira.acumos.org/browse/ACUMOS-1958]

 Security Verification Service API

Security Verification Service API

This page provides a static view of the methods in the SV Scanning server.
Please note that a running SV Scanning server provides a more useful version
of this information. View the details at a URL like the following, but check
the server configuration for the exact port number (e.g., “9183”) and context
root (e.g., “scan”) to use:

http://localhost:9183/scan/swagger-ui.html

SV APIs in Boreas Release

This section lists the methods in version 0.0.22, which is the third and last
version in the Boreas release.

security-verification-service-controller

GET /update/siteConfig/verification

Add default SiteConfig Verification.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solutionId/{solutionId}/revisionId/{revisionId}/workflowId/{workflowId}

Security Verification Service Scan.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

	workflowId

	path

	workflowId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

 Developer Guide for the Security Verification Service

Developer Guide for the Security Verification Service

This microservice provides security verification services to components in the
Acumos machine-learning platform. It is built using the Spring-Boot platform.
This document primarily offers guidance for server developers.

Supported Methods and Objects

The microservice endpoints and objects are documented using Swagger. A running
server documents itself at a URL like the following, but consult the server’s
configuration for the exact port number (e.g., “9183”) and context root
(e.g., “scan”) to use:

http://localhost:9183/scan/swagger-ui.html

Building and Packaging

As of this writing the build (continuous integration) process is fully automated
in the Linux Foundation system using Gerrit and Jenkins. This section describes
how to perform local builds for development and testing.

Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central to download required jars

Use maven to build and package the service into a single “fat” jar using this
command:

mvn clean install

Development and Local Testing

This section provides information for running the server in a
production/development environment, assuming that the application is packaged
into a docker container for deployment.

Prerequisites

	Java version 1.8 in the runtime environment; i.e., installed in the
docker container

	The username/password combination to access the database

	The Nexus username/password combination to access.

Configuring the system

At runtime in production deployments, in addition to using a configuration file,
environment-specific configuration properties should be supplied using a block of
JSON in an environment variable called SPRING_APPLICATION_JSON. This can easily
be done using the deployment templates. The default SV Scanning templates
for use with docker-compose or kubernetes are provided by the AIO (All-In-One)
Acumos deployment toolset in the system-integration repository.

Get the system-integration repository
git clone "https://gerrit.acumos.org/r/system-integration"
Select the Boreas branch
cd system-integration
git checkout boreas
See what environment configuration options are supported
cat AIO/acumos_env.sh
See the docker-compose deployment template with references to options
cat AIO/docker/acumos/sv-scanning.yml
See the kubernetes deployment template with references to options
cat AIO/kubernetes/deployment/sv-scanning-deployment.yaml
Edit the options in acumos_env.sh and/or in the template directly

Launch Instructions

To run the SV Scanning in a local docker environment:

	Build an image locally or use an image in the Acumos Nexus repositories.

	Update environment variables as referenced by the template, either
directly or in acumos_env.sh:

	ACUMOS_CDS_HOST: hostname or IP address of the CDS service

	ACUMOS_CDS_PASSWORD: CDS user password

	ACUMOS_CDS_PORT: CDS service port

	ACUMOS_CDS_USER: CDS service user

	ACUMOS_LOG_LEVEL: log level to use

	ACUMOS_NAMESPACE: kubernetes namespace and logs parent folder under ‘/mnt’

	ACUMOS_NEXUS_API_PORT: Nexus API port

	ACUMOS_NEXUS_GROUP: Nexus artifact group ID

	ACUMOS_NEXUS_HOST: Nexus hostname or IP address

	ACUMOS_NEXUS_MAVEN_REPO: Nexus Maven repo name

	ACUMOS_NEXUS_MAVEN_REPO_PATH: path prefix for Nexus Maven repo

	ACUMOS_NEXUS_RW_USER: Nexus user with R/W permission

	ACUMOS_NEXUS_RW_USER_PASSWORD: Nexus R/W user password

	ACUMOS_SECURITY_VERIFICATION_PORT: port on which to expose the SV service

	SECURITY_VERIFICATION_IMAGE: image version to use

	Use the docker-compose process that applies to your environment, e.g.

	for a standalone docker container:

docker-compose -f sv-scanning up -d

 Security Verification User Guide

Security Verification User Guide

Introduction

This guide focuses on the things that users need to know about the Security
Verification (SV) feature of the Acumos platform. It is intended for use by:

	Acumos platform users, e.g. machine-learning application (“solution”)
developers (“modelers”) or consumers (“end-users”)

	Acumos platform administrators (“admins”), i.e. those responsible for setting
up and maintaining an Acumos platform

	Acumos platform users in other supervisory roles, e.g. as a marketplace catalog
admin (“publishers”)

The Security Verification Design Specification outlines the
principle rationales for and features provided by the SV feature. In summary,
these include:

	for modelers and end-users:

	ensuring that solutions they contribute to or obtain from an Acumos platform
are covered by clear and compatible licenses

	“clear” means that the license is a clearly recognized license, either a
well-known open source license or a proprietary license

	“compatible” means both that:

	the licenses are in compliance with the policies established by the
Acumos platform operator

	all files associated with the solution are compatible with the license
under which the solution is published (the “root license”)

	ensuring that details of license scans are included with solutions, so that
any potential issues can be easily identified

	ensuring for modelers that their solutions, if covered by a proprietary
license with RTU (right-to-use) requirements, are not usable by anyone that
does not possess a RTU for the specific solution

	for admins: ensuring policies and processes related to license scanning and
license verification can be easily defined and maintained, including

	which types of licenses are allowed for solutions on the Acumos platform

	which types of licenses are considered compatible with root licenses of
solutions on the Acumos platform

	what types of user workflows should be used as triggers for license scans

	what types of user workflows should gated by the status of license scans

	implementation of an operator-specific process for license scans

	for publishers: ensuring that details of license scan status are documented,
and any issues with scans can be easily identified

A key design feature of the SV feature is that is almost completely configurable,
so that it meets these goals:

	admins can tailor policies and processes so that a good balance is created
between the goals of enabling low barriers to solution development and publication,
while thoroughly vetting the solution licenses per operator policies

	modelers can work on their models without any potential barriers to workflows
(“workflow gates”), up to solution publication; and even publication can be
removed as a workflow gate if chosen by the operator

	within an organization if desired, modelers can freely share, locally publish,
and use locally published solutions without license verification overhead

The rest of this document introduces key concepts such as the Acumos license
schema, and addresses how the SV feature supports those goals for
each type of user.

license.json and the Acumos License Schema

Acumos solution licenses are in JSON format, and associated with the solution
as an artifact named ‘license.json’. The schema for these artifacts is at an
early stage of development, and defined in detail by the
License Manager [https://wiki.acumos.org/display/LM] project. However, for
the purposes of the SV feature, the only important item in the license.json
file is the presence of a well-known identifier for a license:

	as defined by the Linux Foundation SPDX project in the
SPDX License List [https://spdx.org/licenses/] (the ‘Identifier’).

	as configured in the Acumos platform by an admin, e.g. for additional types
of licenses that are allowed for use with solutions in that platform

As currently defined, an example well-known license would be disclosed in the
“keyword” attribute of the “licenses” array in license.json files, e.g.:

{
 "licenses": [
 {
 "keyword": "Apache-2.0",
...
}

Licenses in other Solution Files

One of the key functions of the SV Scanning service is to scan all files
associated with a solution, to determine which files carry a well-known license,
and whether that license is compatible with the root license. For that purpose,
the SV Scanning service will scan:

	the description that is associated with a solution in a particular catalog,
since that is a convenient place to disclose licenses etc that modelers
may want to disclose up-front, and that end-users may want to know about

	all files associated with the solution as “documents” published along with
the solution through a catalog; since such “documents” can be any (or mostly any)
arbitrary file type, they can carry licenses and need to be scanned, e.g.

	user guides, archives with documentation, etc

	source code files or archives

	training data archives

Most open-source or proprietary source code will for example carry explicit
and well-known licenses in either or both:

	the root folder of a source code repository (e.g. the conventional LICENSE.txt)

	license files (e.g. LICENSE.txt) in subfolders for open source components that
have been imported into the solution

	each source file

SV Scanning Artifacts

The SV Scanning process will result in two artifacts associated with each
solution revision that is scanned, updated each time the revision is scanned:

	scanresult.json: the summary findings of the SV Scanning Service for a
revision; see the description below

	scancode.json: the detailed output of the default scanning tool used by the
Acumos project, the Scancode Toolkit [https://github.com/nexB/scancode-toolkit].
This file contains a lot of information about each file that is scanned, and
contains either a license or copyright statement. It is used by the SV Scanning Service
and summarized in scanresult.json.

scanresult.json example:

{
 "schema": "1.0",
 "verifiedLicense": "<true|false>",
 "reason": "<reason for scan failure, if any>",
 "solutionId" : "<solutionId scanned>",
 "revisionId" : "<revisionId scanned>",
 "scanTime" : "<epoch time value when the scan was started>",
 "root_license": {
 "type": "<type value from the Acumos platform allowedLicense set>",
 "name": "<name value from the Acumos platform allowedLicense set>"
 },
 "files": [
 {
 "path": "<folder path of the file as scanned>",
 "licenses": [
 {
 "name": "<name of a license detected in the file>"
 }
]
 }
]
}

Notes on the attributes:

	name: the well-known name for a license, e.g. SPDX “Identifier”

	type: “SPDX” (used in this release to indicate an open source license), or
a type value configured by the Acumos admin e.g. for a proprietary license

	files: an array referencing files for which a license was detected. The path
value for each file helps identify the file in the hierarchy of scanned files, e.g.

	model descriptions as defined for catalogs will be named per the catalog
name, e.g. “description-My-Public-Models.txt”

	files that were contained in the “model.zip” artifact (if any) will be
in a subfolder path “model-zip”

	documents associated with a particular catalog will be contained in a
subfolder path named for the catalog, e.g. “My-Public-Models”

	any archives (.zip extension files) associated with the revision as a
catalog document (e.g. source code archives) will be contained in a subfolder
of the catalog folder path, named for the archive. For example, an archive
model-source.zip will be unpacked into a folder named “model-source-zip”

Workflows, Gates, and Scan Triggering

Workflows are actions that a user (modeler, end-user) invoke for a solution, and
include:

	update (addition/update of artifacts or documents)

	deploying a model

	downloading model artifacts or documents

	sharing a model with another user

	publishing a model to a marketplace (public, or restricted)

The admin can configure any of the workflows above as triggers for invoking
a license scan. The scan occurs in the background, and by itself does not gate
any workflow. However, note that:

	the workflow itself may be gated by the policy set by the platform admin, if
no prior scan had been invoked or a prior scan was unsuccessful

	if the workflow is gated as described below, it may be allowed in a very
short time. Typically, license scans take less than 30 seconds, thus if
successful, the scan status will be updated quickly.

Workflow gates are workflows that the admin has configured to require a
successful license scan, prior to completion of the workflow (note again that
solution owners are not subject to these gates except for publishing to a public
catalog). Workflow gates can include:

	deploying a model

	downloading model artifacts or documents

	sharing a model with another user

	publishing a model to a marketplace (public, or restricted)

You might wonder why “update” is not considered a workflow gate: the reason is
that:

	only the solution owner can update a solution

	update is the only way the solution owner can correct any earlier issues
detected by license scans, so should not itself be gated

If a gate is not passed, the user will receive a popup dialog that explains
why the workflow cannot be completed at the current time, including:

	“license scan not yet started”

	“license scan in-progress”

	“license scan failed”, with explanation

	“no right to use”: the user has no RTU provisioned for a proprietary model

	the “reason” attribute of the scanresult.json artifact, e.g.

	“no license artifact found, or license is unrecognized”: a license.json file
has not been uploaded, or no recognized license was found in license.json

	
	“root license($root_license) is not allowed”: license.json does not have an

	approved license

	“$file license($name) is not allowed”: a license from any other scanned file
is not allowed

	
	“$path license($name) is incompatible with root license $root_name”: a

	license from any scanned file is incompatible with the root license

For Modelers

The basic things you need to know about SV and licenses for Acumos platform
solutions include:

	a “license.json” artifact can be onboarded with your model via CLI or web
onboarding, although it is optional at onboarding time

	if you are the model owner, you will not be subject to workflow gates
(verification of license scan results per the operator’s policy) until you
attempt to publish to a public catalog, and only then if the admin has
configured “Publish to Public Marketplace” as a workflow gate

	if you are a collaborating modeler (i.e. the model has been “shared” with you),
your workflow permissions may be more restricted than the model owner

	it will be typical for the admin to require a successful license scan prior
to publishing to a public catalog, so it will help if you ensure that you
have uploaded a license.json file prior to attempting publication

	see Workflows, Gates, and Scan Triggering for examples of messages you may
receive when attempting to publish to a public catalog

For End-Users

Workflows that relate to end-users (not solution owners) include download and
deploy.

If you are a model user, any workflow you attempt may be gated per the site
policy established by an admin; see Workflows, Gates, and Scan Triggering
for examples of messages you may receive when attempting a gated workflow

It is expected that platform admins will require successful scans prior to
publication to a public catalog, so you should not expect workflows to be blocked
due to license scan status. However, note that workflows may be blocked for
a brief period (typically less than 30 seconds), when a new scan has been
invoked in these cases:

	the solution owner has just updated the solution

	the platform admin has configured “download” or “deploy” as scan triggers,
and some other user just invoked one of those workflows

To see the scan details for a solution, you can download the “scanresult.json”
and “scancode.json” artifacts.

For Admins

Admins have a key role in ensuring a good balance between the goals of enabling
low barriers to solution development and publication, while thoroughly vetting
the solution licenses per operator policies.

Understanding the purpose and effect of the two main features of the SV
Service (license scan triggers, and workflow gates) is key to creating an
effective set of policies for the platform. Each platform may have a different
modeler/user base, relationship to other platforms, and organizational policies
that govern how the platform needs to be configured overall. Thus flexibility in
the SV feature design was key.

The main controls that platform admins have over the SV feature are:

	whether to enable the SV feature: the component template (docker or kubernetes)
for the Portal-BE component has an attribute of the SPRING_APPLICATION_JSON
environment parameter that you can use to disable or enable use of the SV
Service for the platform:

"portal": {
 "feature": {
 "sv": {
 "enabled": "<true|false>",
...

	which scan triggers to activate (if any): although there is little cost
in system resource terms to scanning, your might want to limit the triggers
for scan invocation

	update (addition/update of artifacts or documents)

	this will provide the earliest and likely most commonly invoked workflow
as a trigger; so if your priority is have early and up-to-date scan status,
and minimizing gate blocks for subsequent workflows (assuming successful
scan), activate this gate as a scan trigger.

	deploying a model

	deploying would be of most value as a trigger if update was not configured
as a trigger, and the solution owner had recently updated the solution

	downloading model artifacts or documents

	similar to deploying; most valuable when update is not a trigger

	sharing a model with another user

	similar to deploying; most valuable when update is not a trigger

	publishing a model to a marketplace (public, or restricted)

	publishing to a public marketplace may be for many organizations the
key workflow to gate

	which workflow gates to activate (if any): workflow gates are the primary
feature impacting the user experience, so select gates that ensure your
priorities

	deploying a model

	the most common use case for deploy as a workflow gate is a published
solution that the owner has updated; even if scan success was required
prior to publication, later updates could result in failure, and thus
use of the solution by others could be blocked in that case, until the
issue is corrected

	the primary risk managed by this gate is the deployment of a solution
with a license that is not allowed by the operator

	downloading model artifacts or documents

	similar to deploy as a workflow gate; since downloading a solution may
often be a precursor to further distribution or re-uploading as a new
solution, it may be a priority of the operator to prevent the possibility
of those actions when the license scan was not successful

	share

	this workflow would apply as a gate to prevent the re-sharing of solutions;
the solution owner can always share a solution, but those it was shared
with may be restricted from re-sharing the solution, unless a scan was
successful

	publishing a model to a marketplace (public, or restricted)

	publishing to a public marketplace may be for many organizations the
key workflow to gate

	use cases for avoiding gates for publishing to a restricted catalog include
for teams within an organization that want to locally publish a solution
in development

Configuring the Site Config Verification Key

“Verification” is the name of the key (configured parameter) of the site config
table in the Acumos Common Data Service (“CDS”). It contains a JSON structure
that is used by the SV Scanning Service to control the scan triggers and workflow
gates, as above. Use these steps to customize the verification site config for your
platform:

Before your Acumos platform is deployed, or after, update the default
verification site config key:

	the default (demo) verification site config is shown below, and available in the
security-verification repository [https://github.com/acumos/security-verification]
folder security-verification-service/scripts as
siteconfig-verification.json [https://github.com/acumos/security-verification/security-verification-service/scripts/siteconfig-verification.json])

{
 "externalScan":"false",
 "allowedLicense":[
 {
 "type":"SPDX",
 "name":"Apache-2.0"
 },
 {
 "type":"SPDX",
 "name":"CC-BY-4.0"
 },
 {
 "type":"SPDX",
 "name":"BSD-3-Clause"
 },
 {
 "type":"Vendor-A",
 "name":"Vendor-A-OSS"
 },
 {
 "type":"Company-B",
 "name":"Company-B-Proprietary"
 }
],
 "compatibleLicenses":[
 { "name":"Apache-2.0", "compatible":[
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"BSD-3-Clause", "compatible":[
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"MIT-License", "compatible":[
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"Vendor-A-OSS", "compatible":[
 { "name":"Vendor-A-OSS" },
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 },
 { "name":"Company-B-Proprietary", "compatible":[
 { "name":"Company-B-Proprietary" },
 { "name":"CC-BY-4.0" },
 { "name":"Apache-2.0" },
 { "name":"BSD-3-Clause" },
 { "name":"MIT-License" }
]
 }
],
 "licenseScan":{
 "created":"true",
 "updated":"true",
 "deploy":"true",
 "download":"true",
 "share":"true",
 "publishCompany":"true",
 "publishPublic":"true"
 },
 "securityScan":{
 "created":"true",
 "updated":"true",
 "deploy":"false",
 "download":"false",
 "share":"false",
 "publishCompany":"false",
 "publishPublic":"false"
 },
 "licenseVerify":{
 "deploy":"true",
 "download":"true",
 "share":"true",
 "publishCompany":"true",
 "publishPublic":"true"
 },
 "securityVerify":{
 "deploy":"true",
 "download":"true",
 "share":"false",
 "publishCompany":"true",
 "publishPublic":"true"
 }
}

	NOTE: the “securityScan” and “securityVerify” sections are reserved for future
use

	If you are using the
AIO toolset [https://github.com/acumos/security-verification/tree/master/AIO],
put your updated siteconfig-verification.json in the folder
AIO/kubernetes/configmap/sv-scanning/scripts

	Deploy or redeploy the SV Scanning service using the tools for your platform,
e.g. using the “redeploy_component.sh” script in the system-integration repo

You can also update the SV site config key though the CDS Swagger UI.
Note that if you use the CDS Swagger UI, you will need to escape all quotes in
the JSON structure, as shown when you retrieve the current value. See the CDS
user guide for information.

Future releases will include an Acumos platform admin UI screen that allows you
to directly update the SV site config key.

Configuring the Scancode Toolkit

Two folders in the
security-verification repository [https://github.com/acumos/security-verification]
folder security-verification-service contain examples of how
you can configure the Scancode Toolkit to recognize and categorize additional
license types, e.g. proprietary licenses.

To make changes in these folders, follow the guide below, and then
deploy/redeploy the SV Scanning Service as described in
Configuring the Site Config Verification Key.

The “licenses” and “rules” folders under security-verification-service contain
extra license and license-detection rule files that the admin can configure for use with the
SV Scanning Service.

NOTE:

	the description below is based upon initial testing with extending
the Scancode Tookit configuration, and will be updated as more experience
allows. For more information, see
How to add a new license detection rule? [https://github.com/nexB/scancode-toolkit/wiki/FAQ]
on the Scancode-toolkit github repo [https://github.com/nexB/scancode-toolkit].

	the files contained in the security-verification repo folders under “licenses”
and “rules” are examples, for demonstration and test purposes only

Licenses Folder

This folder should contain two files for each license to be added. ‘selected_base_name’
is a unique name that you can use to differentiate the licenses in this folder.
Ensure that the selected name does not conflict with one of the names in the
scancode licenses folder [https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/licenses] .

	‘selected_base_name’.yml

	This contains attributes of the license that are needed for the reporting
functions of the scancode-toolkit. The minimum fields are:

	key: identifier to be used in the Acumos siteConfig verification key

	name: full name of the license

	short_name: short name of the license. This should be aligned with the
license name as configured in the siteConfig verification key, as
scancode will report the license name equivalent to this field, with spaces
replaced by dashes.

	category: one of

	Commercial

	Copyleft

	Copyleft Limited

	Free Restricted

	Patent License

	Permissive

	Proprietary Free

	Public Domain

	Unstated License

	‘selected_base_name’.LICENSE

	Unique text from typical text expression of the license. Leave out any
common phrases that might trigger false detection of other licenses.

Rules Folder

This folder should contain two files for each variant of a rule to be used to
detect licenses. ‘selected_base_name’ is a unique name that you can use to
differentiate the licenses in this folder. ‘variant’ is a number from 1 to n.
Ensure that the selected name does not conflict with one of the names in the
scancode rules folder [https://github.com/nexB/scancode-toolkit/tree/develop/src/licensedcode/data/rules] .

	‘selected_base_name’_’variant’.RULE

	typically, this should be a text snippet that can uniquely identify the
license. Scancode supports a variety of rule features that can be used here,
in addition to plain text.

	‘selected_base_name’_’variant’.yml

	license_expression: value used as the ‘key’ in licenses/’selected_base_name’.yml

	is_license_reference: ‘yes’, if this is a plain text rule

 Acumos System Integration

Acumos System Integration

This repository holds installation and deployment scripts for the Acumos system.

Please see the documentation in the “docs” folder.

All In One (AIO)

The AIO subdirectory holds scripts to build an all-in-one instance of Acumos,
with the database, Nexus repositories and docker containers all running on a
single virtual machine.

Helm Charts (helm-charts)

The helm-charts subdirectory holds the latest Helm (v2/v3) charts for
deploying Acumos.

Zero-to-Acumos (z2a)

The z2a subdirectory holds scripts and supporting files to bootstrap a
Kubernetes cluster and install Acumos and MLWB (Machine Learning WorkBench)
on a single vanilla Virtual Machine. z2a is for development/test purposes
only.

 Acumos Configuration

Acumos Configuration

NOTE: Work in progress. Subject to change.

Acumos Configuration Tasks

Acumos Post-Install Configuration steps (documentation in progress) …

Ingress - Native k8s service proxy and Ingress Controller (Nginx)

NOTE: This configuration activity has been integrated into the 1-acumos/1-acumos.sh installation/configuration script.

Kong - API Gateway for Acumos (deprecated)

NOTE: Kong configuration has been integrated into the 1-acumos/1-acumos.sh installation/configuration script.

MariaDB - to support the Common Data Services (CDS)

NOTE: CDS configuration has been integrated into the 1-acumos/1-acumos.sh
installation/configuration script.

Sonatype Nexus - to support artifact management

NOTE: Nexus configuration has been integrated into the 1-acumos/1-acumos.sh
installation/configuration script.

Kubernetes (kind) Configuration Tasks

NOTE: Kubernetes (kind) configuration tasks that have been identified are folded
into the 0-kind/0c-cluster.sh installation/configuration script.

MLWB Plugin Configuration Tasks

NOTE: Please refer to the plugins-setup/README-plugins-setup.md documentation
for additional tips/pointers.

CouchDB

NOTE: CouchDB configuration has been integrated into the plugins-setup/couchdb/install-couchdb.sh installation/configuration script.

JupyterHub

NOTE: JupyterHub configuration has been integrated into the plugins-setup/jupyterhub/install-jupyterhub.sh installation/configuration script.

NiFi

NOTE: NiFi configuration has been integrated into the plugins-setup/nifi/install-nifi.sh installation/configuration script.

TODO: MLWB Post-Install Configuration steps in progress …*

// Created: 2020/06/10
// Last modified: 2020/07/30

 z2a Directory Listing

z2a Directory Listing

Directories

0-kind/

Directory containing the following scripts for z2a:

Script name and purpose
0a-env.sh # z2a environment creation script
0b-depends.sh # dependency installation and setup script
0a-cluster.sh # Kubernetes ('kind') cluster creation script

0-kind/z2a-k8s-dashboard/

Directory containing Kubernetes dashboard that is deployed into the kind (Kubernetes in Docker) cluster. (Flow-1 only, used by 0-kind/0c-cluster.sh script)

0-kind/z2a-k8s-metallb/

Directory containing MetalLB load-balancer that is deployed into the kind (Kubernetes in Docker) cluster. (Flow-1 only, used by 0-kind/0c-cluster.sh script)

0-kind/k8s-svc-proxy/ (deprecated)

Directory containing Kubernetes service proxy that is deployed into the kind (Kubernetes in Docker) cluster. (Flow-1 only, used by 0-kind/0c-cluster.sh script)

Note: k8s-svc-proxy has been deprecated and replaced with a k8s service proxy based on the Nginx Ingress controller. This directory is historical and will be removed in the future.

0-kind/z2a-svcs-proxy/ (deprecated)

Directory containing z2a service proxy that is deployed into the kind (Kubernetes in Docker) cluster. (Flow-1 only, used by 0-kind/0c-cluster.sh script)

Note: z2a-svc-proxy has been deprecated and replaced with a z2a service proxy using the Nginx Ingress controller. This directory is historical and will be removed in the future.

1-acumos/

Directory containing the following scripts for z2a:

Script name and purpose
1-acumos.sh # Acumos noncore and core component setup script

2-plugins/

Directory containing the following scripts for z2a:

Script name and purpose
2-plugins.sh # Acumos plugins setup (including dependencies) script

Note: Currently, this directory installs the Machine Learning WorkBench (MLWB).

dev1/

Directory containing example versions of:

global_value.yaml.dev1 # example global_value.yaml file using acumos-dev1 namespace
global_value.yaml.z2a-test # example global_value.yaml file using z2a-test namespace
mlwb_value.yaml.mlwb # example mlwb_value.yaml file using mlwb namespace

dev1/skel/

Directory containing skeleton component scripts for adding new components to z2a. Currently, the directory contains:

install-skel.sh # skeleton template for a new component installation script

noncore-config/

Directory containing directories and scripts that install and configure Acumos noncore components. These scripts are used by z2a but can also be executed in a stand-alone manner using targets defined in the Makefile.

noncore-config/Makefile

The noncore-config Makefile. Current targets correspond to the following directories:

noncore-config/config-helper/

Entries in the config-helper directory:

install-config-helper.sh # install-config-helper shell script
config-helper/ # directory containing config-helper Helm chart

noncore-config/ingress/

Entries in the ingress (Nginx) directory:

config-ingress.sh # configure ingress shell script
ingress/ # directory containing ingress Helm chart

noncore-config/kong/ (deprecated)

Entries in the kong directory:

config-kong.sh # configure kong shell script
install-kong.sh # install kong shell script
certs/ # directory containing example SSL certificates for Kong

Note: kong has been deprecated and replaced with Nginx. This directory is historical and will be removed in the future.

noncore-config/mariadb-cds/

Entries in mariadb-cds directory:

cds-root-exec.sh # CDS helper script to access MariaDB
cds-root-shell.sh # CDS helper script to invoke root shell
cds-user-exec.sh # CDS helper script to invoke user shell
config-mariadb-cds # configure mariadb-cds shell script
install-mariadb-cds # install mariadb-cds shell script
db-files/ # directory containing CDS database configuration files

noncore-config/nexus/

Entries in the nexus directory:

config-nexus.sh # configure nexus shell script
install-nexus.sh # install nexus shell script

noncore-config/README-noncore-config.md

Markdown file which provides details on how to run various noncore-config scripts in a standalone manner.

Note: work in progress

plugins-setup/

Directory containing scripts that install and configure Acumos plugin components. These scripts are used by z2a but can also be executed in a stand-alone manner using targets defined in the Makefile. The current Makefile targets are:

plugins-setup/Makefile

The plugins-setup Makefile. Current targets correspond to the following directories:

plugins-setup/couchdb/

Entries in the couchdb directory:

install-couchdb.sh # install CouchDB shell script

plugins-setup/jupyterhub/

Entries in the jupyterhub directory:

install-jupyterhub.sh # install Jupyterhub shell script

plugins-setup/mlwb/

Entries in the mlwb directory:

install-mlwb.sh # install MLWB (Machine Learning Workbench) shell script

Entries in the nifi directory:

plugins-setup/nifi/

install-nifi.sh # install NiFi shell script

plugins-setup/README-plugins-setup.md

Markdown document that provides instructions on how to execute the plugins-setup scripts in a standalone manner.

plugins-setup/utils.sh.tpl

utils.sh template file used by 2-plugins/2-plugins.sh parent script.

Files

CONFIG.md

z2a CONFIG markdown document.

DIR-Listing.md

This document.

FAQ.md

Frequently Asked Questions document.

HOWTO.md

A HOWTO document on performing various tasks.

INSTALL.md

z2a INSTALL markdown document.

README.md

z2a README markdown document.

START-HERE.md

Abbreviated introduction document for new Acumos users.

TODO.md

Listing of TODO items. (has entry in .gitignore)

user-env.sh.tpl

Template file used to seed the user environment script. (./0-kind/0a-env.sh)

z2a-utils.sh - z2a utilities script

z2a shell script containing multiple utility functions that are used by z2a. The z2a framework cannot execute correctly without the functions in this utility script.

// Created: 2020/04/29
// Last modified: 2020/07/01

 Frequently Asked Questions

Frequently Asked Questions

How are z2a and AIO different or similar

	z2a performs Acumos installation on Kubernetes only ; AIO performs multiple life-cycle management functions (installation, configuration, removal and updates) of Acumos components across a number of installation scenarios

	z2a performs an Acumos installation for K8s environments (using Helm charts) only ; AIO performs actions (noted above) for Docker, Kubernetes and OpenShift environments

	z2a attempts to provide a very simple install mechanism for people with no Acumos knowledge; AIO usage requires more advanced knowledge of the Acumos installation environment

Is z2a going to replace AIO

Not at this time. AIO and z2a have different use cases. z2a is an installation tool for Acumos and Acumos plugins into a Kubernetes environment only. There are no plans to add life-cycle management functions to z2a or to extend it to other environments (Docker, OpenShift, Minikube etc.) at this time.

// Created: 2020/05/14
// Last modified: 2020/06/30

 HOWTO

HOWTO

NOTE: Under Construction ….

How to install z2a from scratch on a VM with kind (default - Flow-1)

Obtain a Virtual Machine (VM) with sudo access ; Login to VM
Note: /usr/local/bin is a required element in your $PATH

Install 'git' distributed version-control tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
sudo yum install -y git
For Debian-based distributions such as Ubuntu, execute the following command:
sudo apt-get --no-install-recommends install -y git

Make src directory ; change directory to that location
mkdir -p $HOME/src ; cd $HOME/src
clone Acumos 'system-integration' repo
git clone https://gerrit.acumos.org/r/system-integration

set ACUMOS_HOME environment variable
ACUMOS_HOME=$HOME/src/system-integration
Change directory
cd $ACUMOS_HOME/z2a

Choose one of the following methods to create a global_value.yaml file

Method 1 - example values
#
To use the example global_value.yaml file;
copy the example values from z2a/dev1 to the helm-charts directory
cp ./dev1/global_value.yaml.dev1 ../helm-charts/global_value.yaml

Method 2 - customized values
#
To use a customized global_value.yaml file;
edit $HOME/src/system-integration/helm-charts/global_value.yaml
using an editor and command similar to this:
vi $HOME/src/system-integration/helm-charts/global_value.yaml

Once the global_value.yaml file has been copied or edited;
you can proceed with the installation

Execute 0-kind/0a-env.sh (setup user z2a environment)
./0-kind/0a-env.sh
Execute 0-kind/0b-depends.sh (install / configure dependencies)
./0-kind/0b-depends.sh

LOG OUT OF SESSION ; LOG IN TO NEW SESSION
... this step is required for Docker group inclusion)
Reinitialize the user z2a environment
Execute 0-kind/0c-cluster.sh (build and configure k8s cluster)
ACUMOS_HOME=$HOME/src/system-integration
cd $ACUMOS_HOME/z2a
./0-kind/oa-env.sh
./0-kind/0c-cluster.sh

Ensure all k8s Pods created are in a 'Running' state.
kubectl get pods -A
Execute 1-acumos.sh (install / configure noncore & core Acumos components)
./1-acumos/1-acumos.sh

If Acumos plugins are to be installed in a new session:
Uncomment the ACUMOS_HOME line and paste into command-line
ACUMOS_HOME=$HOME/src/system-integration

To install Acumos plugins ; proceed here
cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml $ACUMOS_HOME/helm-charts/mlwb_value.yaml
Execute 2-plugins.sh (install / configure Acumos plugins and dependencies)
./2-plugins/2-plugins.sh

How to use z2a to install Acumos onto an existing k8s cluster (Flow-2)

To execute Flow-2, we will use a VM-based host for command & control.
Note: You MAY require sudo access on the command & control VM to allow you to install git
Note: /usr/local/bin is a required element in your $PATH

Login to the VM

Install 'git' distributed version-control tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
sudo yum install -y git
For Debian-based distributions such as Ubuntu, execute the following command:
sudo apt-get install --no-install-recommends -y git

Make src directory ; change directory to that location
mkdir -p $HOME/src ; cd $HOME/src
clone Acumos 'system-integration' repo
git clone https://gerrit.acumos.org/r/system-integration

set ACUMOS_HOME environment variable
ACUMOS_HOME=$HOME/src/system-integration
Change directory
cd $ACUMOS_HOME/z2a

Choose one of the following methods to create a global_value.yaml file

Method 1 - example values
#
To use the example global_value.yaml file;
copy the example values from z2a/dev1 to the helm-charts directory
cp ./dev1/global_value.yaml.dev1 ../helm-charts/global_value.yaml

Method 2 - customized values
#
To use a customized global_value.yaml file;
edit $HOME/src/system-integration/helm-charts/global_value.yaml
using an editor and command similar to this:
vi $HOME/src/system-integration/helm-charts/global_value.yaml

Once the global_value.yaml file has been copied or edited;
you can proceed with the installation

Execute 0-kind/0a-env.sh (setup user environment)
./0-kind/0a-env.sh

Ensure all k8s Pods created are in a 'Running' state.
kubectl get pods -A
Execute 1-acumos.sh (install / configure noncore & core Acumos components)
./1-acumos/1-acumos.sh

If Acumos plugins are to be installed in a new session:
Uncomment the ACUMOS_HOME line and paste into command-line
ACUMOS_HOME=$HOME/src/system-integration

To install Acumos plugins ; proceed here
cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml.mlwb $ACUMOS_HOME/helm-charts/mlwb_value.yaml
Execute 2-plugins.sh (install / configure Acumos plugins and dependencies)
./2-plugins/2-plugins.sh

How to pre-configure an existing k8s component

	steps to add configuration directives

How to re-configure an existing k8s component

	steps to change existing configuration directives

How to add a new plugin to be installed (no pre/post configuration)

To add a new ‘plugin’ to the z2a installation framework, a series of steps need to be followed. Here are the steps and an example to depict the process.

1: Clone the z2a/dev1/skel directory into the z2a/plugins-setup directory.

2: The newly copied ‘skel’ directory should be renamed appropriately. <name-of-new-plugin>

3: The z2a/plugins/<name-of-new-plugin>/install-skel.sh file should be renamed to install-nameOfDirectory.sh

cd $HOME/src/system-integration/z2a
cp -rp ./dev1/skel ./plugins-setup/.
cd plugins-setup
mv skel <name-of-new-plugin>
cd <name-of-new-plugin>
mv install-skel.sh install-<name-of-new-plugin>.sh
cd ..

4: Edit the z2a/plugins-setup/Makefile file

The plugins-setup Makefile will need to be edited to add a new target to the MODULES line.

BEFORE edit:
MODULES=couchdb jupyterhub lum nifi mlwb

AFTER edit:
MODULES=couchdb jupyterhub lum nifi mlwb <name-of-new-plugin>

5: Edit new plugin shell script

The z2a/plugins-setup/name-of-new-plugin/install-name-of-new-plugin.sh will need to be edited to execute properly.

TODO: Provide an example here

How to add a new plugin to be installed and configured

	where to start ; what to do

Troubleshooting

Does z2a create log files? Where can I find them?

Each z2a script creates a separate and distinct log file. Below is a listing of these log files and their locations.

Script Name & Location		Log File & Location
:———————	:-:	:————–
z2a/0-kind/0a-env.sh		no log file created
z2a/0-kind/0b-depends.sh		z2a/0-kind/0b-depends-install.log
z2a/0-kind/0c-cluster.sh		z2a/0-kind/0c-cluster-install.log
z2a/noncore-config/license-manager/config-license-manager.sh		z2a/noncore-config/license-manager/config-license-manager.log
z2a/noncore-config/license-manager/install-license-manager.sh		z2a/noncore-config/license-manager/install-license-manager.log
z2a/noncore-config/license-usage-manager/config-license-usage-manager.sh		z2a/noncore-config/license-usage-manager/config-license-usage-manager.log
z2a/noncore-config/license-usage-manager/install-license-usage-manager.sh		z2a/noncore-config/license-usage-manager/install-license-usage-manager.log
z2a/noncore-config/mariadb-cds/config-mariadb-cds.sh		z2a/noncore-config/mariadb-cds/config-mariadb-cds.log
z2a/noncore-config/mariadb-cds/install-mariadb-cds.sh		z2a/noncore-config/mariadb-cds/install-mariadb-cds.log
z2a/noncore-config/nexus/config-nexus.sh		z2a/noncore-config/nexus/config-nexus.log
z2a/noncore-config/nexus/install-nexus.sh		z2a/noncore-config/nexus/install-nexus.log
z2a/plugins-setup/couchdb/install-couchdb.sh		z2a/plugins-setup/couchdb/install-couchdb.log
z2a/plugins-setup/jupyterhub/install-jupyterhub.sh		z2a/plugins-setup/jupyterhub/install-jupyterhub.log
z2a/plugins-setup/mlwb/install-mlwb.sh		z2a/plugins-setup/mlwb/install-mlwb.log
z2a/plugins-setup/nifi/install-nifi.sh		z2a/plugins-setup/nifi/install-nifi.log

How do I decode an on-screen error?

The z2a scripts use a shared function to display errors on-screen during execution. You can decode the information to determine where to look to troubleshoot the problem. Below is an example error:

“2020-05-20T15:28:19+00:00 z2a-utils.sh:42:(fail) unknown failure at ./0-kind/0c-cluster.sh:62”

Here is how to decode the above error:

2020-05-20T15:28:19+00:00 - is the timestamp of the failure

z2a-utils.sh:42:(fail) - is the ‘fail’ function (line 42) of the z2a-utils.sh script

./0-kind/0c-cluster.sh:62 - the failure occurred at line 62 of the ./0-kind/0c-cluster.sh script

// Created: 2020/05/14
// Last modified: 2020/07/28

 Installation

Installation

NOTE: Work in progress. Subject to change.

NOTE: The Acumos installation Wiki document can be found here:
https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/installation-guide.html

Requirements

	A SSH client with port-forward/tunnel/proxy capabilities; such as:

	PuTTY (Windows SSH client)

	SecureCRT (MacOS SSH client)

	OpenSSH (Linux SSH client)

Flow-1 Requirements

	A Virtual Machine (VM)

	The user must have sudo rights on the VM (i.e. must exist in the
/etc/sudoers file).

	The VM requires Internet access such that OS updates, OS supplemental
packages and Helm chart installations can be performed. Either the VM has
proxied access to the Internet or the user must be able to configure the
proxy setting for the VM.

Flow-2 Requirements

	A Kubernetes (k8s) cluster

	A command & control VM which will be used as the installation launch point
for z2a

	The user must have sudo rights on the VM (i.e. must exist in the
/etc/sudoers file).

	The VM requires Internet access such that OS updates, OS supplemental
packages and Helm chart installations can be performed. Either the VM has
proxied access to the Internet or the user must be able to configure the
proxy setting for the VM.

Proxy Requirements

NOTE: z2a assumes that the VM has Internet access (with no proxies present).

NOTE: Internet proxy configurations are beyond the scope of the installation
documentation.

Please consult the README-PROXY document for details on the various items that
will require configuration and links to resources that will assist in the
configuration tasks.

Misc. Requirements

	z2a requires that the following tools be installed on the VM prior to
execution of the z2a scripts:

	git (the distributed source code management tool)

	jq (the JSON file processing tool)

Assumptions

It is assumed that the user who is performing this installation:

	is familiar with Linux (i.e. directory creation, shell script execution,
editing files, reading log files etc.)

	has sudo access (elevated privileges) to the VM where the installation
will occur (Flow-1)

	has sudo access (elevated privileges) to the VM where the installation
onto the k8s cluster will occur (Flow-2)

Getting Started

NOTE: z2a depends on being able to reach a number of up-to-date software
repositories. All efforts have been made to not bypass distribution-specific
package managers and software update facilities.

Installation Location Creation (Flow-1 and Flow-2)

In the following section, the user will perform the following actions:

	Login to the Linux VM where the install will occur

	Install the ‘git’ distributed version-control tool

	Create a new directory that will be used to perform this installation
(i.e. src)

	Change directory into this new directory

	Clone the gerrit.acumos.org system-integration repository into the new
directory

	Change directory into the newly created system-integration directory

After completing Step #1 above (log into the VM), here are the commands to execute steps 2-6 above.

Install 'git' distributed version-control tool
Install 'jq' JSON file processing tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
sudo yum install -y git jq
For Debian-based distributions such as Ubuntu, execute the following command:
sudo apt-get install --no-install-recommends -y git jq

mkdir -p $HOME/src

cd $HOME/src

git clone https://gerrit.acumos.org/r/system-integration

cd $HOME/src/system-integration

Next, we will inspect the contents of the directory structure that was just
created by the git clone command above.

$ ls -l
total 20
drwxr-xr-x. 16 userID groupID 4096 Mar 19 13:30 AIO
drwxr-xr-x. 3 userID groupID 19 Mar 19 13:30 acumosk8s-public-cloud
drwxr-xr-x. 9 userID groupID 117 Mar 19 13:30 charts
drwxr-xr-x. 4 userID groupID 107 Mar 19 13:30 docs
drwxr-xr-x. 5 userID groupID 87 Mar 20 11:03 helm-charts
drwxr-xr-x. 2 userID groupID 196 Mar 19 13:30 tests
drwxr-xr-x. 4 userID groupID 4096 Mar 19 13:30 tools
drwxr-xr-x. 5 userID groupID 235 Mar 20 18:35 z2a
-rw-r--r--. 1 userID groupID 1281 Mar 19 13:30 INFO.yaml
-rw-r--r--. 1 userID groupID 770 Mar 19 13:30 LICENSE.txt
-rw-r--r--. 1 userID groupID 1388 Mar 19 13:30 README.md

In the directory listing shown above, two (2) directories are of special
interest:

	helm_charts is the location of the Acumos core Helm charts used in this
installation process

	z2a is the location of the z2a scripts and supporting utilities. We
will refer to that directory as the Z2A_BASE directory. This directory also
contains some of the Acumos noncore dependency Helm charts.

NOTE: Please refer to the Troubleshooting section of the HOWTO.md document
for a complete listing of the log files created by z2a and their location.

Using the Example global_value.yaml File

z2a includes example global_value.yaml files for Acumos in the
$HOME/src/system-integration/z2a/z2a-config/dev1 directory. These example
Acumos values files are provided for both illustrative purposes and to assist
in performing a quick installation (see: TL;DR section).

NOTE: There are two (2) example files in the $ACUMOS_HOME/z2a/dev1 directory.

$ACUMOS_HOME/z2a/dev1/global_value.yaml.dev1 # acumos-dev1 namespace
$ACUMOS_HOME/z2a/dev1/global_value.yaml.z2a-test # z2a-test namespace

The example Acumos values file can be used for a test installation and
additional edits should not be required.

The commands to use the Acumos global_value.yaml.dev1 example value file are:

ACUMOS_HOME=$HOME/src/system-integration
cp $ACUMOS_HOME/z2a/dev1/global_value.yaml.dev1 $ACUMOS_HOME/helm-charts/global_value.yaml

NOTE: The Acumos example values can be used for a private development
environment that is non-shared, non-production and not exposed to the
Internet. The values provided in the Acumos example file are for
demonstration purposes only.

Editing the global_value.yaml File

The global_value.yaml file is located in the
$HOME/src/system-integration/helm_charts directory. We will need to change
directories into that location to perform the necessary edits required for the
Acumos installation or use the examples values noted above.

Before starting to edit the global_value.yaml file, create a copy of the
original file just in case you need to refer to the original or to recreate the
file.

Here are the commands to execute to accomplish the next tasks.

cd $HOME/src/system-integration/helm-charts
cp global_value.yaml global_value.orig

The default global_value.yaml file requires the user to make edits to the
masked values in the file. Masked values are denoted by six (6) ‘x’ as shown:
“xxxxxx”

All entries with the masked values must be changed to values that will be used
during the installation process. Below is an example edit of a snippet of the
global_value.yaml file, where the values for namespace and clusterName
are edited. (please use these values)

Using your editor of choice (vi, nano, pico etc.) please open the
global_value.yaml file such that we can edit it’s contents.

Before edit (these are examples - please substitute values that are appropriate
for your environment):

global:
 appVersion: "1.0.0"
 namespace: "xxxxxx"
 clusterName: "xxxxxx"

After edit: (Example 1)

global:
 appVersion: "1.0.0"
 namespace: "acumos-dev1"
 clusterName: "kind-acumos"

After edit: (Example 2)

global:
 appVersion: "1.0.0"
 namespace: "z2a-test"
 clusterName: "kind-acumos"

For entries in the global_value.conf file that have an existing entry, do
not edit these values as they are essential for correct installation.

Flow-1 Installation Process

To perform an installation of Acumos, we will need to perform the following
steps:

	Set the ACUMOS_HOME environment variable, change directory into the z2a/0-kind
directory, and execute the z2a/0-kind/0a-env.sh script.

ACUMOS_HOME=$HOME/src/system-integration
cd $HOME/src/system-integration/z2a/0-kind
./0a-env.sh

	After successful execution of the 0a-env.sh script, execute the z2a
0b-depends.sh script.

./0b-depends.sh

	Once the z2a 0b-depends.sh has completed, please log out of your session
and log back in. This step is required such that you (the installer) are
added to the docker group, which is required in the next step.

logout

	Once you are logged back into the VM, set the ACUMOS_HOME environment variable, change directory into the z2a/0-kind directory and execute the z2a 0a-env.sh script and then the 0a-cluster.sh script.

ACUMOS_HOME=$HOME/src/system-integration
cd $HOME/src/system-integration/z2a/0-kind
./0a-env.sh
./0c-cluster.sh

	After the z2a 0c-cluster.sh script has completed, we will need to check
the status of the newly created Kubernetes pods before we proceed with the
Acumos installation. We can ensure that all necessary Kubernetes pods are
running by executing this kubectl command.

kubectl get pods -A

	When all Kubernetes pods are in a Running state, we can proceed and
execute the 1-kind.sh script to install and configure Acumos.

cd $HOME/src/system-integration/z2a/1-acumos
./1-acumos.sh

	The last step is to check the status of the Kubernetes pods create during
the Acumos installation process.

kubectl get pods -A

When all Kubernetes pods are in a Running state, the installation of the
Acumos noncore and core components has been completed.

Flow-2 Installation Process

To perform an installation of Acumos using the Flow-2 technique, we will
need to perform the following steps:

NOTE: The global_value.yaml file must be edited to provide the correct
clusterName and namespace. Please refer to the previous section on
performing the edits to the global_value.yaml file.

	Set the ACUMOS_HOME environment variable, change directory into the z2a/0-kind
directory, and execute the z2a/0-kind/0a-env.sh script.

ACUMOS_HOME=$HOME/src/system-integration
cd $HOME/src/system-integration/z2a/0-kind
./0a-env.sh

	After successful execution of the 0a-env.sh script, execute the 1-kind.sh
script to install and configure Acumos.

cd $HOME/src/system-integration/z2a/1-acumos
./1-acumos.sh

	The last step is to check the status of the Kubernetes pods create during the
Acumos installation process.

kubectl get pods -A

When all Kubernetes pods are in a Running state, the installation of the Acumos noncore and core components has been completed.

Acumos Plugin Installation

MLWB

Machine Learning WorkBench is installed during the 2-plugins steps of the
installation process discussed in this document. Below are details of the
installation process.

Editing the mlwb_value.yaml File

NOTE: z2a includes an example value file for MLWB in the
$HOME/src/system-integration/z2a/dev1 directory. The MLWB example values
file is provided for both illustrative purposes and to assist in performing a quick
installation (see: TL;DR section). The example MLWB values file from that
directory could be used here and these edits are not required.

The commands to use the MLWB example values are:

ACUMOS_HOME=$HOME/src/system-integration
cp ${ACUMOS_HOME}/z2a/dev1/mlwb_value.yaml.mlwb ${ACUMOS_HOME}/helm-charts/mlwb_value.yaml

The MLWB example values can be used for a private development environment that
is non-shared, non-production and not exposed to the Internet. The values in
the MLWB example file are for demonstration purposes only

The mlwb_value.yaml file is located in the
$HOME/src/system-integration/helm_charts directory. We will need to change
directories into that location to perform the edits necessary to perform the
installation.

Before starting to edit the mlwb_value.yaml file, create a copy of the
original file just in case you need to refer to the original or to recreate
the file.

Here are the commands to execute to accomplish the next tasks.

cd $HOME/src/system-integration/helm-charts
cp mlwb_value.yaml mlwb_value.orig

The default mlwb_value.yaml file requires the user to make edits to the
masked values in the file. Masked values are denoted by six (6) ‘x’ as shown:
“xxxxxx”

Using your editor of choice (vi, nano, pico etc.) please open the
mlwb_value.yaml file such that we can edit it’s contents.

CouchDB - the following CouchDB values need to be populated in the
mlwb_value.yaml file before installation of the MLWB CouchDB dependency.

#CouchDB
acumosCouchDB:
 createdb: "true"
 dbname: "xxxxxx"
 host: "xxxxxx"
 port: "5984"
 protocol: "http"
 pwd: "xxxxxx"
 user: "xxxxxx"

JupyterHub - the following JupyterHub values need to be populated in the
mlwb_value.yaml file before installation of the MLWB JupyterHub dependency.

#JupyterHub
acumosJupyterHub:
 installcert: "false"
 storepass: "xxxxxx"
 token: "xxxxxx"
 url: "xxxxxx"
acumosJupyterNotebook:
 url: "xxxxxx"

NiFi - the following NiFi values need to be populated in the mlwb_value.yaml
file before installation of the MLWB NiFi dependency.

#NIFI
acumosNifi:
 adminuser: "xxxxxx"
 createpod: "false"
 namespace: "default"
 registryname: "xxxxxx"
 registryurl: "xxxxxx"
 serviceurl: "xxxxxx"

MLWB Installation

To perform an installation of MLWB, we will need to perform the following steps:

	set the ACUMOS_HOME environment variable

	change directory into the z2a/2-plugins directory

	execute the 2-plugins.sh script which install the MLWB dependencies and
the MLWB components

ACUMOS_HOME=$HOME/src/system-integration
cd $HOME/src/system-integration/z2a/2-plugins
./2-plugins.sh

Addendum

Additional Documentation

Below are links to supplementary sources of information.

Kind: https://kind.sigs.k8s.io/

For post-installation Machine Learning WorkBench configuration steps, please
see the MLWB section of the CONFIG.md document.

// Created: 2020/03/22
// Last modified: 2020/08/25

 README - Acumos plugins-setup scripts

README - Acumos plugins-setup scripts

Prerequisites

Setting up the environment

To run (execute) the z2a plugins-setup scripts in a standalone manner (i.e.
from a Linux CLI session), you must execute the 0-kind/0a-env.sh script
before you run any of the these scripts.

Assumption:

The Acumos system-integration repository has been cloned into: $HOME/src

To setup the environment, execute the following commands:

cd $HOME/src/system-integration/z2a
./0-kind/0-env.sh

ACUMOS_GLOBAL_VALUE

For the scripts in the plugins-setup directory to run stand-alone (i.e.
outside the z2a Flow-1 or Flow-2 context), the ACUMOS_GLOBAL_VALUE
environment variable MUST be set BEFORE executing make to install or
configure any of the defined targets in the noncore-config/Makefile.

If you have downloaded the Acumos system-integration repository from
gerrit.acumos.org then the following command would set the
ACUMOS_GLOBAL_VALUE environment variable:

export ACUMOS_GLOBAL_VALUE=$HOME/src/system-integration/helm-charts/global_value.yaml

Installing and Configuring Plugins

NOTE: At the time of this writing, only MLWB and it’s dependencies
(CouchDB, JupyterHub and NiFi) are included in the plugins-setup directory.

Installing and Configuring - CouchDB (MLWB Dependency)

Execute ./deploy.sh couchdb will install (and configure based on the
target script) CouchDB.

Installing and Configuring - JupyterHub (MLWB Dependency)

Execute ./deploy.sh jupyterhub will install (and configure based on the
target script) JupyterHub.

Installing and Configuring - NiFi (MLWB Dependency)

Execute ./deploy.sh nifi will install (and configure based on the target
script) NiFi.

Installing and Configuring - MLWB (ML WorkBench)

NOTE: The three (3) MLWB dependencies (CouchDB, JupyterHub, NiFi) should be
installed prior to the installation of MLWB.

Execute ./deploy.sh mlwb will install (and configure based on the target
script) MLWB.

// Created: 2020/04/28
// Last Edited: 2020/08/11

 README-PROXY

README-PROXY

If you are using z2a behind a proxy; here is the list of items that need to
be configured before you execute the z2a framework:

	user environment (.profile, .bashrc, .kshrc etc.)

	package manager application (apt for Ubuntu, yum/dnf for Redhat/CentOS)

	Docker client

	Docker service

	MITM (man-in-the-middle) SSL certificate considerations

User Environment

Configuration of end-user environments is beyond the scope of this document.
Numerous on-line resources exist which provide step-by-step details on how to
configure user environments to use proxy servers. Below is an example
one-line resource found with a simple Google search.

Shellhacks:
https://www.shellhacks.com/linux-proxy-server-settings-set-proxy-command-line/

NOTE: Check with your network administrator for the correct value/values for
your environment.

Package Manager Configuration

RedHat/CentOS (YUM/DNF)

For the DNF Package Manager – Fedora / CentOS/RHEL 8:

 $ sudo vim /etc/dnf/dnf.conf

 # Add
 proxy=http://proxyserver:port

For the YUM Package Manager - CentOS 6/7:

 $ sudo vim /etc/yum.conf

 # Add
 proxy=http://proxyserver:port

For RHEL users, you’ll also need to set the proxy for accessing RHSM content:

 $ sudo vi /etc/rhsm/rhsm.conf

 # Add
 proxy_hostname = proxy.example.com
 proxy_port = 8080

NOTE: If your proxy server requires authentication, also set these values in
the files noted above:

 # user name for authenticating to an HTTP proxy, if needed
 proxy_user =

 # password for basic HTTP proxy auth, if needed
 proxy_password =

These are the basic settings needed to use a proxy server to access the
Internet on CentOS/RHEL 7&8 and on Fedora Linux machines.

Ubuntu (APT)

To set proxy only for the APT package manager, perform the following
steps from the CLI:

 $ sudo nano /etc/apt/apt.conf.d/80proxy

 Acquire::http::proxy "http://proxy:port/";
 Acquire::https::proxy "https://proxy:port/";
 Acquire::ftp::proxy "ftp://proxy:port/";

Replace proxy:port with the correct IP address and port or the FQDN
and port for your proxy servers. If Authentication is required, set
the values like this:

 Acquire::http::proxy "http://<username>:<password>@<proxy>:<port>/";
 Acquire::https::proxy "https://<username>:<password>@<proxy>:<port>/";
 Acquire::ftp::proxy "ftp://<username>:<password>@<proxy>:<port>/";

These are the basic settings needed to use a proxy server to access the
Internet on Ubuntu Linux machines.

Docker Client

To configure the Docker client, please consult the Docker documentation at the
link provided below.

Docker Client: https://docs.docker.com/network/proxy/

Docker Service

To configure the Docker service, please consult the HTTP/HTTPS proxy
section of the Docker documentation at the link provided below.

Docker Service: https://docs.docker.com/config/daemon/systemd/

MITM (man-in-the-middle) SSL certificate considerations

// Created: 2020/06/16
// Last modified: 2020/10/05

 README-VALUES

README-VALUES

The standard method of setting values for Acumos using the z2a installation
method is to edit the global_value.yaml file. It should be noted, that there
are local override values that will need to set by editing other files.

Below are some examples of common value changes:

Nexus

For z2a using Flow-1 with an example values file, the default value for
Nexus persistent volume storage size is 8GB (8Gi). This value is large enough
to test with and not overly large for the recommended VM sizing.

To adjust the size of the Nexus persistent storage size, edit the following
value in the global_value.yaml file:

PVC
 acumosNexusPVCStorage: "8Gi"

// Created: 2020/10/05
// Last modified: 2020/10/06

 Zero-to-Acumos README

Zero-to-Acumos README

NOTE: Work in progress - subject to change.

In the Acumos system-integration repository, the z2a sub-directory contains
the scripts that perform installation actions based the flows described below.

Flow-1

Flow-1 consists of three (3) steps using the following scripts (and descriptions):

Step 0[a-c]
z2a/0-kind/0a-env.sh # z2a environment creation
z2a/0-kind/0b-depends.sh # dependency installation and setup
z2a/0-kind/0a-cluster.sh # Kubernetes ('kind') cluster creation
Step 1
z2a/1-acumos/1-acumos.sh # Acumos noncore and core component setup
Step 2 (optional)
z2a/2-plugins/2-plugins.sh # Acumos plugins setup (including dependencies)

NOTE: In Flow-1, the z2a environment creation script (01-env.sh) will have
to be executed during the initial setup and again after logging out and logging
back into the new session.

Flow-1 VM Requirements

	At the time of this writing, the Operating System installed on the VM must
be either RedHat/CentOS (v7 or greater, v8 recommended) or Ubuntu (18.04 or
greater, 20.04 recommended).

NOTE: earlier versions of RedHat/CentOS (v6) or Ubuntu (16.04) may be
sufficient to run the z2a installation, but they have not been tested.

NOTE: Version 0.8.1 of kind provides new cluster recovery capabilities.
kind v0.8.1 requires that the VM used be Ubuntu 20.04 or Centos 8 to
operate properly.

	Flow-1 VM Resource Sizing Recommendations

	four (4) vCPU (minimum)

	32GB of memory (minimum)

	80GB disk space (minimum) (~100GB+ for MLWB and other plugins)

	additional disk space for models (based on developer requirements)

	VM Distribution Recommendations

	git (source code tool)

	git is not installed by default by Linux distributions

	git must be installed to allow for Acumos repository replication

	yq (YAML processing tool)

	jq (JSON processing tool)

Miscellaneous Requirements

	A SSH client with port-forward/tunnel/proxy capabilities; such as:

	PuTTY (Windows SSH client)

	SecureCRT (MacOS SSH client)

	OpenSSH (Linux SSH client)

	For Flow-1 installation, the user must have sudo rights on the VM (i.e.
must exist in the /etc/sudoers file).

	For Flow-1, the VM requires Internet access such that OS updates, OS
supplemental packages and Helm chart installations can be performed. Either
the VM has proxied access to the Internet or the user must be able to
configure the proxy setting for the VM.

NOTE: internet proxy configurations are beyond the scope of the installation
documentation. Please see the README-PROXY.md document for assistance with
proxy configurations requirements.

Flow-1 Deployment

Flow One (Flow-1) performs a complete z2a Acumos installation including
environment creation, VM Operating System preparation, dependency installation,
Kubernetes cluster creation and deployment of Acumos noncore and core
components. Flow-1 is based on the original z2a process flow targeting
development/test environments where a Kubernetes cluster is build from scratch
on a single VM.

Flow 1 - Steps 0[a-c]-*

In the directory z2a/0-kind there are three (3) scripts which perform the
following tasks:

	End-user environment setup (0a-env.sh script)

	Linux distribution (RHEL/CentOS or Ubuntu) setup

	Dependency and OS tools installation (0b-depends.sh script)

	Kubernetes cluster creation (0c-cluster.sh script)

NOTE: Execution of the z2a/0-kind/0a-env.sh script creates and populates
environment variables necessary for proper operation of subsequent scripts.

NOTE: For 1st time users, the user performing the installation MUST log out
of their session after the successful completion of z2a/0-kind/0b-depends.sh
script. The logout is required such that the user (installer) can join the
docker group that has just been created.

Upon logging back into a session, the user (installer) will be a member of
the docker group and can proceed by re-executing the 0a-env.sh script
and then the 0c-cluster.sh script located in the
~/system-integration/z2a/0-kind directory. Any subsequent re-run of the
z2a/0-kind/0b-depends.sh script does not require the user to log out
(one time requirement).

Flow 1 - Step 1-acumos

In the directory z2a/1-acumos there is a single (1) script which performs:

	the installation of the Acumos non-core components (1-acumos.sh script)

	the installation of the Acumos core components (1-acumos.sh script)

Flow 1 - Step 2-plugins

In the directory z2a/2-plugins there is a single (1) script which performs:

	the installation of the Acumos plugin dependencies (2-plugins.sh script)

	the installation of the Acumos plugins (2-plugins.sh script)

Currently, the only Acumos plugin supported is MLWB (Machine Learning WorkBench).

Flow-2

Flow-2 consists of three (3) steps using the following scripts (and descriptions):

Step 0
z2a/0-kind/0a-env.sh # z2a environment creation
Step 1
z2a/1-acumos/1-acumos.sh # Acumos noncore and core component setup
Step 2 (optional)
z2a/2-plugins/2-plugins.sh # Acumos plugins setup (including dependencies)

Flow-2 Deployment

Flow Two (Flow-2) performs a z2a Acumos installation including environment
creation and deployment of Acumos noncore and core components. Flow-2 is based
on the original z2a process flow, but is targeted at Acumos installations
onto a Kubernetes cluster that is already built and ready for application
installation.

Flow 2 - Step 0a

In the directory z2a/0-kind there is one (3) script which perform the
following task:

	End-user environment setup (0a-env.sh script)

NOTE: Execution of the z2a/0-kind/0a-env.sh script creates and populates
environment variables necessary for proper operation of subsequent scripts.

Flow 2 - Step 1-acumos

In the directory z2a/1-acumos there is a single (1) script which performs:

	the installation of the Acumos non-core components (1-acumos.sh script)

	the installation of the Acumos core components (1-acumos.sh script)

Flow 2 - Step 2-plugins

In the directory z2a/2-plugins there is a single (1) script which performs:

	the installation of the Acumos plugin dependencies (2-plugins.sh script)

	the installation of the Acumos plugins (2-plugins.sh script)

Currently, the only Acumos plugin supported is MLWB (Machine Learning WorkBench).

Known Issues

ISSUE: At the time of this writing, the kind (Kubernetes in Docker) cluster
does not persist across a VM reboot OR a Docker service reconfigure/restart
operation. Development activities to add this cluster recovery capability are
being performed by the upstream developers. At this time, if (for some reason)
the VM is rebooted or the Docker service is restarted, portions of the z2a
installation process must be executed again and any “work” may be lost. End-users
must ensure that they have any work performed in the current z2a environment
saved outside of z2a.

NOTE: Version 0.8.1 of kind provides new cluster recovery capabilities.
kind v0.8.1 requires Ubuntu 20.04 or Centos 7/8 to install correctly and
operate properly.

ISSUE: z2a performs post-installation component configuration. The z2a
scripts perform a complete installation of Acumos and where automation can be
applied, automated configuration is performed. As z2a matures, additional
post-installation configuration will be added to configurations that can be
easily maintained.

At this time, automated configuration of only the following components is
being performed:

	MariaDB (for Common Data Services)

	Sonatype Nexus

	Kong (and PostgreSQL)

	Note: Kong has been deprecated. Replaced with native k8s ingress w/ Nginx.

	Nginx (for k8s ingress and native service proxies)

// Created: 2020/03/20
// Last modified: 2020/12/18

 START HERE

START HERE

For those unfamiliar with Acumos and by extension z2a, this is a quick intro.
If you are here, you may know what Acumos is but you probably don’t know:

	what is z2a?

	where do I start with z2a?

What is z2a

Zero-to-Acumos (z2a) is a collection of Linux shell scripts that have been assembled to perform a simple set of tasks: install and (where possible) configure Acumos.

z2a is composed of two (2) distinct process flows; Flow-1 and Flow-2. In each flow scenario, installation of additional Acumos plugins is optional as a follow-on procedure.

What is z2a Flow-1

z2a Flow-1 (default) performs an Acumos installation including:

	end-user environment creation;

	VM Operating System preparation;

	z2a dependency installation;

	Kubernetes cluster creation; and,

	deployment of Acumos noncore and core components on a single VM.

z2a Flow-1 is based on the original z2a process flow targeting development/test environments where a Kubernetes cluster is built and Acumos is installed from scratch on a single VM.

NOTE: z2a (Flow-1) should not be used as a production environment deployment tool at this time. z2a (Flow-1) has been primarily designed for development and/or test environment installations. Currently, a key component of z2a (Flow-1), kind - Kubernetes in Docker - is not recommended for production installation or production workloads.

What is z2a Flow-2

z2a Flow-2 performs an Acumos installation including:

	end-user environment creation;

	z2a dependency installation;

	deployment of Acumos noncore and core components on an existing Kubernetes cluster.

The second process flow is a new z2a process flow targeting pre-built Kubernetes cluster environments. (i.e. BYOC - Bring Your Own Cluster)

Where do I start with z2a

If you just want to start installing Acumos, refer to the TL;DR sections of the INSTALL.md document. The TL;DR sections provide abbreviated installation guides for Acumos and Acumos plugins.

Please refer to the following documents for additional information:

CONFIG.md - Acumos configuration information document (in progress)

DIR-Listing.md - Directory Listing document

FAQ.md - Frequently Asked Questions document

HOWTO.md - Acumos task document (in progress)

INSTALL.md - Acumos installation document (in progress)

README-PLUGINS-SETUP.md - Acumos Plugin setup guidance document (in progress)

README-PROXY.md - proxy configuration guidance (in progress)

README-VALUES.md - changing values for various subsystems (in progress)

README.md - project README file (in progress)

START-HERE.md - brief Acumos introduction document (this document - in progress)

TL-DR.md - Too Long; Didn’t Read (extracted from INSTALL.md)

// Created: 2020/06/23
// Last modified: 2020/10/21

 TL;DR

TL;DR

TL;DR - Choose a Flow

If you have:

	a vanilla VM (fresh install, no additional tools installed);

	need to build a k8s cluster; and,

	want to install Acumos (and optional plugins), then choose Flow-1.

If you have:

	a pre-built k8s cluster; and,

	want to install Acumos (and optional plugins), then choose Flow-2.

TL;DR - README-PROXY

If you are running z2a in an environment that requires a proxy, you may need
to configure various items to use that proxy BEFORE you run z2a.

NOTE: You may also need to consult your systems/network administration team
for the correct proxy values.

Please consult the README-PROXY document for details on the various items that
will require configuration and links to resources that will assist in the
configuration tasks.

TL;DR (Flow-1)

Obtain a Virtual Machine (VM) with sudo access ; Login to VM
Note: /usr/local/bin is a required element in your $PATH

Install 'git' distributed version-control tool
Install 'jq' JSON file processing tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
sudo yum install -y git jq
For Debian-based distributions such as Ubuntu, execute the following command:
sudo apt-get install --no-install-recommends -y git jq

Make src directory ; change directory to that location
mkdir -p $HOME/src ; cd $HOME/src
clone Acumos 'system-integration' repo
git clone https://gerrit.acumos.org/r/system-integration

set ACUMOS_HOME environment variable
ACUMOS_HOME=$HOME/src/system-integration
Change directory
cd $ACUMOS_HOME/z2a

Choose one of the following methods to create a global_value.yaml file

Method 1 - example values
#
To use the example global_value.yaml file;
copy the example values from z2a/dev1 to the helm-charts directory
cp ./dev1/global_value.yaml.dev1 ../helm-charts/global_value.yaml

Method 2 - customized values
#
To use a customized global_value.yaml file;
edit $HOME/src/system-integration/helm-charts/global_value.yaml
using an editor and command similar to this:
vi $HOME/src/system-integration/helm-charts/global_value.yaml

Once the global_value.yaml file has been copied or edited;
you can proceed with the installation

Execute 0-kind/0a-env.sh (setup user environment)
./0-kind/0a-env.sh
Execute 0-kind/0b-depends.sh (install / configure dependencies)
./0-kind/0b-depends.sh

LOG OUT OF SESSION ; LOG IN TO NEW SESSION
... this step is required for Docker group inclusion
Reinitialize the user z2a environment
Execute 0-kind/0c-cluster.sh (build and configure k8s cluster)
ACUMOS_HOME=$HOME/src/system-integration
cd $ACUMOS_HOME/z2a
./0-kind/0a-env.sh
./0-kind/0c-cluster.sh

Ensure all k8s Pods created are in a 'Running' state.
kubectl get pods -A
Execute 1-acumos.sh (install / configure noncore & core Acumos components)
./1-acumos/1-acumos.sh

If Acumos plugins are to be installed in a new session:
Uncomment the ACUMOS_HOME line below and paste it into the command-line
ACUMOS_HOME=$HOME/src/system-integration

To install Acumos plugins ; proceed here
cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml.mlwb $ACUMOS_HOME/helm-charts/mlwb_value.yaml
Execute 2-plugins.sh (install / configure Acumos plugins and dependencies)
./2-plugins/2-plugins.sh

TL;DR (Flow-2)

To execute Flow-2, we will use a VM-based host for command & control
Note: You MAY require sudo access on the command & control VM to allow you to install git
Note: /usr/local/bin is a required element in your $PATH

Login to the VM

Install 'git' distributed version-control tool
Install 'jq' JSON file processing tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
sudo yum install -y git jq
For Debian-based distributions such as Ubuntu, execute the following command:
sudo apt-get install --no-install-recommends -y git jq

Make src directory ; change directory to that location
mkdir -p $HOME/src ; cd $HOME/src
clone Acumos 'system-integration' repo
git clone https://gerrit.acumos.org/r/system-integration

set ACUMOS_HOME environment variable
ACUMOS_HOME=$HOME/src/system-integration
Change directory
cd $ACUMOS_HOME/z2a

Choose one of the following methods to create a global_value.yaml file

Method 1 - example values
#
To use the example global_value.yaml file;
copy the example values from z2a/dev1 to the helm-charts directory
cp ./dev1/global_value.yaml.dev1 ../helm-charts/global_value.yaml

Method 2 - customized values
#
To use a customized global_value.yaml file;
edit $HOME/src/system-integration/helm-charts/global_value.yaml
using an editor and command similar to this:
vi $HOME/src/system-integration/helm-charts/global_value.yaml

Once the global_value.yaml file has been copied or edited;
you can proceed with the installation

Execute 0-kind/0a-env.sh (setup user environment)
./0-kind/0a-env.sh

Ensure all k8s Pods are in a 'Running' state.
kubectl get pods -A
Execute 1-acumos.sh (install / configure noncore & core Acumos components)
./1-acumos/1-acumos.sh

If Acumos plugins are to be installed in a new session:
Uncomment the ACUMOS_HOME line below and paste it into the command-line
ACUMOS_HOME=$HOME/src/system-integration

To install Acumos plugins ; proceed here
cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml.mlwb $ACUMOS_HOME/helm-charts/mlwb_value.yaml
Execute 2-plugins.sh (install / configure Acumos plugins and dependencies)
./2-plugins/2-plugins.sh

// Created: 2020/07/28
// Last modified: 2020/08/12

 0-kind - README

0-kind - README

This is the directory for the 0-kind stage of z2a.

Shell Scripts

This directory contains the following scripts for z2a:

Script name and purpose
0a-env.sh # z2a environment creation
0b-depends.sh # dependency installation and setup
0c-cluster.sh # Kubernetes ('kind') cluster creation

Files

This directory contains the following files for z2a:

kind.config.tpl # kind cluster configuration template
proxy.txt # proxy configuration file
README.md # this markdown document

Sub-directories

This directory contains the following sub-directories for z2a:

z2a-k8s-dashboard

Directory containing Kubernetes dashboard that is deployed into the kind (Kubernetes in Docker) cluster. (0c-cluster.sh script only)

z2a-k8s-metallb

Directory containing MetalLB load-balancer that is deployed into the kind (Kubernetes in Docker) cluster. (0c-cluster.sh script only)

// Created: 2020/03/20
// Last modified: 2020/08/11

 1-acumos - README

1-acumos - README

This is the README for the 1-acumos stage of z2a.

Shell Scripts

This directory contains the following scripts for z2a:

Script name and purpose
1-acumos.sh # Acumos noncore and core helm chart installation

Files

This directory contains the following files for z2a:

README.md # this markdown document

Last Edited: 2020-05-19

 2-plugins - README

2-plugins - README

This is the README for the 2-plugins stage of z2a.

Shell Scripts

This directory contains the following scripts for z2a:

Script name and purpose
2-plugins.sh # Acumos plugin dependency and plugin installation

Files

This directory contains the following files for z2a:

README.md # this markdown document

Last Edited: 2020-05-19

 mlwb-k8s-native - README

mlwb-k8s-native - README

This is the directory for mlwn-k8s-native plugin recipe.
NOTE: experimental

\\ Created: 2020-09-09
\\ Last Edited: 2020-09-09

 README - Acumos noncore-config scripts

README - Acumos noncore-config scripts

Prerequisites

To run (execute) the z2a Phase 2 noncore-config scripts in a standalone
manner (i.e. from a Linux CLI session), the following tools are required:

	git (distributed version control system)

	jq (JSON file processing tool)

	make (the software build automation tool)

	socat (seems Ubuntu may not install by default)

	yq (YAML file processing tool)

Installing Prerequisites

If the above prerequisites are missing, you will need to install the above
prerequisites. To install these prerequisites, execute the following commands:

NOTE: sudo (elevated privileges may be required)

For Redhat/CentOS
 sudo yum install -y --setopt=skip_missing_names_on_install=False git jq make socat yq

Ubuntu Distribution misc. requirements
 sudo apt-get update -y && sudo apt-get install --no-install-recommends -y git jq make socat yq

Setting up the environment

To run (execute) the z2a noncore-config scripts in a standalone manner
(i.e. from a Linux CLI session), you must execute the 0-kind/0a-env.sh
script before you run any of the these scripts.

Assumption:

The Acumos system-integration repository has been cloned into: $HOME/src

To setup the environment, execute the following commands:

 cd $HOME/src/system-integration/z2a
 ./0-kind/0-env.sh

ACUMOS_GLOBAL_VALUE

For the scripts in the noncore-config directory to run stand-alone
(i.e. outside the z2a Flow-1 or Flow-2 context), the ACUMOS_GLOBAL_VALUE
environment variable MUST be set BEFORE executing make to install or
configure any of the defined targets in the noncore-config/Makefile.

If you have downloaded the Acumos system-integration repository from
gerrit.acumos.org then the following command would set the
ACUMOS_GLOBAL_VALUE environment variable:

Assumption:

The Acumos system-integration repository has been cloned into: $HOME/src

To setup the environment, execute the following commands:

 export ACUMOS_GLOBAL_VALUE=$HOME/src/system-integration/helm-charts/global_value.yaml

Installing the Configuration Helper - config-helper (OPTIONAL)

NOTE: ‘config-helper’ is an optional component of ‘z2a’. ‘config-helper’
installs a ‘helper’ pod in the Kubernetes cluster that is configured with
a number of troubleshooting tools (traceroute, ping, dig, nn
… etc.). ‘config-helper’ is not required to be installed for
subsequent scripts in this directory to execute properly.

To install the configuration helper pod, execute the following command:

 make config-helper

Installing & Configuring - Ingress (work in progress)

To configure Ingress (only), execute the following command:

 make config-ingress

To install Ingress (only), execute the following command:

 make install-ingress

To install and configure Ingress, execute the following command:

 make ingress

Installing & Configuring - Mariadb-CDS (MariaDB for Common Data Services (CDS))

To configure MariaDB-CDS (only), execute the following command:

 make config-mariadb-cds

To install MariaDB-CDS (only), execute the following command:

 make install-mariadb-cds

To install and configure MariaDB-CDS, execute the following command:

 make mariadb-cds

Installing & Configuring - Nexus

To configure Nexus (only), execute the following command:

 make config-config

To install Nexus (only), execute the following command:

 make install-nexus

To install and configure Nexus, execute the following command:

 make nexus

// Created: 2020/04/28
// Last Edited: 2020/08/11

 License Manager README

License Manager README

NOTE: Placeholder for the License Manager README file.

 Nexus-Chart-README

Nexus-Chart-README

For the older Nexus Helm Chart where admin.password is stored on the POD ;
you can edit the NAMESPACE and execute the following code to retrieve the
password.

NAMESPACE="xxxxxx"
POD=$(kubectl get pods --namespace=$NAMESPACE | awk '/acumos-nexus/ {print $1}')
kubectl exec -it $POD --namespace=$NAMESPACE -- /bin/cat /nexus-data/admin.password

One you have the password - edit the config-nexus.sh script and replace the
default password (admin123) with the retrieved password.

// Created: 2020/05/14
// Last Edited: 2020/07/30

 License Usage Manager README

License Usage Manager README

NOTE: Placeholder for the License Usage Manager README file.

 z2a/dev1 README.md

z2a/dev1 README.md

This directory contains various example values files.

Sub-directories

	skel - this directory contains skeleton files for adding new noncore
components and plugins

Files

This directory contains the following files for z2a:

README.md # this file
global_value.yaml.dev1 # global_value file for namespace=acumos-dev1
global_value.yaml.z2a-test # global_value file for namespace=z2a-test
mlwb_value.yam.mlwb # mlwb value file for namespace=mlwb

Note: future versions of value files in this directory will have an
explicit namespace per component as Acumos moves to a more ‘cloud native’
deployment strategy

\\ Created: 2020-06-16
\\ Last Edited: 2020-08-31

 <no title>

 This folder will include Grafana dashboards pre-verified for compatibility
with Grafana as deployed for monitoring Acumos kubernetes installations.

 Acumos System Integration - Dependencies

Acumos System Integration - Dependencies

The /dependencies directory contains all the noncore components required to
install the Acumos platform.

NOTE: the full directory path is: /system-integration/helm-charts/dependencies.
In the following instructions, the directory path is abbreviated to /dependencies
for brevity.

Installation - All Components

The /dependencies directory contains a single Helm chart named
k8s-noncore-chart. This umbrella chart can be deployed using the following
command and will install all noncore components required by the Acumos platform.

helm install -name k8s-noncore-chart --namespace $NAMESPACE \
 ./k8s-noncore-chart -f ../global_value.yaml

	where $NAMESPACE is the Kubernetes namespace where the noncore components
will be installed.

Removal - All Components

To remove the noncore deployment including all the sub-charts, execute the
following command:

helm delete -name k8s-noncore-chart --namespace $NAMESPACE

	where $NAMESPACE is the Kubernetes namespace where the noncore components were installed.

Installation - Single Component

Installation of a single noncore component can be accomplished by changing
directory to the /dependencies/k8s-noncore-chart/charts directory and
executing the following command:

helm install -name $CHARTNAME --namespace $NAMESPACE ./$CHARTNAME/ \
 -f ../../../global_value.yaml

	where $CHARTNAME is one of the following charts:

	k8s-noncore-docker

	k8s-noncore-elasticsearch

	k8s-noncore-kibana

	k8s-noncore-kong (deprecated - to be removed in the future)

	k8s-noncore-logstash

	k8s-noncore-proxy

	where $NAMESPACE is the Kubernetes namespace where the individual noncore
component will be installed.

Removal - Single Component

Removal of a single noncore component can be accomplished by executing the
following command:

helm delete -name $DEPLOYMENTNAME --namespace $NAMESPACE

	where $DEPLOYMENTNAME is the deployment name of the noncore chart

	where $NAMESPACE is the Kubernetes namespace where the individual noncore
component was installed.

NOTE: At the time of this writing, the chart name and the component
deployment name may differ as the charts are being aligned with more
standard opensource naming conventions. Below is the current chart name
to deployment name mapping.

Chart Name	Deployment Name
————————–	:———————-
k8s-noncore-docker	acumos-docker
k8s-noncore-elasticsearch	elasticsearch
k8s-noncore-kibana	kibana
k8s-noncore-kong	acumos-kong-deployment (deprecated)
k8s-noncore-logstash	logstash
k8s-noncore-proxy	acumos-proxy

// Created: 2020/02/20
// Last modified: 2020/08/25

 <no title>

README-kong.md

NOTE: Kong has been deprecated as an ingress controller solution for Acumos, but not abandoned. Kong will be moved into an ingress-solutions folder in the future such that end-users of Kong will still have a recipe for using Kong with Acumos.

// Created: 2020/08/21
// Last modified: 2020/08/21

 helm-charts Directory Listing

helm-charts Directory Listing

Directories

helm-charts/common-data-svc

helm-charts/ds-compositionengine

helm-charts/federation

helm-charts/license-manager

helm-charts/license-usage-manager

helm-charts/microservice-generation

helm-charts/onboarding

helm-charts/portal-be

helm-charts/portal-fe

helm-charts/prerequisite

// Created: 2020/08/25
// Last modified: 2020/08/25

 System Integration

System Integration

	System Integration Release Notes
	Version 4.0.0, 10 Jun 2020

	Version 3.0.3, 19 Dec 2019

	Version 3.0.2, 19 Dec 2019

	Version 3.0.1, 10 Dec 2019

	Version 3.0.0, 13 Sep 2019

	Version 2.4.0, 15 Aug 2019

	Version 2.3.0, 11 July 2019

	Version 2.2.0, 23 April 2019

	Version 2.1.0, 29 March 2019

	Version 2.0.1, 23 January 2019

	Version 1.0.4, 14 November 2018

	Version 1.0.3, 31 October 2018

	Version 1.0.2, 24 October 2018

	Version 1.0.1, 11 October 2018

	Version 1.0.0, 5 October 2018

	Version 0.8, 22 September 2018

	Version 0.7, 24 August 2018

	Version 0.6, 13 August 2018

	Version 0.5, 16 May 2018

	Version 0.4, 17 April 2018

	Version 0.3, 27 March 2018

	Version 0.2, 13 March 2018

	Version 0.1, 9 March 2018

	START HERE
	What is z2a?

	What is z2a Flow-1?

	What is z2a Flow-2?

	Where do I start with z2a?

	TL;DR
	Choose a Flow

	README-PROXY

	Flow-1

	Flow-2

	Zero-to-Acumos (z2a) Installation Guide
	Overview

	Guide to z2a Deployment

	Getting Started

	Acumos Plugin Installation

	Addendum

	README-PROXY
	User Environment

	Package Manager Configuration

	Docker

	MITM (man-in-the-middle) SSL certificate considerations

	README-PLUGINS-SETUP
	Prerequisites

	Setting up the environment

	Installing and Configuring Plugins

	z2a Configuration Information
	Acumos Configuration Tasks

	HOW TO
	How to install Acumos from scratch on a VM with kind using z2a (default - Flow-1)

	How to install Acumos onto an existing k8s cluster using z2a (Flow-2)

	How to pre-configure an existing k8s component

	How to re-configure an existing k8s component

	How to add a new plugin to be installed (no pre/post configuration)

	How to add a new plugin to be installed and configured

	Troubleshooting

	One Click Deploy User Guide
	1. Acumos OneClick / All-in-One (AIO) User Guide

	2. Release Scope

	3. Deployment Step-by-Step Guide

	4. Logs Location

	5. Security Considerations

	6. Debugging Hints

	7. Known Issues

	Acumos OneClick / All-in-One (AIO) Configuration Guide
	Core Platform configuration

	MLWB configuration

	MariaDB configuration

	Nexus configuration

	ELK Stack configuration

	Acumos OneClick / All-in-One (AIO) Developer Guide
	Quickstart for new Developers/Users

	Target environment diversity

	Layered tools that support distinct roles

	Leverage upstream projects

	Leverage state-of-the-art deployment tools

	Selection of which components to deploy

	Various platform lifecycle use cases

	Maintain platform state across deployments

	Minimize platform service external exposure

	Use a consistent naming/allocation scheme for resources

	Search Page

 System Integration Release Notes

System Integration Release Notes

Version 4.0.0, 10 Jun 2020

	Helm Chart refactor

	Separate Helm chart for each Acumos component

	separate charts for core and non-core components

	separate z2a structure for Acumos plugins (currently only MLWB is supported)

	Consolidate and sanitize key/values into global_value.yaml file

	Add secrets to Helm charts for secure communication between k8s cluster components

	Zero-to-Acumos (z2a) Initial Release

	Acumos installation/configuration automation

	Flow (process) based model

	Flow-1 - build k8s cluster and install Acumos on a single VM

	Flow-2 - install Acumos on a pre-built k8s cluster

	z2a documentation

Version 3.0.3, 19 Dec 2019

	ACUMOS-3862: Update to weekly assembly Acumos_Clio_1912161300 [https://jira.acumos.org/browse/ACUMOS-3862]

	6162: Update to weekly assembly Acumos_Clio_1912161300 [https://gerrit.acumos.org/r/#/c/system-integration/+/6162/]

Version 3.0.2, 19 Dec 2019

	ACUMOS-3842: Fix Azure-AKS deployment [https://jira.acumos.org/browse/ACUMOS-3842]

	6159: Support Azure CLI env for install [https://gerrit.acumos.org/r/#/c/system-integration/+/6159/]

	6132: Federation via LoadBalancer for Azure-AKS [https://gerrit.acumos.org/r/#/c/system-integration/+/6132/]

	6117: Fix Azure-AKS deployment regression [https://gerrit.acumos.org/r/#/c/system-integration/+/6117/]

Version 3.0.1, 10 Dec 2019

	ACUMOS-3755: Add docker-compose files for License Profile and RTU editors [https://jira.acumos.org/browse/ACUMOS-3755]

	ACUMOS-3710: AIO update for Acumos_Clio_1911291230 [https://jira.acumos.org/browse/ACUMOS-3710]

	ACUMOS-3658: mlwb-notebook - not starting with AIO [https://jira.acumos.org/browse/ACUMOS-3658]

	ACUMOS-3648: Pods must be capable of running in non-privileged mode [https://jira.acumos.org/browse/ACUMOS-3648]

	ACUMOS-3469: RTU Editor as service [https://jira.acumos.org/browse/ACUMOS-3469]

	ACUMOS-3208: Improved support for multi-node k8s clusters and component distribution [https://jira.acumos.org/browse/ACUMOS-3208]

	ACUMOS-3205: Platform deployment usability/reliability enhancements [https://jira.acumos.org/browse/ACUMOS-3205]

	ACUMOS-3177: ML Workbench Model Mapping Service [https://jira.acumos.org/browse/ACUMOS-3177]

	ACUMOS-3134: Jenkins as a workflow engine as a standing or on-demand k8s service [https://jira.acumos.org/browse/ACUMOS-3134]

	ACUMOS-3133: Migrate Solution/Pipeline deployment to Jenkins-based process [https://jira.acumos.org/browse/ACUMOS-3133]

Version 3.0.0, 13 Sep 2019

	monitoring resource utilization in kubernetes (ACUMOS-3069 [https://jira.acumos.org/browse/ACUMOS-3069])

	Monitor resource usage in K8 (ACUMOS-3162 [https://jira.acumos.org/browse/ACUMOS-3162])

All-in-One (OneClick Deploy)

Version 2.4.0, 15 Aug 2019

This release adds final enhancements to the Boreas maintenance release.

	4851: Boreas maintenance release wrap-up [https://gerrit.acumos.org/r/#/c/system-integration/+/4851/]

	ACUMOS-3212 Boreas maintenance release [https://jira.acumos.org/browse/ACUMOS-3212]

	Includes these enhancements:

	portal-be: enable publication feature with AIO setup

	Update to release assembly Acumos_1907311600

	Support platform deployment for k8s cluster tenants

	minimize nodeport use

	enable dynamic nodeport assignment

	merge prep scripts to minimize process variance

	select whether to create PVc

	select whether to bind PVCs to specific PVs

	reorder component deployments to ensure dependencies

	make ingress controller / ingress object creation optional

	clean resources specifically instead of deleting namespaces

	Update clean.sh

	Support prep|setup|clean action in all component scripts

	Use docker:18-dind to avoid issues with 19-dind

	Add qanda element to portal-be springenv

	Parameterize wait times

	Pre-pull images

	Update user guide

	Add aio_k8s_deployer (containerized k8s deployment tool)

	Update AIO support in OpenShift (NOTE: WIP for ingress control)

Version 2.3.0, 11 July 2019

This release completes the Boreas maintenance release, to the extent that open
issues and work in progress have been completed.

	4374: Integrate MLWB components [https://gerrit.acumos.org/r/#/c/system-integration/+/4374/]

	Delivered JIRA items

	ACUMOS-2194: Integrate Jupyter notebook with Acumos Portal [https://jira.acumos.org/browse/ACUMOS-2194]

	ACUMOS-2491: Integrate Nifi with Acumos Portal [https://jira.acumos.org/browse/ACUMOS-2491]

	ACUMOS-2714: Deploy security-verification component [https://jira.acumos.org/browse/ACUMOS-2714]

	ACUMOS-2715: Support Helm use in Openshift deployments [https://jira.acumos.org/browse/ACUMOS-2715]

	ACUMOS-2716: Add option for docker-on-host to address Azure-k8s issues [https://jira.acumos.org/browse/ACUMOS-2716]

	ACUMOS-2717: Update to weekly assembly Acumos_1904021700 [https://jira.acumos.org/browse/ACUMOS-2717]

	ACUMOS-2718: Add input parameter check and usage help to scripts [https://jira.acumos.org/browse/ACUMOS-2718]

	ACUMOS-2721: Add scripts enabling redeployment of specific components [https://jira.acumos.org/browse/ACUMOS-2721]

	ACUMOS-2871: Update to weekly assembly Acumos_1904301100 [https://jira.acumos.org/browse/ACUMOS-2871]

	Additionally delivers enhancements

	Images per Boreas release assembly

	more complete parameterization of templates

	configuration of mail service

	general refactoring and updates for design consistency/reliability

	improve support for cluster-externally deployed components

	align ELK-stack and beats deployment with azure-k8s templates etc

	add log level option for all springboot components

	add user to docker group

	add option to cleanup/re-pull docker images on component redeploy

	replace kong with nginx ingress controller for k8s

	fix lack of delete privilege for Nexus RW user

	enable artifact overwrite (“redeploy”) in Nexus

	customize catalog names to avoid conflict between Acumos platforms

	add ELK-client deployment

	update demo Jupyter notebook

	add tests/delete_user.sh

	add tests/license_scan.sh

	update test scripts for new catalog based publication design

	add tools/setup_k8s_stack.sh

	add tools/trust_cert.sh

Version 2.2.0, 23 April 2019

This release completes the planned work for the Boreas release, minus any items
not delivered so far and on the candidate list for deferral to Clio. Further
releases in Boreas will align the AIO tools with the latest weekly releases,
address bugs, and any remaining items that can’t be deferred.

	Release 2.2.0 [https://gerrit.acumos.org/r/#/c/4231/]

	Update to weekly assembly Acumos_1904021700 [https://gerrit.acumos.org/r/#/c/4089/]

	Deliver JIRA items

	ACUMOS-2714: Deploy security-verification component [https://jira.acumos.org/browse/ACUMOS-2714]

	ACUMOS-2715: Support Helm use in Openshift deployments [https://jira.acumos.org/browse/ACUMOS-2715]

	ACUMOS-2716: Add option for docker-on-host to address Azure-k8s issues [https://jira.acumos.org/browse/ACUMOS-2716]

	ACUMOS-2717: Update to weekly assembly Acumos_1904021700 [https://jira.acumos.org/browse/ACUMOS-2717]

	ACUMOS-2718: Add input parameter check and usage help to scripts [https://jira.acumos.org/browse/ACUMOS-2718]

	ACUMOS-2721: Add scripts enabling redeployment of specific components [https://jira.acumos.org/browse/ACUMOS-2721]

Version 2.1.0, 29 March 2019

This release is the first step in the refactoring of the AIO toolset to support
these goals:

	separation of user roles for target hosts (admin vs user)

	Helm-based component deployment

	discrete deployment of prerequisites, supplemental components, and core
components

The process for deploying the AIO platform has changed. Please review the
One Click Deploy User Guide [https://docs.acumos.org/en/latest/submodules/system-integration/docs/oneclick-deploy/index.html]
for updated instructions.

	Fix release notes link [https://gerrit.acumos.org/r/#/c/4047/]

	AIO upgrade to CDS 2.0 [https://gerrit.acumos.org/r/#/c/3897/]

	Delivers JIRA items

	ACUMOS-2601: AIO upgrade to CDS 2.0 [https://jira.acumos.org/browse/ACUMOS-2601]

	ACUMOS-2587: Deploy MariaDB via Helm [https://jira.acumos.org/browse/ACUMOS-2587]

	ACUMOS-2360: Ability to Re-Use Jupyter native capabilities [https://jira.acumos.org/browse/ACUMOS-2360]

	ACUMOS-2365: AIO deploys new ML Workbench components [https://jira.acumos.org/browse/ACUMOS-2365]

	ACUMOS-2571: Deploy Zeppelin [https://jira.acumos.org/browse/ACUMOS-2571]

	ACUMOS-2572: Helm chart for Zeppelin [https://jira.acumos.org/browse/ACUMOS-2572]

	ACUMOS-2331: Deploy JupyterHub [https://jira.acumos.org/browse/ACUMOS-2331]

	ACUMOS-2334: Helm chart for JupyterHub [https://jira.acumos.org/browse/ACUMOS-2334]

	ACUMOS-2126: Expanded uses for docker-proxy [https://jira.acumos.org/browse/ACUMOS-2126]

	ACUMOS-2121: User-level authentication for docker-proxy [https://jira.acumos.org/browse/ACUMOS-2121]

	ACUMOS-2122: Authenticate docker-proxy users as Acumos platform users [https://jira.acumos.org/browse/ACUMOS-2122]

	ACUMOS-2639: acumos AIO sudo/non-sudo install fails [https://jira.acumos.org/browse/ACUMOS-2639]

	ACUMOS-2145: setup_k8s.sh compatibility with Ubuntu 18.04 [https://jira.acumos.org/browse/ACUMOS-2145]

	Refactor into prereqs script (for admin) and deploy script for user
(non-sudo)

	Add prep/deploy wrapper scripts for admin and normal user

	Add Jupyter, Zeppelin, and NiFi baseline deploy

	Deploy MariaDB and Elk via Helm

	Reduce use of nodeports; route external access thru kong if possible

	Address public cloud use case (hostname different from domain name)

	Update user guide

	Add acumos_auth.py as 1st pass on user-level auth for docker-proxy

	Add docker-proxy README.md

	Add kong-configure job to secure kong admin setup

	Refocus peer-test.sh to peer relationship/subscription role

	Add add-host-alias.sh to update federation etc hosts aliases

	Add acumos_auth.py to docker-proxy service

	ACUMOS-2049: system-integration toolset use by non-admin users [https://jira.acumos.org/browse/ACUMOS-2049]

	Delivers Jira items

	ACUMOS-2050: Platform deployment by k8s tenants [https://jira.acumos.org/browse/ACUMOS-2050]

	break out elk-stack components for separate deployment

	script host introspection (k8s tenant machine, or target host)

	refactor all scripts to use kubectl/oc from cluster-remote machine

	differentiate k8s user role (admin or tenant)

	expand acumos-env.sh values set in oneclick_deploy.sh

	use “source” vs “bash” internally to reuse env across scripts

	avoid building docker images (tenants can’t use non-secure registries)

	remove unneeded OUTPUT and WEBONBOARDING PVs

	make clean.sh independent of acumos-env.sh, improve reliability

	only create PVs if the user is an admin

	use configmaps where possible to avoid need for PV-staged config data

	add ACUMOS_MARIADB_VERSION env variable

	avoid re-configuration of user’s workstation where possible

	migrate tools from kubernetes-client repo

	ACUMOS-2512: Move End User Guides Back to Component Repos so Projects have sole control [https://jira.acumos.org/browse/ACUMOS-2512]

	Add oneclick-deploy content [https://gerrit.acumos.org/r/#/c/3770/]

	ACUMOS-2424: AIO support for user-supplied CA and server certs [https://jira.acumos.org/browse/ACUMOS-2424]

	AIO support for user-supplied CA and server certs [https://gerrit.acumos.org/r/#/c/3679/]

Version 2.0.1, 23 January 2019

This is the first draft release for Acumos Boreas.

	ACUMOS-2301: Oneclick deployment of Acumos on OpenShift [https://jira.acumos.org/browse/ACUMOS-2301]

	Fix reference to federation-service [https://gerrit.acumos.org/r/#/c/3629/]

	Fix missed bug in the last commit. Portal-BE needs to reference
federation-service by domain name rather than internal name, since it
may be deployed outside the local cluster and thus is exposed at a
nodePort, for which using the cluster-internal name does not work

	Also corrected other issues impacting platform redeployment

	Removed subscription creation from peer-test.sh (now a separate script)

	Fixed bugs in create-peer.sh and create-subscription.sh

	Oneclick deployment of Acumos on OpenShift [https://gerrit.acumos.org/r/#/c/3504/]

	include changes for
ACUMOS-2150: Improve docker/prereqs checks and setup [https://jira.acumos.org/browse/ACUMOS-2150]

	also address bugs

	ACUMOS-2111: AIO uses staging instead of release registry for Athena docker images [https://jira.acumos.org/browse/ACUMOS-2111]

	ACUMOS-2028: EOF impacts size variable [https://jira.acumos.org/browse/ACUMOS-2028]

	ACUMOS-2029: References to email to be replaces by environment variable [https://jira.acumos.org/browse/ACUMOS-2029]

	ACUMOS-2030: Irrelevant reference to nexus-service in /etc/hosts [https://jira.acumos.org/browse/ACUMOS-2030]

	ACUMOS-2051: Support for PVCs [https://jira.acumos.org/browse/ACUMOS-2051]

	add setup_openshift.sh and setup_openshift_client.sh

	reintroduce docker-service via docker-dind

	Connect kong to kong-database directly

	Allow user to set target namespace

	Simplify install reset

	Add Centos-specific prereqs and cleanup

	Remove host installation of docker for k8s/OpenShift

	Add option for generic k8s or OpenShift installs

	Add ELK option for docker-compose to start/stop

	use “oc” in place of “kubectl” for OpenShift

	Improve method of determining primary IP address

	add support for Ubuntu 18.04

	for Centos, use docker config from /root

	replace use of “~” with $HOME

	add K8S_DIST to acumos-env.sh

	refactor to separate core components from non-core

	migrate host-installed components (e.g. mariadb) to docker

	build local images for customization

	store persistent data in PV/PVC under k8s

	create resources (e.g. PV, PVC) using ACUMOS_NAMESPACE

	address OpenShift-specific constraints e.g. for security

	support Linux, Mac, Windows for OpenShift-CLI client

	update other tools to be compatible with the changes

	align designs where possible across docker, k8s-generic, k8s-openshift

	improve method of determining deployment env so user
does not have to specify

	update patched federation templates to support redeployment

Version 1.0.4, 14 November 2018

	ACUMOS-2042: AIO Release 1.0.4 [https://jira.acumos.org/browse/ACUMOS-2042]

	AIO Release 1.0.4 [https://gerrit.acumos.org/r/#/c/3371/]

	ACUMOS-2018: oneclick_deploy.sh does not pass docker host API check loop [https://jira.acumos.org/browse/ACUMOS-2018]

	Fix for docker host API check looping forever [https://gerrit.acumos.org/r/#/c/3344/]

	ACUMOS-2009: k8s-deployment.rst contains broken links [https://jira.acumos.org/browse/ACUMOS-2009]

	Fix broken links [https://gerrit.acumos.org/r/#/c/3333/]

Version 1.0.3, 31 October 2018

	ACUMOS-1984: AIO update to Athena 1.0 final release assembly [https://jira.acumos.org/browse/ACUMOS-1984]

	AIO update to Athena 1.0 final release assembly [https://gerrit.acumos.org/r/#/c/3298/]

Version 1.0.2, 24 October 2018

	ACUMOS-1930: AIO update to Acumos_1810121300 [https://jira.acumos.org/browse/ACUMOS-1930]

	Complete docker-engine changes [https://gerrit.acumos.org/r/#/c/3243/]

	AIO update to Acumos_1810121300 [https://gerrit.acumos.org/r/#/c/3210/]

	AIO update to Acumos_1810121300

	Also fixes for stabilizing docker-engine service under k8s

Version 1.0.1, 11 October 2018

	ACUMOS-1894: AIO update to Acumos_1810050030 [https://jira.acumos.org/browse/ACUMOS-1894]

	AIO update to Acumos_1810050030 [https://gerrit.acumos.org/r/#/c/3159/]

Version 1.0.0, 5 October 2018

This is the final version as of Release Candidate 0 (RC0).

	ACUMOS-1784: AIO-0.8: Various bugs in testing private-kubernetes-deploy [https://jira.acumos.org/browse/ACUMOS-1784]

	Various bugs and other issues needing fixes [https://gerrit.acumos.org/r/#/c/2941/]

	Align with Weekly+Assembly+Acumos_1809291700 with updates:

	To address ACUMOS-1831: Create user issue in portal 1.16.0 [https://jira.acumos.org/browse/ACUMOS-1831] : Portal 1.16.1, CDS 1.18.2

	DS 1.40.1, MSG 1.7.0, kubernetes-client:0.1.3

	Update onboarding-app version to fix Tosca creation errors

	Update microservice-generation to latest test version

	Update probe to latest version

	add docker-proxy cleanup to clean.sh

	remove superfluous creation of /var/acumos/docker-proxy/data

	correct log volume mapping for kubernetes-client

	fix errors in portal-be templates

	update BLUEPRINT_ORCHESTRATOR_IMAGE variable

	update PROTO_VIEWER_IMAGE variable

	update ACUMOS_BASE_IMAGE variable

	add kubernetes-client to clean.sh

	fix iptables rules for docker API access

	disable error trap when deleting k8s services etc

	update release notes

Version 0.8, 22 September 2018

This is the final version as of code freeze (M4).

	Fix reference to microservice-generation API [https://gerrit.acumos.org/r/#/c/2919/]

	ACUMOS-1768: AIO: add kubernetes-client as of Acumos_1809101130 [https://jira.acumos.org/browse/ACUMOS-1768]

	AIO: add kubernetes-client in Acumos_1809172330 [https://gerrit.acumos.org/r/#/c/2883/]

	ACUMOS-1768: AIO: add kubernetes-client as of Acumos_1809101130 [https://jira.acumos.org/browse/ACUMOS-1768]

	Update components to Weekly Assembly Acumos_1809172330

	Add docker-proxy per private-kubernetes-deployment design

	Add ‘restart: on-failure’ to docker templates to address timing issues

	Add extra-hosts spec to docker templates to address inability to resolve
non-DNS-supported host names

	Fix docker-cmds startup command [https://gerrit.acumos.org/r/#/c/2824/]

	ACUMOS-1732: AIO: docker-cmds startup command errors [https://jira.acumos.org/browse/ACUMOS-1732]

	Fix setup_federation error check

	AIO: Update to assembly Acumos_1808171930 [https://gerrit.acumos.org/r/#/c/2777/]

	ACUMOS-1715: AIO: Update to assembly Acumos_1808171930 [https://jira.acumos.org/browse/ACUMOS-1715]

	Block host-external access to docker API

	Add metricbeat-service and ELK stack components

Version 0.7, 24 August 2018

	Upgrade to CDS 1.16 [https://gerrit.acumos.org/r/#/c/2578/]

	ACUMOS-1598: AIO support for upgrading or redeploying with existing databases/config [https://jira.acumos.org/browse/ACUMOS-1598]

	Upgrade to Weekly Assembly Acumos_1808041700

	Assign role “Admin” instead of “admin”

	Support for redeploy with existing DB [https://gerrit.acumos.org/r/#/c/2570/]

	ACUMOS-1598: AIO support for upgrading or redeploying with existing databases/config [https://jira.acumos.org/browse/ACUMOS-1598]

Version 0.6, 13 August 2018

	Updates for Chris comments in 2092 [https://gerrit.acumos.org/r/#/c/2360/]

	ACUMOS-1146: docker or kubernetes as target env for AIO deployment [https://jira.acumos.org/browse/ACUMOS-1146]

	Remove validation-client

	Add ACUMOS_HTTP_PROXY and ACUMOS_HTTPS_PROXY env vars, add to docker template

	Fix trailing whitespace

	Retrieve and customize database script for CDS version

	Refactor create-user.sh

	Remove log_level: DEBUG

	Add nginx vars for azure-client

	Add upstream_connect/read/send vars to kong APIs

	Refactor peer-test.sh

	Baseline for deploy on docker or kubernetes [https://gerrit.acumos.org/r/#/c/2092/]

	ACUMOS-1146: docker or kubernetes as target env for AIO deployment [https://jira.acumos.org/browse/ACUMOS-1146]

	option for deploy under k8s or docker

	k8s based deployment

	docker and nexus under k8s

	latest components as of Weekly Assembly Acumos_1806281800

	Use existing docker-ce install [https://gerrit.acumos.org/r/#/c/2064/]

	ACUMOS-1102: AIO installation with existing dependencies [https://jira.acumos.org/browse/ACUMOS-1102]

	Various updates for deploy to cloud support [https://gerrit.acumos.org/r/#/c/2002/]

	ACUMOS-982: AIO deploy to cloud fixes [https://jira.acumos.org/browse/ACUMOS-982]

	Update components for Weekly Assembly Acumos_1805241800

	use user home folder for temp files

	oneclick_deploy.sh: remove install of linux-image-extra-$(uname -r),
linux-image-extra-virtual (breaking deployment in AWS)

	Add nexus user/password variables

	Map volumes to user home

	Use docker service names where possible for internal-only APIs

	Analysis of k8s based Acumos deployment approach [https://gerrit.acumos.org/r/#/c/1940/]

	ACUMOS-908: Oneclick deploy of Acumos platform under kubernetes [https://jira.acumos.org/browse/ACUMOS-908]

	Add k8s-deployment.rst

Version 0.5, 16 May 2018

	Update to current release versions [https://gerrit.acumos.org/r/#/c/1812/]

	ACUMOS-829: AIO: update to latest releases [https://jira.acumos.org/browse/ACUMOS-829]

	Portal 1.15.16 etc

	Use expose vs ports where possible [https://gerrit.acumos.org/r/#/c/1774/]

	ACUMOS-805: AIO: use expose for all service ports as possible [https://jira.acumos.org/browse/ACUMOS-805]

	Update docker-compose templates to use expose vs ports where possible

	openssl.cnf: add federation-gateway as DND alt-name

	Fixes in validation testing [https://gerrit.acumos.org/r/#/c/1638/]

	ACUMOS-700: Implement AIO support for validation [https://jira.acumos.org/browse/ACUMOS-700]

	Update versions to Weekly Assembly Acumos_1805051300

	Align docker-compose files

Version 0.4, 17 April 2018

	Fix onboarding issues [https://gerrit.acumos.org/r/#/c/1594/]

	ACUMOS-656: AIO - fix onboarding issues [https://jira.acumos.org/browse/ACUMOS-656]

	Set onboarding-app http_proxy to null

	Remove python extra index

	Upgrade onboarding-app to 1.18.1

	Split out docker-compose files

	Post-ONS updates in testing [https://gerrit.acumos.org/r/#/c/1580/]

	ACUMOS-203 [https://jira.acumos.org/browse/ACUMOS-203]

	Further fixes for kong/CMS testing

	Align component versions

	Handle more model onboarding upload errors

	Handle USER prefixed to container names

	Enable containers to resolve local DNS hostnames

	Use domain name for local peer setup

	Align docker-compose.yml

	Handle temporary failures in docker login

	Set subjectAltNames through openssl.cnf

	Quote models folder to avoid expansion

Version 0.3, 27 March 2018

	Enhancements for ONS demo [https://gerrit.acumos.org/r/#/c/1497/]

	ACUMOS-203 [https://jira.acumos.org/browse/ACUMOS-203]

	peer-test.sh: Run commands separately to ensure failures are trapped; Verify
peers can access federation API at peer

	align docker-compose templates

	create-peer.sh: verify federation API is accessible

	add bootstrap-models.sh

	acumos-env.sh: update to portal 1.14.48

	README.md: direct user to docs.acumos.org

	Updated steps install kong api in docs [https://gerrit.acumos.org/r/#/c/1260/]

	ACUMOS-351 [https://jira.acumos.org/browse/ACUMOS-351]

	ACUMOS-409 [https://jira.acumos.org/browse/ACUMOS-409]

	Preliminary updates for federation-gateway [https://gerrit.acumos.org/r/#/c/1307/]

	ACUMOS-231 [https://jira.acumos.org/browse/ACUMOS-231]

	Preliminary updates for federation-gateway

	Add peer-test.sh to automate federation test

	Add setup-peer to automate peer setup

	Add setup-user to automate user setup

	Setup “self” federation peer

	Restart federation-gateway after updating truststore

	Add openssl.cnf and align certs etc setup with dev/ist

	Update readme (RST version in a later patch)

	Update image versions where ready

	Expose only onboarding and portal-fe via kong proxy

	Merge kong-migration into kong container

	Improve cleanup process

Version 0.2, 13 March 2018

	Remove extra URL path element for onboarding [https://gerrit.acumos.org/r/1288]

	ACUMOS-231 [https://jira.acumos.org/browse/ACUMOS-231]

	Move nexus under docker-compose.yaml

	Upgrade to newest docker-ce

	Various fixes etc for model onboarding [https://gerrit.acumos.org/r/1277]

	ACUMOS-231 [https://jira.acumos.org/browse/ACUMOS-231]

	Added kong proxy, APIs, server cert, and CA.

	Use docker-network resolvable names in docker-compose.yaml.

	Various cleanups in docker-compose.yaml env variable use.

	Remove extra daemon restart.

	Fix insecure registries.

	Remove ports attributes in docker-compose.yaml where possible.

	clean.sh works without sudo.

	Fix kong delay method

Version 0.1, 9 March 2018

	ACUMOS-231 [https://jira.acumos.org/browse/ACUMOS-231]

	Move nexus under docker-compose.yaml [https://gerrit.acumos.org/r/1229]

	Use uuidgen instead of apg [https://gerrit.acumos.org/r/1227]

	WIP: Baseline of all-in-one deploy process [https://gerrit.acumos.org/r/1221]

 z2a Configuration Information

z2a Configuration Information

NOTE: Work in progress. Subject to change.

Acumos Configuration Tasks

Acumos Post-Install Configuration Steps

Ingress - Native k8s service proxy and Ingress Controller (Nginx)

NOTE: Basic Nginx configuration has been integrated into the
z2a/1-acumos/1-acumos.sh installation/configuration script.

Kong - API Gateway for Acumos (deprecated)

NOTE: Kong configuration has been removed from the
z2a/1-acumos/1-acumos.sh installation/configuration script.

MariaDB - Common Data Services (CDS)

NOTE: CDS configuration has been integrated into the
z2a/1-acumos/1-acumos.sh installation/configuration script.

Kubernetes (kind) Configuration Tasks

NOTE: Kubernetes (kind) configuration tasks that have been identified
are integrated into the z2a/0-kind/0c-cluster.sh installation/configuration
script.

MLWB Plugin Configuration Tasks

NOTE: Please refer to the z2a/plugins-setup/README-plugins-setup.md
markdown document or
https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/readme-plugins-setup.html
for additional tips/pointers.

CouchDB

NOTE: Basic CouchDB configuration has been integrated into the
z2a/plugins-setup/couchdb/install-couchdb.sh installation/configuration script.

JupyterHub

NOTE: Basic JupyterHub configuration has been integrated into the
z2a/plugins-setup/jupyterhub/install-jupyterhub.sh installation/configuration script.

NiFi

NOTE: Basic NiFi configuration has been integrated into the
z2a/plugins-setup/nifi/install-nifi.sh installation/configuration script.

	Created

	2020/07/13

	Last Modified

	2020/12/18

 HOW TO

HOW TO

NOTE: Under Construction (subject to change) ….

This HOW TO document contains step-by-step procedures to perform common tasks
using the z2a framework.

How to install Acumos from scratch on a VM with kind using z2a (default - Flow-1)

See the Flow-1 section in either of these documents:

TL;DR - to jump right into the installation

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/tl-dr.html#flow-1

Installation Guide - for a more detailed explanation

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/installation-guide.html

How to install Acumos onto an existing k8s cluster using z2a (Flow-2)

See the Flow-2 section in either of these documents:

TL;DR - to jump right into the installation

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/tl-dr.html#flow-2

Installation Guide - for a more detailed explanation

https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/installation-guide.html

How to pre-configure an existing k8s component

TODO: Provide an example here steps to add configuration directives

How to re-configure an existing k8s component

TODO: Provide an example here steps to change existing configuration
directives

How to add a new plugin to be installed (no pre/post configuration)

To add a new ‘plugin’ to the z2a installation framework, a series of steps need
to be followed. Here are the steps and an example to depict the process.

1: Clone the z2a/dev1/skel directory into the z2a/plugins-setup directory.

2: The newly copied skel directory should be renamed appropriately to
<name-of-new-plugin>

3: The z2a/plugins/<name-of-new-plugin>/install-skel.sh file should be
renamed to install-nameOfDirectory.sh

$ cd $HOME/src/system-integration/z2a
$ cp -rp ./dev1/skel ./plugins-setup/.
$ cd plugins-setup
$ mv skel name-of-new-plugin
$ cd name-of-new-plugin
$ mv install-skel.sh install-name-of-new-plugin.sh
$ cd ..

4: Edit the ``z2a/plugins-setup/Makefile`` file

The z2a/plugins-setup/Makefile file will need to be edited to add a new
target to the MODULES line.

BEFORE edit:
MODULES=couchdb jupyterhub lum nifi mlwb

AFTER edit:
MODULES=couchdb jupyterhub lum nifi mlwb name-of-new-plugin

5: Edit new plugin shell script

The z2a/plugins-setup/name-of-new-plugin/install-name-of-new-plugin.sh
will need to be edited to execute properly.

TODO: Provide an example here

How to add a new plugin to be installed and configured

TODO: Provide an example here where to start ; what to do

Troubleshooting

Does z2a create log files? Where can I find them?

Each z2a script creates a separate and distinct log file. Below is a listing
of these log files and their locations.

	Script Name & Location

	Log File & Location

	z2a/0-kind/0a-env.sh

	no log file created

	z2a/0-kind/0b-depends.sh

	z2a/0-kind/0b-depends-install.log

	z2a/0-kind/0c-cluster.sh

	z2a/0-kind/0c-cluster-install.log

	z2a/noncore-config/license-manager/config-license-manager.sh

	z2a/noncore-config/license-manager/config-license-manager.log

	z2a/noncore-config/license-manager/install-license-manager.sh

	z2a/noncore-config/license-manager/install-license-manager.log

	z2a/noncore-config/license-usage-manager/config-license-usage-manager.sh | z2a/noncore-config/license-usage-manager/config-license-usage-manager.log

	z2a/noncore-config/license-usage-manager/install-license-usage-manager.sh | z2a/noncore-config/license-usage-manager/install-license-usage-manager.log

	z2a/noncore-config/mariadb-cds/config-mariadb-cds.sh

	z2a/noncore-config/mariadb-cds/config-mariadb-cds.log

	z2a/noncore-config/mariadb-cds/install-mariadb-cds.sh

	z2a/noncore-config/mariadb-cds/install-mariadb-cds.log

	z2a/noncore-config/nexus/config-nexus.sh

	z2a/noncore-config/nexus/config-nexus.log

	z2a/noncore-config/nexus/install-nexus.sh

	z2a/noncore-config/nexus/install-nexus.log

	z2a/plugins-setup/couchdb/install-couchdb.sh

	z2a/plugins-setup/couchdb/install-couchdb.log

	z2a/plugins-setup/jupyterhub/install-jupyterhub.sh

	z2a/plugins-setup/jupyterhub/install-jupyterhub.log

	z2a/plugins-setup/mlwb/install-mlwb.sh

	z2a/plugins-setup/mlwb/install-mlwb.log

	z2a/plugins-setup/nifi/install-nifi.sh

	z2a/plugins-setup/nifi/install-nifi.log

How do I decode an on-screen error?

The z2a scripts use a shared function to display errors on-screen during
execution. You can decode the information to determine where to look to
troubleshoot the problem. Below is an example error:

2020-05-20T15:28:19+00:00 z2a-utils.sh:42:(fail) unknown failure at ./0-kind/0c-cluster.sh:62

Here is how to decode the above error:

2020-05-20T15:28:19+00:00 - is the timestamp of the failure

z2a-utils.sh:42:(fail) - is the ‘fail’ function (line 42) of the z2a-utils.sh script

./0-kind/0c-cluster.sh:62 - the failure occurred at line 62 of the ./0-kind/0c-cluster.sh script

	Created

	2020/07/21

	Last Modified

	2020/07/24

 <no title>

	START HERE
	What is z2a?

	What is z2a Flow-1?

	What is z2a Flow-2?

	Where do I start with z2a?

	TL;DR
	Choose a Flow

	README-PROXY

	Flow-1

	Flow-2

	Zero-to-Acumos (z2a) Installation Guide
	Overview

	Guide to z2a Deployment

	Getting Started

	Acumos Plugin Installation

	Addendum

	README-PROXY
	User Environment

	Package Manager Configuration

	Docker

	MITM (man-in-the-middle) SSL certificate considerations

	README-PLUGINS-SETUP
	Prerequisites

	Setting up the environment

	Installing and Configuring Plugins

	z2a Configuration Information
	Acumos Configuration Tasks

	HOW TO
	How to install Acumos from scratch on a VM with kind using z2a (default - Flow-1)

	How to install Acumos onto an existing k8s cluster using z2a (Flow-2)

	How to pre-configure an existing k8s component

	How to re-configure an existing k8s component

	How to add a new plugin to be installed (no pre/post configuration)

	How to add a new plugin to be installed and configured

	Troubleshooting

	Search Page

 Zero-to-Acumos (z2a) Installation Guide

Zero-to-Acumos (z2a) Installation Guide

NOTE: Document is in development.

NOTE: Subject to change.

Overview

This installation guide describes how to deploy Acumos using Zero-to-Acumos
(z2a). z2a was designed for those who require a simple and automated way to
deploy Acumos.

Zero-to-Acumos (z2a) is a collection of shell scripts that have been
assembled to perform a simple set of tasks: installation and (where possible)
configuration of the Acumos component(s).

z2a is composed of two (2) distinct process flows; Flow-1 and Flow-2.
In each flow scenario, installation of additional Acumos plugins is optional
as a follow-on procedure.

What is z2a Flow-1?

z2a Flow-1 (default) performs an Acumos installation including:

	end-user environment creation;

	VM Operating System preparation;

	z2a dependency installation;

	Kubernetes cluster creation; and,

	deployment of Acumos noncore and core components on a single VM.

z2a Flow-1 is the original z2a process flow targeting development/test
environments where a Kubernetes cluster is built and Acumos is installed from
scratch on a single VM.

Flow-1 VM Requirements

At the time of this writing, the Operating System installed on the VM must be
either RedHat/CentOS (v7 or greater, v8 recommended) or Ubuntu (18.04 or
greater, 20.04 recommended).

NOTE: earlier versions of RedHat/CentOS (v6) or Ubuntu (16.04) may be
sufficient to run the z2a installation, but they have not been tested.

	Flow-1 VM Resource Sizing Recommendations

	
	four (4) vCPU (minimum)

	32GB of memory (minimum)

	80GB disk space (minimum) (~100GB+ for MLWB and other plugins)

	additional disk space for models (based on developer requirements)

	VM Distribution Recommendations

	
	git (source code tool)

	git is not installed by default by Linux distributions

	git must be installed to allow for Acumos repository replication

	jq (JSON processing tool)

	yq (YAML processing tool)

Flow-1 Components

Flow-1 consists of three (3) steps using the following scripts (and descriptions):

	Steps 0[a-c]

	z2a/0-kind/0a-env.sh # z2a environment creation

	z2a/0-kind/0b-depends.sh # dependency installation and setup

	z2a/0-kind/0a-cluster.sh # Kubernetes ('kind') cluster creation

	Step 1

	z2a/1-acumos/1-acumos.sh # Acumos noncore and core component installation & configuration

	Step 2 (optional)

	z2a/2-plugins/2-plugins.sh # Acumos plugins and dependencies installation & configuration

NOTE: In Flow-1, the z2a environment creation script
z2a/0-kind/0a-env.sh, will have to be executed during the initial setup
and again after logging out and logging back into a new session.

The process flow of z2a Flow-1 is depicted in the following diagram.

NOTE: z2a (Flow-1) should not be used as a production environment deployment
tool at this time. z2a (Flow-1) has been primarily designed for development
and/or test environment installations. Currently, a key component of z2a
(Flow-1), kind - Kubernetes in Docker - is not recommended for production
installation or production workloads.

[image: ../../../../_images/z2a-flow-1.jpg]

What is z2a Flow-2?

z2a Flow-2 performs an Acumos installation including:

	end-user environment creation;

	z2a dependency installation; and,

	deployment of Acumos noncore and core components on an existing Kubernetes cluster.

The second process flow is a new z2a process flow targeting a pre-built Kubernetes
cluster environments (i.e. BYOC - Bring Your Own Cluster).

Flow-2 Components

Flow-2 consists of three (3) steps using the following scripts (and descriptions):

	Step 0

	z2a/0-kind/0a-env.sh # z2a environment creation

	Step 1

	z2a/1-acumos/1-acumos.sh # Acumos noncore and core component installation & configuration

	Step 2 (optional)

	z2a/2-plugins/2-plugins.sh # Acumos plugins and dependencies installation & configuration

The process flow of z2a Flow-2 is depicted in the following diagram.

[image: ../../../../_images/z2a-flow-2.jpg]

Guide to z2a Deployment

z2a Requirements

	A SSH client with port-forward/tunnel/proxy capabilities; such as:

	PuTTY (Windows SSH client)

	SecureCRT (MacOS SSH client)

	OpenSSH (Linux SSH client)

Flow-1 Requirements

	A Virtual Machine (VM) which will be used as the host for the Kubernetes
cluster and the Acumos installation

	The user must have sudo rights on the VM
(i.e. must exist in the /etc/sudoers file).

	The VM requires Internet access such that OS updates, OS supplemental
packages and Helm chart installations can be performed. Either the VM has
proxied access to the Internet or the user must be able to configure the
proxy setting for the VM (if required).

Flow-2 Requirements

	A Virtual Machine (VM) which will be used as the installation launch point
for z2a (command & control VM)

	The user must have sudo rights on the VM
(i.e. must exist in the /etc/sudoers file).

	The VM requires Internet access such that OS updates, OS supplemental
packages and Helm chart installations can be performed. Either the VM
has proxied access to the Internet or the user must be able to configure
the proxy setting for the VM (if required).

	A Kubernetes (k8s) cluster

Proxy Requirements

NOTE: z2a assumes that the VM has Internet access (with no proxies present).

NOTE: Internet proxy configurations are beyond the scope of the installation
documentation.

Please consult the README-PROXY document for details on the various items
that will require configuration and links to resources that will assist in
the configuration tasks.

Misc. Requirements

	z2a requires that the following tools be installed on the VM noted above
for Flow-1 or Flow-2 prior to execution of the z2a scripts:

	git (the distributed source code management tool)

	jq (the JSON file processing tool)

Assumptions

It is assumed that the user who is performing this installation:

	is familiar with Linux (i.e. directory creation, shell script execution,
editing files using Linux editors, reading log files etc.)

	has sudo access (elevated privileges) to the VM where the installation
will occur (Flow-1)

	has sudo access (elevated privileges) to the VM where the installation
onto the k8s cluster will occur (Flow-2)

Getting Started

NOTE: z2a depends on being able to reach a number of up-to-date software
repositories. All efforts have been made to not bypass distribution-specific
package managers and software update facilities.

Installation Location Creation (Flow-1 and Flow-2)

In the following section, the user will perform the following actions:

	Login to the Linux VM where the install will occur

	Install the ‘git’ distributed version-control tool, and
the ‘jq’ JSON file processing tool.

	Create a new directory that will be used to perform this installation (i.e. src)

	Change directory into this new directory

	Clone the gerrit.acumos.org system-integration repository into the new directory

	Change directory into the newly created system-integration directory

After completing Step #1 above (log into the VM), here are the commands to
execute steps 2-6 above.

Install 'git' distributed version-control tool
Install 'jq' JSON file processing tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
$ sudo yum install -y git jq
For Debian-based distributions such as Ubuntu, execute the following command:
$ sudo apt-get install --no-install-recommends -y git jq
$ mkdir -p $HOME/src
$ cd $HOME/src
$ git clone https://gerrit.acumos.org/r/system-integration
$ cd $HOME/src/system-integration

Next, we will inspect the contents of the directory structure that was just
created by the git clone command above.

$ ls -l
total 20
drwxr-xr-x. 16 userID groupID 4096 Mar 19 13:30 AIO
drwxr-xr-x. 3 userID groupID 19 Mar 19 13:30 acumosk8s-public-cloud
drwxr-xr-x. 9 userID groupID 117 Mar 19 13:30 charts
drwxr-xr-x. 4 userID groupID 107 Mar 19 13:30 docs
drwxr-xr-x. 5 userID groupID 87 Mar 20 11:03 helm-charts
drwxr-xr-x. 2 userID groupID 196 Mar 19 13:30 tests
drwxr-xr-x. 4 userID groupID 4096 Mar 19 13:30 tools
drwxr-xr-x. 5 userID groupID 235 Mar 20 18:35 z2a
-rw-r--r--. 1 userID groupID 1281 Mar 19 13:30 INFO.yaml
-rw-r--r--. 1 userID groupID 770 Mar 19 13:30 LICENSE.txt
-rw-r--r--. 1 userID groupID 1388 Mar 19 13:30 README.md

In the directory listing shown above, two (2) directories are of special interest:

	helm_charts is the location of the Acumos core Helm charts used in this
installation process

	z2a is the location of the z2a scripts and supporting utilities. We
will refer to that directory as the Z2A_BASE directory. This directory
also contains installation scripts for some of the Acumos noncore dependencies
and Acumos plugins.

NOTE: Please refer to the Troubleshooting section of the HOW TO document for
a complete listing of the log files created by z2a and their location.

See: https://docs.acumos.org/en/latest/submodules/system-integration/docs/z2a/how-to.html#troubleshooting

Using the example global_value.yaml file

z2a includes example global_value.yaml files for Acumos in the
$ACUMOS_HOME/z2a/dev1 directory. These example Acumos values files are
provided for both illustrative purposes and to assist in performing a quick
installation (see: TL;DR document).

NOTE: There are two (2) example files in the $ACUMOS_HOME/z2a/dev1 directory.

$ACUMOS_HOME/z2a/dev1/global_value.yaml.dev1 # acumos-dev1 namespace
$ACUMOS_HOME/z2a/dev1/global_value.yaml.z2a-test # z2a-test namespace

The example Acumos values files can be used for a test installation and
additional edits should not be required.

The commands to use the Acumos global_value.yaml.dev1 example value file are:

$ ACUMOS_HOME=$HOME/src/system-integration
$ cp $ACUMOS_HOME/z2a/dev1/global_value.yaml.dev1 $ACUMOS_HOME/z2a/helm-charts/global_value.yaml

NOTE: The Acumos example values can be used for a private development
environment that is non-shared, non-production and not exposed to the
Internet. The values provided in the Acumos example file are for
demonstration purposes only.

Editing the global_value.yaml file

The global_value.yaml file is located in the ACUMOS_$HOME/helm_charts
directory. We will need to change directories into that location to perform
the necessary edits required for the Acumos installation or use the examples
values noted above.

Before starting to edit the global_value.yaml file, create a copy of the
original file just in case you need to refer to the original or to recreate
the file.

Here are the commands to execute to accomplish the next tasks.

$ cd $ACUMOS_HOME/helm-charts
$ cp global_value.yaml global_value.orig

The default global_value.yaml file requires the user to make edits to the
masked values in the file. Masked values are denoted by six (6) ‘x’ as shown:
“xxxxxx”

All entries with the masked values must be changed to values that will be used
during the installation process. Below is an example edit of a snippet of the
global_value.yaml file, where the values for namespace and clusterName
are edited.

Using your editor of choice (vi, nano, pico etc.) please open the
global_value.yaml file such that we can edit it’s contents.

Before edit (these are examples - please substitute values that are appropriate
for your environment):

global:
 appVersion: "1.0.0"
 namespace: "xxxxxx"
 clusterName: "xxxxxx"

After edit: (Example 1)

global:
 appVersion: "1.0.0"
 namespace: "acumos-dev1"
 clusterName: "kind-acumos"

After edit: (Example 2)

global:
 appVersion: "1.0.0"
 namespace: "z2a-test"
 clusterName: "kind-acumos"

NOTE: For entries in the ``global_value.conf`` file that have an existing
entry, do not edit these values as they are essential for correct
installation.

Flow-1 Installation Process

To perform an installation of Acumos, we will need to perform the following
steps:

1. Set the ACUMOS_HOME environment variable, change directory into the z2a/0-kind
directory, and execute the z2a/0-kind/0a-env.sh script.

$ ACUMOS_HOME=$HOME/src/system-integration
$ cd $ACUMOS_HOME/z2a/0-kind
$./0a-env.sh

2. After successful execution of the 0a-env.sh script, execute the z2a
0b-depends.sh script.

$./0b-depends.sh

3. Once the z2a 0b-depends.sh has completed, please log out of your session
and log back in. This step is required such that you (the installer) are
added to the docker group, which is required in the next step.

$ logout

4. Once you are logged back into the VM, set the ACUMOS_HOME environment
variable, change directory into the z2a/0-kind directory and execute the
z2a 0a-env.sh script and then the 0a-cluster.sh script.

$ ACUMOS_HOME=$HOME/src/system-integration
$ cd $ACUMOS_HOME/z2a/0-kind
$./0a-env.sh
$./0c-cluster.sh

5. After the z2a z2a/0-kind/0c-cluster.sh script has completed, we will
need to check the status of the newly created Kubernetes pods before we proceed
with the Acumos installation. We can ensure that all necessary Kubernetes pods
are running by executing this kubectl command.

$ kubectl get pods -A

6. When all Kubernetes pods are in a Running state, we can proceed and
execute the 1-kind.sh script to install and configure Acumos.

$ cd $ACUMOS_HOME/z2a/1-acumos
$./1-acumos.sh

7. The last step is to check the status of the Kubernetes pods create during
the Acumos installation process.

$ kubectl get pods -A

When all Kubernetes pods are in a Running state, the installation of the
Acumos noncore and core components has been completed.

Flow-2 Installation Process

To perform an installation of Acumos using the Flow-2 technique, we will need
to perform the following steps:

NOTE: The global_value.yaml file must be edited to provide the correct
clusterName and namespace. Please refer to the previous section on
performing the edits to the global_value.yaml file.

1. Set the ACUMOS_HOME environment variable, change directory into the z2a/0-kind
directory, and execute the z2a/0-kind/0a-env.sh script.

$ ACUMOS_HOME=$HOME/src/system-integration
$ cd $ACUMOS_HOME/z2a/0-kind
$./0a-env.sh

2. After successful execution of the z2a/0-kind/0a-env.sh script, execute
the z2a/1-acumos/1-kind.sh script to install and configure Acumos.

$ cd $ACUMOS_HOME/z2a/1-acumos
$./1-acumos.sh

3. The last step is to check the status of the Kubernetes pods create during
the Acumos installation process.

$ kubectl get pods -A

When all Kubernetes pods are in a Running state, the installation of the
Acumos noncore and core components has been completed.

Acumos Plugin Installation

MLWB

Machine Learning WorkBench is installed during the 2-plugins steps of the
installation process discussed in this document. Below are details of the
installation process.

Editing the mlwb_value.yaml File

NOTE: z2a includes an example value file for MLWB in the
$HOME/src/system-integration/z2a/dev1 directory. The MLWB example values
file is provided for both illustrative purposes and to assist in performing
a quick installation. The example MLWB values file from that directory could
be used here and these edits are not required.

The commands to use the MLWB example values are:

$ ACUMOS_HOME=$HOME/src/system-integration
$ cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml.mlwb $ACUMOS_HOME/helm-charts/mlwb_value.yaml

The MLWB example values can be used for a private development environment that
is non-shared, non-production and not exposed to the Internet. The values in
the MLWB example file are for demonstration purposes only.

The mlwb_value.yaml file is located in the
$HOME/src/system-integration/helm_charts directory. We will need to change
directories into that location to perform the edits necessary to perform the
installation.

Before starting to edit the mlwb_value.yaml file, create a copy of the original
file just in case you need to refer to the original or to recreate the file.

Here are the commands to execute to accomplish the next tasks.

$ cd $ACUMOS_HOME/helm-charts
$ cp mlwb_value.yaml mlwb_value.orig

The default mlwb_value.yaml file requires the user to make edits to the
masked values in the file. Masked values are denoted by six (6) ‘x’ as shown:
“xxxxxx”

Using your editor of choice (vi, nano, pico etc.) please open the
mlwb_value.yaml file such that we can edit it’s contents.

CouchDB - the following CouchDB values need to be populated in the
mlwb_value.yaml file before installation of the MLWB CouchDB dependency.

CouchDB
acumosCouchDB:
 createdb: "true"
 dbname: "xxxxxx"
 host: "xxxxxx"
 port: "5984"
 protocol: "http"
 pwd: "xxxxxx"
 user: "xxxxxx"

JupyterHub - the following JupyterHub values need to be populated in the
mlwb_value.yaml file before installation of the MLWB JupyterHub dependency.

JupyterHub
acumosJupyterHub:
 installcert: "false"
 storepass: "xxxxxx"
 token: "xxxxxx"
 url: "xxxxxx"
acumosJupyterNotebook:
 url: "xxxxxx"

NiFi - the following NiFi values need to be populated in the
mlwb_value.yaml file before installation of the MLWB NiFi dependency.

NIFI
acumosNifi:
 adminuser: "xxxxxx"
 createpod: "false"
 namespace: "default"
 registryname: "xxxxxx"
 registryurl: "xxxxxx"
 serviceurl: "xxxxxx"

MLWB Installation

To perform an installation of MLWB, we will need to perform the following steps:

	set the ACUMOS_HOME environment variable

	Change directory into the z2a/2-plugins directory

	Execute the 2-plugins.sh script which install the MLWB dependencies and
the MLWB components

$ ACUMOS_HOME=$HOME/src/system-integration
$ cd $ACUMOS_HOME/z2a/2-plugins
$./2-plugins.sh

Addendum

Additional Documentation

Below are links to supplementary sources of information.

Kind: https://kind.sigs.k8s.io/

For post-installation Machine Learning WorkBench configuration steps, please
see the MLWB section of the CONFIGURATION document.

	Created

	2020/07/13

	Last Modified

	2020/08/26

 README-PLUGINS-SETUP

README-PLUGINS-SETUP

Prerequisites

Setting up the environment

To run (execute) the z2a/plugins-setup scripts in a standalone manner
(i.e. from a Linux CLI session), you must execute the 0-kind/0a-env.sh script
before you run any of the z2a/plugins-setup scripts.

Assumption:

The Acumos system-integration repository has been cloned into:
$HOME/src or some other known location.

To setup the environment, execute the following commands:

cd $HOME/src/system-integration/z2a
./0-kind/0-env.sh

ACUMOS_GLOBAL_VALUE

For the scripts in the plugins-setup directory to run stand-alone
(i.e. outside the z2a Flow-1 or Flow-2 context), the ACUMOS_GLOBAL_VALUE
environment variable MUST be set BEFORE executing deploy.sh to install or
configure any of the defined targets in the noncore-config/Makefile.

If you have cloned the Acumos system-integration repository from
gerrit.acumos.org then the following command would set the
ACUMOS_GLOBAL_VALUE environment variable:

$ export ACUMOS_GLOBAL_VALUE=$HOME/src/system-integration/helm-charts/global_value.yaml

Installing and Configuring Plugins

NOTE: At the time of this writing, only MLWB and it’s dependencies
(CouchDB, JupyterHub and NiFi) are included in the plugins-setup directory.

Installing and Configuring - MLWB (ML WorkBench)

Execute ./deploy.sh mlwb will install (and configure based on the target
script) MLWB.

$ cd $HOME/src/system-integration/z2a/plugins-setup
$./deploy.sh mlwb

Installing and Configuring - CouchDB (MLWB Dependency)

Execute ./deploy.sh couchdb will install (and configure based on the target
script) CouchDB.

$ cd $HOME/src/system-integration/z2a/plugins-setup
$./deploy.sh couchdb

Installing and Configuring - JupyterHub (MLWB Dependency)

Execute ./deploy.sh jupyterhub will install (and configure based on the target
script) JupyterHub.

$ cd $HOME/src/system-integration/z2a/plugins-setup
$./deploy.sh jupyterhub

Installing and Configuring - NiFi (MLWB Dependency)

Execute ./deploy.sh nifi will install (and configure based on the target
script) NiFi.

$ cd $HOME/src/system-integration/z2a/plugins-setup
$./deploy.sh nifi

	Created

	2020/07/20

	Last Modified

	2020/08/12

 README-PROXY

README-PROXY

If you are using z2a behind a proxy; here is the list of items that need to be
configured before you execute the z2a framework:

	user environment (.profile, .bashrc, .kshrc etc.)

	package manager application (apt for Ubuntu, yum/dnf for Redhat/CentOS)

	Docker client

	Docker service

	MITM (man-in-the-middle) SSL certificate considerations

User Environment

Configuration of end-user environments is beyond the scope of this document.
Numerous on-line resources exist which provide step-by-step details on how to
configure user environments to use proxy servers. Below is an example on-line
resource found with a simple Google search.

Shellhacks: https://www.shellhacks.com/linux-proxy-server-settings-set-proxy-command-line/

NOTE: Check with your network administrator for the correct proxy value/values for
your environment.

Package Manager Configuration

RedHat/CentOS (YUM/DNF)

For the DNF Package Manager – Fedora / CentOS/RHEL 8:

$ sudo vim /etc/dnf/dnf.conf

Add
proxy=http://proxyserver:port

For the YUM Package Manager - CentOS 6/7:

$ sudo vim /etc/yum.conf

Add
proxy=http://proxyserver:port

For RHEL users, you’ll also need to set the proxy for accessing RHSM content:

$ sudo vi /etc/rhsm/rhsm.conf

Add
proxy_hostname = proxy.example.com
proxy_port = 8080

NOTE: If your proxy server requires authentication, also set these values in the
files noted above:

user name for authenticating to an HTTP proxy, if needed
proxy_user =

password for basic HTTP proxy auth, if needed
proxy_password =

These are the basic settings needed to use a proxy server to access the
Internet on CentOS/RHEL 7&8 and on Fedora Linux machines.

Ubuntu (APT)

To set proxy only for the APT package manager, perform the following
steps from the CLI:

$ sudo nano /etc/apt/apt.conf.d/80proxy

Acquire::http::proxy "http://proxy:port/";
Acquire::https::proxy "https://proxy:port/";
Acquire::ftp::proxy "ftp://proxy:port/";

Replace proxy:port with the correct IP address and port or the FQDN
and port for your proxy servers. If Authentication is required, set
the values like this:

Acquire::http::proxy "http://<username>:<password>@<proxy>:<port>/";
Acquire::https::proxy "https://<username>:<password>@<proxy>:<port>/";
Acquire::ftp::proxy "ftp://<username>:<password>@<proxy>:<port>/";

These are the basic settings needed to use a proxy server to access the
Internet on Ubuntu Linux machines.

Docker

Docker Client

To configure the Docker client, please consult the Docker documentation
at the link provided below.

Docker Client: https://docs.docker.com/network/proxy/

Docker Service

To configure the Docker service, please consult the HTTP/HTTPS proxy
section of the Docker documentation at the link provided below.

Docker Service: https://docs.docker.com/config/daemon/systemd/

MITM (man-in-the-middle) SSL certificate considerations

TODO: man-in-the-middle SSL

	Created

	2020/07/13

	Last Modified

	2020/07/21

 README-VALUES

README-VALUES

The standard method of setting values for Acumos using the z2a installation
method is to edit the global_value.yaml file. It should be noted, that
there are some values that will need to set by editing other files.

Below are some examples of common value changes:

Nexus

For z2a using Flow-1 with an example values file, the default value for
Nexus persistent volume storage size is 8GB (8Gi). This value is large enough
to test with and not overly large for the recommended VM sizing.

To adjust the size of the Nexus persistent storage size, edit the following
value in the global_value.yaml file:

PVC
 acumosNexusPVCStorage: "8Gi"

	Created

	2020/10/05

	Last Modified

	2020/10/06

 TL;DR

TL;DR

Too Long ; Didn’t Read ….

NOTE: Document is in development.

NOTE: Subject to change.

Choose a Flow

If you have:

	a vanilla VM (fresh install, no additional tools installed);

	need to build a k8s cluster; and,

	want to install Acumos (and optional plugins), then choose Flow-1.

If you have:

	a pre-built k8s cluster; and,

	want to install Acumos (and optional plugins), then choose Flow-2.

README-PROXY

If you are running z2a in an environment that requires a proxy, you may need
to configure various items to use that proxy BEFORE you run z2a.

NOTE: You may also need to consult your systems/network administration team
for the correct proxy values.

Please consult the README-PROXY document for details on the various items that
will require configuration and links to resources that will assist in the
configuration tasks.

Flow-1

Obtain a Virtual Machine (VM) with sudo access ; Login to VM
NOTE: /usr/local/bin is a required element in your $PATH

Install 'git' distributed version-control tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
$ sudo yum install -y git
For Debian-based distributions such as Ubuntu, execute the following command:
$ sudo apt-get --no-install-recommends install -y git

Make src directory ; change directory to that location
$ mkdir -p $HOME/src ; cd $HOME/src
clone Acumos 'system-integration' repo
$ git clone https://gerrit.acumos.org/r/system-integration

set ACUMOS_HOME environment variable
$ ACUMOS_HOME=$HOME/src/system-integration
Change directory
$ cd $ACUMOS_HOME/z2a

Choose one of the following methods to create a global_value.yaml file

Method 1 - example values
#
To use the example global_value.yaml file;
copy the example values from z2a/dev1 to the helm-charts directory
$ cp $ACUMOS_HOME/z2a/dev1/global_value.yaml.dev1 $ACUMOS_HOME/helm-charts/global_value.yaml

Method 2 - customized values
#
To use a customized global_value.yaml file;
edit $ACUMOS_HOME/helm-charts/global_value.yaml
using an editor and command similar to this:
$ vi $ACUMOS_HOME/helm-charts/global_value.yaml

Once the global_value.yaml file has been copied and/or edited;
you can proceed with the installation

Execute 0-kind/0a-env.sh (setup user z2a environment)
$./0-kind/0a-env.sh
Execute 0-kind/0b-depends.sh (install / configure dependencies)
$./0-kind/0b-depends.sh

LOG OUT OF SESSION ; LOG IN TO NEW SESSION
... (required for Docker group inclusion) ...
Reinitialize the user z2a environment
Execute 0-kind/0c-cluster.sh (build and configure k8s cluster)
$ ACUMOS_HOME=$HOME/src/system-integration
$ cd $ACUMOS_HOME/z2a
$./0-kind/oa-env.sh
$./0-kind/0c-cluster.sh

Ensure all k8s Pods created are in a 'Running' state.
$ kubectl get pods -A
Execute 1-acumos.sh (install / configure noncore & core Acumos components)
$./1-acumos/1-acumos.sh

NOTE: If Acumos plugins are to be installed in a new session:
Copy the ACUMOS_HOME line below and paste it into the terminal session
$ ACUMOS_HOME=$HOME/src/system-integration

To install Acumos plugins ; proceed here
$ cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml.mlwb $ACUMOS_HOME/helm-charts/mlwb_value.yaml
Execute 2-plugins.sh (install / configure Acumos plugins and dependencies)
$./2-plugins/2-plugins.sh

Flow-2

To execute Flow-2, we will use a VM-based host for command & control.
NOTE: You MAY require sudo access on the command & control VM to allow you
to install git
NOTE: /usr/local/bin is a required element in your $PATH

Login to the VM

Install 'git' distributed version-control tool
For RPM-based distributions such as RHEL/CentOS, execute the following command:
$ sudo yum install -y git
For Debian-based distributions such as Ubuntu, execute the following command:
$ sudo apt-get install --no-install-recommends -y git

Make src directory ; change directory to that location
$ mkdir -p $HOME/src ; cd $HOME/src
clone Acumos 'system-integration' repo
$ git clone https://gerrit.acumos.org/r/system-integration

set ACUMOS_HOME environment variable
$ ACUMOS_HOME=$HOME/src/system-integration
Change directory
$ cd $ACUMOS_HOME/z2a

Choose one of the following methods to create a global_value.yaml file

Method 1 - example values
#
To use the example global_value.yaml file;
copy the example values from z2a/dev1 to the helm-charts directory
$ cp $ACUMOS_HOME/z2a/dev1/global_value.yaml.dev1 $ACUMOS_HOME/helm-charts/global_value.yaml

Method 2 - customized values
#
To use a customized global_value.yaml file;
edit $ACUMOS_HOME/helm-charts/global_value.yaml
using an editor and command similar to this:
$ vi $ACUMOS_HOME/helm-charts/global_value.yaml

Once the global_value.yaml file has been copied and/or edited;
you can proceed with the installation

Execute 0-kind/0a-env.sh (setup user environment)
$./0-kind/0a-env.sh

Ensure all k8s Pods created are in a 'Running' state.
$ kubectl get pods -A
Execute 1-acumos.sh (install / configure noncore & core Acumos components)
$./1-acumos/1-acumos.sh

NOTE: If Acumos plugins are to be installed in a new session:
Copy the ACUMOS_HOME line and paste it into the terminal session
$ ACUMOS_HOME=$HOME/src/system-integration

To install Acumos plugins ; proceed here
$ cp $ACUMOS_HOME/z2a/dev1/mlwb_value.yaml.mlwb $ACUMOS_HOME/helm-charts/mlwb_value.yaml
Execute 2-plugins.sh (install / configure Acumos plugins and dependencies)
$./2-plugins/2-plugins.sh

	Created

	2020/07/22

	Last Modified

	2020/07/28

 Acumos OneClick / All-in-One (AIO) Configuration Guide

Acumos OneClick / All-in-One (AIO) Configuration Guide

The following tables list the configurable parameters of the OneClick toolset
and their default values. These values are set in environment setup scripts
as described below. The OneClick toolset also stores the status of the
deployment in those environment scripts, e.g. so the current state can be shared
across the toolset, and for redeployment actions. Note that default values may
be overwritten based upon other selected options, but any non-default values set
by the user will not be overwritten.

Core Platform configuration

AIO/acumos_env.sh contains environment values for the core platform, and the
deployment overall.

If you are deploying the platform without executing the “prep” step, i.e. you
are deploying into an existing kubernetes cluster, for which you have the
namespace/project admin role, you must manually specify at minimum these
values which have no default:

	DEPLOYED_UNDER: k8s

	K8S_DIST

	ACUMOS_DOMAIN

Notes on key values:

	ACUMOS_HOST vs ACUMOS_DOMAIN: ACUMOS_HOST is the hostname of the Acumos
platform host machine/cluster. ACUMOS_DOMAIN is the external FQDN that is used
to access the platform. These are distinct because particularly in cloud
envs, the external name and public IP is usually different from the host name
and private IP, and some setup actions may need to use the host rather than
external domain name (e.g. for security reasons).

The following table lists the most commonly configured parameters of the
Acumos core platform components and their default values:

	Variable

	Description

	Default value

	Notes

	…_IMAGE

	Repository/version of component image

	per Acumos release assembly version

	Assembly version is noted in acumos_env.sh

	DEPLOYED_UNDER

	docker|k8s

	
	set per target OS (Ubuntu=generic, Centos=openshift)

	K8S_DIST

	generic|openshift

	as input to setup_prereqs.sh

	set manually if not using setup_prereqs.sh

	ACUMOS_DELETE_SNAPSHOTS

	Remove snapshot images

	false

	Used in cleanup actions

	ACUMOS_DOMAIN

	platform ingress FQDN

	as input to setup_prereqs.sh

	set manually if not using setup_prereqs.sh; must be DNS/hosts-resolvable

	ACUMOS_PORT

	external ingress port

	443

	used to set ACUMOS_ORIGIN

	ACUMOS_ORIGIN

	platform host:port

	
	generated from ACUMOS_DOMAIN and external HTTPS port`

	ACUMOS_DOMAIN_IP

	platform ingress IP address

	
	discovered if not specified

	ACUMOS_HOST

	platform host/cluster name

	set by setup_prereqs.sh (from hostname)

	set manually if not using setup_prereqs.sh

	ACUMOS_HOST_IP

	platform host/cluster IP address

	set by setup_prereqs.sh or oneclick_deploy.sh

	

	ACUMOS_HOST_OS

	platform host OS

	none

	set by setup_prereqs.sh

	ACUMOS_HOST_OS_VER

	platform host OS version

	none

	set by setup_prereqs.sh

	ACUMOS_DEPLOY_PREP

	perform prep step via setup_prereqs.sh

	true

	

	ACUMOS_DEPLOY_AS_POD

	OneClick tools run as k8s pod

	false

	enables deploying from within the cluster

	ACUMOS_NAMESPACE

	k8s namespace for the core platform

	acumos

	

	ACUMOS_DEPLOY_MARIADB

	deploy/redeploy MariaDB in the platform

	true

	

	ACUMOS_SETUP_DB

	setup the Acumos DB during install

	true

	cleans any existing DB, and set to FALSE after DB setup

	ACUMOS_DEPLOY_COUCHDB

	deploy/redeploy CouchDB in the platform

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_JENKINS

	deploy/redeploy Jenkins in the platform

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_DOCKER

	deploy/redeploy docker-engine in the platform

	true

	

	ACUMOS_DEPLOY_DOCKER_DIND

	use docker-in-docker implementation

	true

	for Azure VMs, manually set to FALSE

	ACUMOS_DEPLOY_NEXUS

	deploy/redeploy Nexus in the platform

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_NEXUS_REPOS

	setup the Acumos Nexus repos

	true

	set to FALSE after initial setup

	ACUMOS_DEPLOY_ELK

	deploy/redeploy ELK in the platform

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_ELK_METRICBEAT

	deploy/redeploy metribeat (docker only)

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_ELK_FILEBEAT

	deploy/redeploy filebeat

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_CORE

	deploy/redeploy the core platform components

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_FEDERATION

	deploy/redeploy the federation component

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_MLWB

	deploy/redeploy the MLWB components

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_LUM

	deploy/redeploy the LUM component

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_INGRESS

	deploy/redeploy an ingress controller

	true

	set to FALSE after deployment

	ACUMOS_DEPLOY_INGRESS_RULES

	setup ingress rules for components requiring ingress

	true

	

	ACUMOS_COUCHDB_DB_NAME

	name for the MLWB database

	mlwbdb

	

	ACUMOS_COUCHDB_DOMAIN

	FQDN of the CouchDB service

	$ACUMOS_NAMESPACE-couchdb-svc-couchdb

	manually set for docker

	ACUMOS_COUCHDB_PORT

	TCP port of the CouchDB service

	5984

	

	ACUMOS_COUCHDB_USER

	admin user for the CouchDB service

	admin

	

	ACUMOS_COUCHDB_PASSWORD

	admin user password for the CouchDB service

	generated UUID

	generated if not specified

	ACUMOS_COUCHDB_UUID

	UUID as required by the Apache CouchDB helm chart

	generated UUID

	generated if not specified

	ACUMOS_COUCHDB_VERIFY_READY

	wait until CouchDB is fully ready before proceeding

	true

	set to false if CouchDB takes a while to stabilize

	ACUMOS_JENKINS_IMAGE

	docker image to deploy for Jenkins

	jenkins/jenkins

	non-privileged envs will require a pre-configured image

	ACUMOS_JENKINS_API_SCHEME

	HTTP URI scheme for Jenkins

	http://

	

	ACUMOS_JENKINS_API_HOST

	FQDN of Jenkins service

	$ACUMOS_NAMESPACE-jenkins

	manually set for docker or external deployment

	ACUMOS_JENKINS_API_PORT

	TCP port for the Jenkins service

	8080

	

	ACUMOS_JENKINS_API_CONTEXT_PATH

	URL path prefix for ingress routing

	jenkins

	

	ACUMOS_JENKINS_API_URL

	full URL of the Jenkins service

	${ACUMOS_JENKINS_API_SCHEME}${ACUMOS_JENKINS_API_HOST}:$ACUMOS_JENKINS_API_PORT/$ACUMOS_JENKINS_API_CONTEXT_PATH/

	

	ACUMOS_JENKINS_USER

	Jenkins admin username

	admin

	

	ACUMOS_JENKINS_PASSWORD

	Jenkins admin password

	generated UUID

	generated if not specified

	ACUMOS_JENKINS_SCAN_JOB

	name of Jenkins job

	security-verification-scan

	

	ACUMOS_JENKINS_SIMPLE_SOLUTION_DEPLOY_JOB

	name of Jenkins job

	solution-deploy

	

	ACUMOS_JENKINS_COMPOSITE_SOLUTION_DEPLOY_JOB

	name of Jenkins job

	solution-deploy

	

	ACUMOS_JENKINS_NIFI_DEPLOY_JOB

	name of Jenkins job

	nifi-deploy

	not implemented in Clio

	ACUMOS_DOCKER_API_HOST

	hostname of docker-engine API service

	docker-dind-service

	

	ACUMOS_DOCKER_API_PORT

	TCP port of of docker-engine API service

	2375

	

	ACUMOS_INGRESS_SERVICE

	type of ingress service

	nginx

	nginx|kong

	ACUMOS_INGRESS_HTTP_PORT

	external port for HTTP ingress

	dynamically assigned NodePort

	dynamically assigned if not specified

	ACUMOS_INGRESS_HTTPS_PORT

	external port for HTTP ingress

	dynamically assigned NodePort

	dynamically assigned if not specified

	ACUMOS_INGRESS_LOADBALANCER

	set ingress type to LoadBalancer

	false

	manually set true for Azure-AKS

	ACUMOS_INGRESS_MAX_REQUEST_SIZE

	payload max size

	1000m

	

	ACUMOS_KONG_HTTPS_ONLY

	value of kong ingress rule flag

	true

	manually set false for OpenShift

	LUM_RELEASE_NAME

	Helm release name

	license-clio

	

	LUM_NAMESPACE

	namespace to deploy LUM in

	$ACUMOS_NAMESPACE

	

	LUM_CHART_NAME

	Helm chart name

	lum-helm

	

	ACUMOS_HTTP_PROXY_HOST

	hostname

	
	

	ACUMOS_HTTP_PROXY_PORT

	TCP port

	
	

	ACUMOS_HTTP_NON_PROXY_HOSTS

	base list of non-proxied destinations

	127.0.0.1|localhost|.svc.cluster.local

	

	ACUMOS_HTTP_PROXY_PROTOCOL

	protocol for proxy

	
	http|https

	ACUMOS_HTTP_PROXY

	full proxy URL

	
	

	ACUMOS_HTTPS_PROXY

	full proxy URL

	
	

	ACUMOS_PRIVILEGED_ENABLE

	enable privileged k8s pods

	false

	

	ACUMOS_CAS_ENABLE

	enable CAS authentication

	false

	

	ACUMOS_VERIFY_ACCOUNT

	verify new user accounts via email

	false

	requires email service to be setup

	ACUMOS_TOKEN_EXP_TIME

	user login expiration (hours)

	24

	

	ACUMOS_ADMIN

	Acumos platform admin name

	admin

	

	ACUMOS_EMAIL_SERVICE

	email service type to setup

	none

	none|smtp|mailjet

	ACUMOS_SPRING_MAIL_SERVICE_DOMAIN

	SMTP service domain

	
	

	ACUMOS_SPRING_MAIL_SERVICE_PORT

	SMTP service port`

	25

	

	ACUMOS_SPRING_MAIL_USERNAME

	SMTP service username

	
	

	ACUMOS_SPRING_MAIL_PASSWORD

	SMTP service password

	
	

	ACUMOS_SPRING_MAIL_STARTTLS

	SMTP service uses TLS

	true

	

	ACUMOS_SPRING_MAIL_AUTH

	SMTP service user auth

	true

	

	ACUMOS_SPRING_MAIL_PROTOCOL

	SMTP service protocol

	
	

	ACUMOS_MAILJET_API_KEY

	mailjet service API key

	
	

	ACUMOS_MAILJET_SECRET_KEY

	mailjet service secret key

	
	

	ACUMOS_MAILJET_ADMIN_EMAIL

	mailjet service admin email

	
	

	ACUMOS_ADMIN_EMAIL

	email of Acumos admin user

	acumos@example.com

	

	ACUMOS_CDS_PREVIOUS_VERSION

	version of already-configured CDS database

	
	updated to configured version upon database setup

	ACUMOS_CDS_HOST

	CDS service hostname

	cds-service

	

	ACUMOS_CDS_PORT

	CDS service port

	8000

	

	ACUMOS_CDS_VERSION

	CDS database version

	3.0-rev3

	

	ACUMOS_CDS_DB

	CDS database name

	acumos_cds

	

	ACUMOS_CDS_USER

	CDS username

	ccds_client

	

	ACUMOS_CDS_PASSWORD

	CDA password

	generated UUID

	generated if not specified

	ACUMOS_JWT_KEY

	Java Web Token generation key

	generated UUID

	generated if not specified

	ACUMOS_DOCKER_PROXY_HOST

	hostname/FQDN

	$ACUMOS_DOMAIN

	

	ACUMOS_DOCKER_PROXY_PORT

	TCP port

	
	

	ACUMOS_FEDERATION_DOMAIN

	hostname/FQDN

	$ACUMOS_DOMAIN

	

	ACUMOS_FEDERATION_HOST_IP

	IP address for Federation service

	set automatically

	used in Federation loadBalancer ingress cases

	ACUMOS_FEDERATION_LOCAL_PORT

	TCP port for platform-internal API

	
	

	ACUMOS_FEDERATION_PORT

	TCP port for platform-external API

	
	

	ACUMOS_ONBOARDING_TOKENMODE

	
	jwtToken

	jwtToken|apiToken

	ACUMOS_MICROSERVICE_GENERATION_ASYNC

	build microservice image after onboarding

	false

	set true for faster onboarding

	ACUMOS_OPERATOR_ID

	UUID of the platform

	12345678-abcd-90ab-cdef-1234567890ab

	

	ACUMOS_PORTAL_PUBLISH_SELF_REQUEST_ENABLED

	users who also have the Publisher role can approve their own publication requests

	true

	

	ACUMOS_PORTAL_ENABLE_PUBLICATION

	Publisher approval not required

	true

	

	ACUMOS_PORTAL_DOCUMENT_MAX_SIZE

	max payload

	100000000

	Needs to be large for docker image tarfiles

	ACUMOS_PORTAL_IMAGE_MAX_SIZE

	max size of solution icon images

	1000KB

	

	ACUMOS_ENABLE_SECURITY_VERIFICATION

	invoke SV workflow gates and scans

	true

	

	ACUMOS_SUCCESS_WAIT_TIME

	minutes to wait for deploy step success

	600

	

	ACUMOS_CREATE_CERTS

	create self-signed certs for platform

	true

	

	ACUMOS_CERT_PREFIX

	filename prefix for generated cert files

	acumos

	

	ACUMOS_CERT_SUBJECT_NAME

	FQDN of the Acumos platform

	$ACUMOS_DOMAIN

	

	ACUMOS_CA_CERT

	CA certificate

	${ACUMOS_CERT_PREFIX}-ca.crt

	

	ACUMOS_CERT

	server certificate

	${ACUMOS_CERT_PREFIX}.crt

	

	ACUMOS_CERT_KEY

	server certificate key

	${ACUMOS_CERT_PREFIX}.key

	

	ACUMOS_CERT_KEY_PASSWORD

	server certificate password

	generated UUID

	generated if not specified

	ACUMOS_KEYSTORE_P12

	P12 format keystore name

	${ACUMOS_CERT_PREFIX}-keystore.p12

	

	ACUMOS_KEYSTORE_JKS

	JKS format keystore name

	${ACUMOS_CERT_PREFIX}-keystore.jks

	

	ACUMOS_KEYSTORE_PASSWORD

	keystore password

	generated UUID

	generated if not specified

	ACUMOS_TRUSTSTORE

	trustore name

	${ACUMOS_CERT_PREFIX}-truststore.jks

	

	ACUMOS_TRUSTSTORE_PASSWORD

	truststore password

	generated UUID

	generated if not specified

	ACUMOS_DEFAULT_SOLUTION_DOMAIN

	FQDN of ingress to deployed solutions

	$ACUMOS_DOMAIN

	

	ACUMOS_DEFAULT_SOLUTION_NAMESPACE

	namespace for deployed solutions

	$ACUMOS_NAMESPACE

	

	ACUMOS_OPENSHIFT_USER

	OpenShift cluster user

	admin

	used by aio_k8s_deployer.sh to login

	ACUMOS_OPENSHIFT_PASSWORD

	OpenShift cluster user password

	any

	

	ACUMOS_K8S_ADMIN_SCOPE

	admin role scope in the k8s cluster

	namespace

	cluster|namespace

	ACUMOS_HOST_USER

	user who will be completing deployment, after setup_prereqs.sh

	as input to setup_prereqs.sh

	

	ACUMOS_DEPLOYMENT_CLIENT_SERVICE_LABEL

	pod affinity label for deployment-related components

	acumos

	

	ACUMOS_COMMON_DATA_SERVICE_LABEL

	pod affinity label for common components

	acumos

	

	ACUMOS_ACUCOMPOSE_SERVICE_LABEL

	pod affinity label for Acu-Compose component

	acumos

	

	ACUMOS_FEDERATION_SERVICE_LABEL

	pod affinity label for Acu-Compose component

	acumos

	

	ACUMOS_MICROSERVICE_GENERATION_SERVICE_LABEL

	pod affinity label for Microservice Generation component

	acumos

	

	ACUMOS_ONBOARDING_SERVICE_LABEL

	pod affinity label for Onboarding component

	acumos

	

	ACUMOS_PORTAL_SERVICE_LABEL

	pod affinity label for portal components

	acumos

	

	ACUMOS_SECURITY_VERIFICATION_SERVICE_LABEL

	pod affinity label for Security Verification component

	acumos

	

	ACUMOS_FILEBEAT_SERVICE_LABEL

	pod affinity label for Filebeat component

	acumos

	

	ACUMOS_DOCKER_PROXY_SERVICE_LABEL

	pod affinity label for Docker-Proxy component

	acumos

	

	ACUMOS_1GI_STORAGECLASSNAME

	storageClassName for 1Gi capacity PVs

	
	

	ACUMOS_5GI_STORAGECLASSNAME

	storageClassName for 5Gi capacity PVs

	
	

	ACUMOS_10GI_STORAGECLASSNAME

	storageClassName for 10Gi capacity PVs

	
	

	ACUMOS_CREATE_PVS

	prep step actions should include PV creation

	true

	

	ACUMOS_RECREATE_PVC

	when redeploying, recreate existing PVCs

	false

	

	ACUMOS_PVC_TO_PV_BINDING

	bind PVCs to specified PV names

	true

	

	ACUMOS_LOGS_PV_NAME

	PV name for logs PVC

	logs

	

	ACUMOS_LOGS_PV_SIZE

	size of logs PV

	1Gi

	

	ACUMOS_LOGS_PV_CLASSNAME

	storageClassName for logs PVC

	$ACUMOS_10GI_STORAGECLASSNAME

	

	ACUMOS_JENKINS_PV_SIZE

	Jenkins PV size

	10Gi

	

	ACUMOS_JENKINS_PV_CLASSNAME

	storageClassName for Jenkins PVC

	$ACUMOS_10GI_STORAGECLASSNAME

	

	DOCKER_VOLUME_PVC_NAME

	PVC name for docker-engine

	docker-volume

	

	DOCKER_VOLUME_PV_NAME

	PV name for docker-volume PVC

	docker-volume

	

	DOCKER_VOLUME_PV_SIZE

	size of docker-volume PVC

	10Gi

	

	DOCKER_VOLUME_PV_CLASSNAME

	storageClassName for docker-volume PVC

	$ACUMOS_10GI_STORAGECLASSNAME

	

	KONG_DB_PVC_NAME

	PVC name for kong database

	kong-db

	

	KONG_DB_PV_NAME

	PV name for kong database

	kong-db

	

	KONG_DB_PV_SIZE

	size of kong-db PVC

	1Gi

	

	KONG_DB_PV_CLASSNAME

	storageClassName for kong-db PVC

	$ACUMOS_1GI_STORAGECLASSNAME

	

The following table lists the less commonly configured parameters of the
Acumos core platform components and their default values, or those parameters
that may be removed in future releases.

	Variable

	Description

	Default value

	Notes

	ACUMOS_DOCKER_PROXY_USERNAME

	
	
	not used in Clio

	ACUMOS_DOCKER_PROXY_PASSWORD

	
	
	not used in Clio

	ACUMOS_ONBOARDING_CLIPUSHAPI

	
	/onboarding-app/v2/models

	this is the required value

	ACUMOS_ONBOARDING_CLIAUTHAPI

	
	/onboarding-app/v2/auth

	this is the required value

	ACUMOS_SECURITY_VERIFICATION_PORT

	
	9082

	

	ACUMOS_SECURITY_VERIFICATION_EXTERNAL_SCAN

	
	false

	not used in Clio

	ACUMOS_DATA_BROKER_INTERNAL_PORT

	
	8080

	

	ACUMOS_DATA_BROKER_PORT

	
	8556

	

	ACUMOS_DEPLOYED_SOLUTION_PORT

	
	3330

	

	ACUMOS_DEPLOYED_VM_PASSWORD

	
	12NewPA$$w0rd!

	

	ACUMOS_DEPLOYED_VM_USER

	
	dockerUser

	

	ACUMOS_PROBE_PORT

	
	5006

	

	PYTHON_EXTRAINDEX

	
	
	not used in Clio

	PYTHON_EXTRAINDEX_HOST

	
	
	not used in Clio

MLWB configuration

The following options are set by AIO/mlwb/mlwb_env.sh. If you are deploying the
MLWB as part of the platform using the OneClick toolset, you can override any
default values by updating the mlwb_env.sh script in the AIO/mlwb folder.

	Variable

	Description

	Default value

	Notes

	…_IMAGE

	Repository/version of component image

	per Acumos release assembly version

	Assembly version is noted in acumos_env.sh

	MLWB_PROJECT_SERVICE_PORT

	cluster-internal service port

	9088

	

	MLWB_NOTEBOOK_SERVICE_PORT

	cluster-internal service port

	9089

	

	MLWB_PIPELINE_SERVICE_PORT

	cluster-internal service port

	9090

	

	MLWB_HOME_WEBCOMPONENT_PORT

	cluster-internal service port

	9087

	

	MLWB_DASHBOARD_WEBCOMPONENT_PORT

	cluster-internal service port

	9083

	

	MLWB_PROJECT_WEBCOMPONENT_PORT

	cluster-internal service port

	9084

	

	MLWB_NOTEBOOK_WEBCOMPONENT_PORT

	cluster-internal service port

	9093

	

	MLWB_PIPELINE_WEBCOMPONENT_PORT

	cluster-internal service port

	9091

	

	MLWB_PROJECT_CATALOG_WEBCOMPONENT_PORT

	cluster-internal service port

	9085

	

	MLWB_NOTEBOOK_CATALOG_WEBCOMPONENT_PORT

	cluster-internal service port

	9094

	

	MLWB_PIPELINE_CATALOG_WEBCOMPONENT_PORT

	cluster-internal service port

	9092

	

	MLWB_JUPYTERHUB_SERVICE_PORT

	cluster-internal service port

	8086

	

	MLWB_CORE_SERVICE_LABEL

	pod affinity label for MLWB-core components

	acumos

	

	MLWB_PROJECT_SERVICE_LABEL

	pod affinity label for MLWB project components

	acumos

	

	MLWB_NOTEBOOK_SERVICE_LABEL

	pod affinity label for MLWB notebook components

	acumos

	

	MLWB_PIPELINE_SERVICE_LABEL

	pod affinity label for MLWB pipeline components

	acumos

	

	MLWB_NIFI_USER_SERVICE_LABEL

	pod affinity label for NiFi user pods

	acumos

	

	MLWB_DEPLOY_PIPELINE

	deploy the pipeline service

	true

	

	MLWB_DEPLOY_NIFI

	deploy NiFi

	true

	

	MLWB_NIFI_EXTERNAL_PIPELINE_SERVICE

	use an external pipeline service

	false

	

	MLWB_NIFI_REGISTRY_PV_NAME

	name of PV to reference in PVC

	nifi-registry

	

	MLWB_NIFI_REGISTRY_PVC_NAME

	PVC name

	nifi-registry

	

	MLWB_NIFI_REGISTRY_PV_SIZE

	PV size to request in PVC

	5Gi

	

	MLWB_NIFI_REGISTRY_PV_CLASSNAME

	PV storageClassName to reference in PVC

	$ACUMOS_5GI_STORAGECLASSNAME

	

	MLWB_NIFI_REGISTRY_INITIAL_ADMIN

	username of initial admin

	nifiadmin

	

	MLWB_NIFI_REGISTRY_INITIAL_ADMIN_NAME

	name of initial admin

	nifiadmin user

	

	MLWB_NIFI_REGISTRY_INITIAL_ADMIN_EMAIL

	email of initial admin

	nifiadmin@acumos.org

	

	MLWB_NIFI_REGISTRY_INITIAL_ADMIN_PASSWORD

	initial admin password

	generated UUID

	generated if not specified

	MLWB_NIFI_KEY_PASSWORD

	server cert key password

	generated UUID

	generated if not specified

	MLWB_NIFI_KEYSTORE_PASSWORD

	keystore password

	generated UUID

	generated if not specified

	MLWB_NIFI_TRUSTSTORE_PASSWORD

	truststore password

	generated UUID

	generated if not specified

	MLWB_NIFI_REGISTRY_SERVICE_LABEL

	pod affinity label for NiFi components

	acumos

	

	MLWB_NIFI_USER_SERVICE_LABEL

	pod affinity label for NiFI user pods

	acumos

	

	MLWB_DEPLOY_JUPYTERHUB

	deploy JupyterHub

	true

	

	MLWB_JUPYTERHUB_EXTERNAL_NOTEBOOK_SERVICE

	use an external JupyterHub service

	false

	

	MLWB_JUPYTERHUB_INSTALL_CERT

	install (trust) JupyterHub server certs

	true

	required for self-signed certs, if MLWB_JUPYTERHUB_EXTERNAL_NOTEBOOK_SERVICE=false

	MLWB_JUPYTERHUB_IMAGE_TAG

	image tag for Jupyter docker-stacks images

	9e8682c9ea54

	required to ensure compatibility

	MLWB_JUPYTERHUB_NAMESPACE

	namespace for JupyterHub

	$ACUMOS_NAMESPACE

	

	MLWB_JUPYTERHUB_DOMAIN

	cluster-external FQDN

	$ACUMOS_DOMAIN

	

	MLWB_JUPYTERHUB_PORT

	JupyterHub external port

	443

	

	MLWB_JUPYTERHUB_CERT

	cert name

	
	set to $ACUMOS_CERT if deployed inside the Acumos platform

	MLWB_JUPYTERHUB_API_TOKEN

	API token

	generated random number

	$(openssl rand -hex 32)

	MLWB_JUPYTERHUB_HUB_PV_NAME

	name of PV to reference in PVC

	jupyterhub-hub

	

	MLWB_JUPYTERHUB_USER_SERVICE_LABEL

	pod affinity label for Jupyter user pods

	acumos

	

MariaDB configuration

AIO/charts/mariadb/setup_mariadb_env.sh contains values for the MariaDB service
as deployed and as used by clients. setup_mariadb_env.sh will generate another
script mariadb_env.sh and save it in that folder and under AIO.

If you are deploying MariaDB as part of the platform using the OneClick toolset,
you can override any default values by creating a mariadb_env.sh script in the
AIO/charts/mariadb folder, which will be supplemented with any values you do not
pre-select. For example:

export ACUMOS_MARIADB_NAMESPACE=whadayadowithadblike

If you are not deploying MariaDB (i.e. you want the platform to use a
pre-existing MariaDB service), create a mariadb_env.sh script in the AIO folder,
for the following values at minimum (see the table for more info):

	ACUMOS_MARIADB_DOMAIN

	ACUMOS_MARIADB_HOST

	ACUMOS_MARIADB_HOST_IP

	MARIADB_MIRROR

	ACUMOS_MARIADB_VERSION

	ACUMOS_MARIADB_ROOT_ACCESS

	ACUMOS_MARIADB_PASSWORD

	ACUMOS_MARIADB_USER

	ACUMOS_MARIADB_USER_PASSWORD

	Variable

	Description

	Default value

	Notes

	ACUMOS_MARIADB_NAMESPACE

	namespace for MariaDB

	acumos-mariadb

	

	ACUMOS_MARIADB_DOMAIN

	cluster-external FQDN

	$ACUMOS_DOMAIN

	must be DNS/hosts-resolvable

	ACUMOS_INTERNAL_MARIADB_HOST

	default cluster-internal FQDN

	$ACUMOS_MARIADB_NAMESPACE-mariadb.$ACUMOS_MARIADB_NAMESPACE.svc.cluster.local

	

	ACUMOS_MARIADB_HOST

	cluster-local hostname/FQDN

	$ACUMOS_INTERNAL_MARIADB_HOST

	if an external name, must be DNS/hosts-resolvable

	ACUMOS_MARIADB_HOST_IP

	service host IP address

	
	discovered from DNS/hosts

	MARIADB_MIRROR

	MariaDB project mirror

	sfo1.mirrors.digitalocean.com

	Used to install client/server code

	ACUMOS_MARIADB_VERSION

	MariaDB server/client version

	10.2

	latest version tested with OneClick toolset

	ACUMOS_MARIADB_ADMIN_HOST

	IP address of root admin system

	$ACUMOS_HOST_IP

	used to set server access rules for root user

	ACUMOS_MARIADB_ROOT_ACCESS

	OneClick tool user has root access

	true

	

	ACUMOS_MARIADB_PASSWORD

	root user password

	generated UUID

	generated if not specified

	ACUMOS_MARIADB_USER

	platform user account name

	acumos_opr

	

	ACUMOS_MARIADB_USER_PASSWORD

	platform user password

	generated UUID

	generated if not specified

	ACUMOS_MARIADB_DATA_PV_NAME

	name of PV to reference in PVC

	mariadb-data

	

	ACUMOS_MARIADB_DATA_PVC_NAME

	name of PVC

	mariadb-data

	

	ACUMOS_MARIADB_DATA_PV_SIZE

	PV size to request in PVC

	5Gi

	

	ACUMOS_MARIADB_DATA_PV_CLASSNAME

	PV storageClassName to reference in PVC

	ACUMOS_10GI_STORAGECLASSNAME

	

	ACUMOS_MARIADB_PORT

	MariaDB internal port

	3306

	

	ACUMOS_MARIADB_NODEPORT

	MariaDB external port

	dynamically assigned NodePort

	dynamically assigned if not specified

	ACUMOS_MARIADB_ADMINER_PORT

	port for Adminer service

	3080

	docker-based install only

	ACUMOS_MARIADB_RUNASUSER

	UID/GID for k8s pods

	
	per MariaDB Helm chart default, or for OpenShift per the namespace-allocated UID range

Nexus configuration

AIO/nexus/setup_nexus_env.sh contains values for the Nexus service as deployed
and as used by clients. setup_nexus_env.sh will generate another script
nexus_env.sh and save it in that folder and under AIO.

If you are deploying Nexus as part of the platform using the OneClick toolset,
you can override any default values by creating a nexus_env.sh script in the
AIO/nexus folder, which will be supplemented with any values you do not
pre-select. For example:

export ACUMOS_NEXUS_NAMESPACE=artifacts-r-us

If you are not deploying Nexus (i.e. you want the platform to use a pre-existing
Nexus service), create a nexus_env.sh script in the AIO folder, for the following
values at minimum (see the table for more info):

	ACUMOS_NEXUS_DOMAIN

	ACUMOS_NEXUS_HOST

	ACUMOS_DOCKER_REGISTRY_HOST

	ACUMOS_NEXUS_ADMIN_PASSWORD

	ACUMOS_NEXUS_ADMIN_USERNAME

	ACUMOS_NEXUS_API_PORT

	ACUMOS_NEXUS_GROUP

	ACUMOS_NEXUS_RO_USER

	ACUMOS_NEXUS_RO_USER_PASSWORD

	ACUMOS_NEXUS_RW_USER

	ACUMOS_NEXUS_RW_USER_PASSWORD

	ACUMOS_DOCKER_REGISTRY_USER

	ACUMOS_DOCKER_REGISTRY_PASSWORD

	ACUMOS_NEXUS_MAVEN_REPO_PATH

	ACUMOS_NEXUS_MAVEN_REPO

	ACUMOS_NEXUS_DOCKER_REPO

	ACUMOS_DOCKER_MODEL_PORT

	ACUMOS_DOCKER_IMAGETAG_PREFIX

ELK Stack configuration

Deployment of ELK is optional under the OneClick toolset, and controlled by the
core platform env variable ACUMOS_DEPLOY_ELK in AIO/acumos_env.sh.

AIO/charts/elk-stack/setup_elk_env.sh contains values for the ELK service
as deployed and as used by clients. setup_elk_env.sh will generate another
script elk_env.sh and save it in that folder and under AIO.

If you are deploying ELK as part of the platform using the OneClick toolset,
you can override any default values by creating a elk_env.sh script in the
AIO/charts/elk-stack folder, which will be supplemented with any values you do
not pre-select. For example:

export ACUMOS_ELK_NAMESPACE=got-elk

If you are not deploying ELK (e.g. you want the platform to use a pre-existing
ELK service), create a elk_env.sh script in the AIO folder, for the following
values at minimum (see the table for more info):

	ACUMOS_ELK_DOMAIN

	ACUMOS_ELK_HOST

	ACUMOS_ELK_HOST_IP

	ACUMOS_ELK_ELASTICSEARCH_PORT

	ACUMOS_ELK_ELASTICSEARCH_INDEX_PORT

	ACUMOS_ELK_LOGSTASH_PORT

	ACUMOS_ELK_KIBANA_PORT

	Variable

	Description

	Default value

	Notes

	ACUMOS_ELK_NAMESPACE

	Namespace to deploy ELK under

	acumos-elk

	

	ACUMOS_ELK_DOMAIN

	FQDN for external access

	$ACUMOS_DOMAIN

	

	ACUMOS_ELK_HOST

	FQDN/hostname for local access

	$ACUMOS_HOST

	

	ACUMOS_ELK_HOST_IP

	IP address

	$ACUMOS_HOST_IP

	

	ACUMOS_HTTP_PROXY

	HTTP proxy

	
	

	ACUMOS_HTTPS_PROXY

	HTTPS proxy

	
	

	ACUMOS_ELK_ELASTICSEARCH_PORT

	TCP port for Elasticsearch service

	30930

	

	ACUMOS_ELK_ELASTICSEARCH_INDEX_PORT

	TCP port for Elasticsearch index service

	30920

	

	ACUMOS_ELK_LOGSTASH_PORT

	TCP port for Logstash service

	30500

	

	ACUMOS_ELK_KIBANA_PORT

	TCP port for Kibana service

	30561

	

	ACUMOS_ELK_ES_JAVA_HEAP_MIN_SIZE

	
	2g

	

	ACUMOS_ELK_ES_JAVA_HEAP_MAX_SIZE

	
	2g

	

	ACUMOS_ELK_LS_JAVA_HEAP_MIN_SIZE

	
	1g

	

	ACUMOS_ELK_LS_JAVA_HEAP_MAX_SIZE

	
	2g

	

	ACUMOS_ELASTICSEARCH_PRIVILEGED_ENABLE

	Allow privileged operation

	true

	k8s only

	ACUMOS_ELASTICSEARCH_DATA_PVC_NAME

	PVC name for Elasticsearch

	elasticsearch-data

	

	ACUMOS_ELASTICSEARCH_DATA_PV_NAME

	PV name to reference in PVC

	elasticsearch-data

	

	ACUMOS_ELASTICSEARCH_DATA_PV_SIZE

	size of PV to allocate

	10Gi

	

	ACUMOS_ELASTICSEARCH_DATA_PV_CLASSNAME

	storageClassName to reference

	$ACUMOS_10GI_STORAGECLASSNAME

	

 Acumos OneClick / All-in-One (AIO) Developer Guide

Acumos OneClick / All-in-One (AIO) Developer Guide

The OneClick toolset was developed to meet these goals:

	enable new developers and users to deploy and start using the Acumos platform
with a minimum of training or experience in the related technologies

	support deployment under both docker-compose and kubernetes (k8s) managed
environments

	to the extent possible given project resources, support a diversity of
k8s-based environments and deployment approaches, e.g.

	bare-metal or VM hosts

	single-node deployment

	generic kubernetes [https://kubernetes.io/]

	OpenShift Origin (OKD) [https://www.okd.io/]

	multi-node deployment

	generic kubernetes [https://kubernetes.io/]

	OpenShift [https://www.openshift.com/]

	Azure AKS [https://azure.microsoft.com/en-us/services/kubernetes-service/]

	layered tools that support distinct roles for Admins (e.g. as host/VM admins
and k8s cluster admins) and normal users (e.g. as non-privileged host/VM
users, and k8s tenants with ability to manage resources under a namespace)

	to the extent available, leverage upstream project support for deploying
related components, e.g. via Helm charts and/or published docker images

	use the most recent, stable version of upstream components that are
compatible with the Acumos platform design goals

	leverage state-of-the-art deployment tools that help better manage the
complexity of platform deployment

	support selection of which components to deploy as part of the platform, or
to use as external/shared services

	support various platform lifecycle use cases

	maintain platform state across deployments, and allow that state to be reused
for new deployments (i.e. clone the platform)

	expose platform-externally only those services that provide direct UI or API
support to users, other platform-external components, or federated Acumos
platforms

	minimize platform-external exposure of inter-component interfaces by using
platform-internal addressing where possible

	use a consistent naming/allocation scheme for resources across deployment
environments, where those resources could result in name/value conflicts

	include automated tests for key system APIs/functions where possible, as part
of the platform deployment process or post-deploy options

The following sections discuss key aspects of how the goals above have been
accomplished, at least in part, and what aspects need to be further developed or
reconsidered.

Quickstart for new Developers/Users

For k8s-based deployments, given that the user provides a host and cluster
environment per the prerequisites, the OneClick tools provide a simple process
for deploying the Acumos platform, e.g. a single command:

$ bash system-integration/tools/AIO/oneclick_deploy.sh aio_k8s_deployer \
 <host> <user> <distribution>

where:

	host: hostname of k8s cluster master node

	user: SSH-enabled sudo user on the platform

	k8s distribution: type of k8s cluster (generic|openshift)

Beyond that most generic example, the user only has to specify those
environment parameters that really need to be changed, as described in
`Customizing the aio_k8s_deployer environment`_.

Target environment diversity

Originally (as of Athena), the Acumos platform was deployed to bare-metal
servers or VMs using docker-compose or generic kubernetes, with integrated or
externally-deployed backend services. Boreas extended this with support for
OpenShift OKD. Clio has further extended this with support for Azure-AKS
k8s clusters, and for k8s clusters with typical production-focused constraints.

Apart from minor variations in how k8s cluster resources are managed using the
applicable client (kubectl or oc), most of the Clio changes relate to support
for the additional environments and infrastructure specifics of various k8s
cluster use cases (e.g. development vs production, cluster admin vs tenant), e.g.:

	k8s clusters with pod security constraints, e.g. Pod Security Policies
(PSP, for generic k8s) and Security Context Constraints (SCC, for OpenShift)

	explicit component distribution across multi-node clusters

	variations in how ingress is provided to the platform

	variations in how PVs are provided to the platform

The rest of this section focuses on the basic environment adaptations and
approach to the specific issues listed above, for k8s-based deployments.

Target environment adaptation

Following are some of the key variations in the various k8s environments
supported by the OneClick toolset:

Generic k8s

Generic k8s provides the easiest environment to adapt to, especially in terms of
managing pod security (privileged pods are allowed by default). There is also
a wider set of upstream components designed for deployment using Helm
(e.g. from the github Helm charts repo [https://github.com/helm/charts]).

However, in environments that do constrain pod privilege and use of Helm,
those advantages are reduced in significance, and issues such as described
below for OpenShift need to be addressed at the namespace or component level.

OpenShift (OKD)

UID/GID restrictions

OpenShift limits the pod user IDs (UID) and group/filesystem ID (GID) that can
be used, to a range that is assigned to each namespace when it is created. This
is incompatible with container images or Helm charts that expect other specific
UID/GID values to be usable. Current workarounds for this include:

	after a namespace is created (in AIO/utils.sh:create_namespace), update the
namespace to include these annotations, which replace the UID/GID range allowed:

openshift.io/sa.scc.supplemental-groups: 0/10000
openshift.io/sa.scc.uid-range: 0/10000

	if the workaround above is not possible/allowed in some clusters, the following
workarounds will suffice for MariaDB and Jenkins. However, CouchDB will not
run successfully without the workaround above, at least using the Apache
project Helm chart, unmodified.

	where Helm charts and the related applications support specification and use
of specific UID/GID values, set those values per the range set by
OpenShift for the namespace

	for MariaDB and Jenkins, the environment values ACUMOS_MARIADB_RUNASUSER
and ACUMOS_JENKINS_RUNASUSER are set in their related setup scripts, and
used in the Helm chart for those components

	for other components which require specific UID/GID, run the pods as
privileged or with “RunAsAny” (“anyuid”) permission:

	the AIO toolset currently enables privilege by default at the namespace
level, pending investigation into more narrow workarounds:

	In AIO/setup_prereqs.sh, for all pods in the Acumos namespace (to allow
hostPath PV access), and for pods in the “default” namespace (so PV
recycler pods can cleanup data in released PVCs)

oc adm policy add-scc-to-user privileged -z default -n $ACUMOS_NAMESPACE
oc adm policy add-scc-to-user privileged -z default -n default

	In AIO/nexus/setup_nexus.sh, so Nexus can run as its expected UID (200)

oc adm policy add-scc-to-user anyuid -z default -n $ACUMOS_NEXUS_NAMESPACE

	In charts/mariadb/setup_mariadb.sh, so MariaDB’s init container
“volume-permissions” can change permissions on the MariaDB data folder:

oc adm policy add-scc-to-user privileged -z default -n $ACUMOS_MARIADB_NAMESPACE

	In charts/elk-stack/setup_elk.sh, so elasticsearch init containers can
perform privileged setup steps:

oc adm policy add-scc-to-user privileged -z default -n $ACUMOS_ELK_NAMESPACE

For future releases, focus on these areas of investigation/options is recommended:

	more narrow permissions that address the needs of specific components

	how to use the upstream project container images (e.g. for Nexus,
sonatype/nexus3:3.9.0) with OpenShift-assigned UID/GID values; this is partly
related to being able to run as an arbitrary user, and also a pod security
issue as described in the next section

	A CouchDB Helm chart that is compatible with OpenShift, or other workaround
that does not require allowing

Pod security in OpenShift

OpenShift is much more enterprise-focused k8s distribution, requiring explicit
pod privilege management through Security Context Constraints (SCC). Managing
SCC is essential to a well-designed RBAC environment, that takes a
least-privilege approach to security at the pod and namespace levels. At this
time, if used to setup cluster-level prerequisites, the OneClick toolset does
not provide/support SCC management at a component level, rather at the namespace
level as describe in UID/GID restrictions.

The two SCC workarounds described earlier enable:

	pods to use hostPath PVs

	the privileged SCC allows not only privileged pods but also pods that
mount hostPath PVs; it’s recommended that future releases support hostPath
permission more granularly, e.g. as described in
Use the hostPath Volume Plug-in [https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html#use-the-hostpath-volume-plugin]

	pods to change the owner/permissions (chown/chmod) of folders/files in their
container or PVC-mounted volumes; in many cases init containers/functions are
designed to do this as required/recommended by the upstream developers, at
pod startup

	allowing pod privilege is a workaround to lack of developed approaches to
setting PV folder permissions as required

	For files/folders in the container, note that OpenShift by default
dynamically sets the user UID/GID based upon a range of values assigned to
the namespace. This prevents use of any image-preparation based approaches
(e.g. use a specific UID/GID and create the folders in advance, setting
permissions as needed in the image). Current related workarounds for this
include:

	PV recycler jobs to clean data in released PVs; these jobs run by in the
“default” namespace (by default)

	at this time, it’s unclear how to allow PV recyclers to clean data in
hostPath PVs without running as privileged

For future releases, focus on these areas of investigation/options is recommended:

	more granular permissions control, e.g. as described in
Managing Security Context Constraints [https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html].

	for OpenShift clusters that do not allow the security exceptions above, other
solutions are needed to enable a pod’s ability to change the owner/permissions
folders/files in their container or PVC-mounted volumes

	for PVs, this may require use of additional OpenShift features such as
PV Dynamic Provisioning [https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/dynamically_provisioning_pvs.html];
it’s assumed that multi-node OpenShift clusters will be based upon the
commercial version of OpenShift (or at least a later/enhanced open source
version), and that those clusters may have support for a non-hostPath
PV backend (e.g. Ceph or GlusterFS)

	for files/folders inside the container, other solutions need to be found
for the specific containers and files/folders that are causing problems

OpenShift routes vs ingress

OpenShift provides its own version of ingress support, through
routes [https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html].
Due to that and likely other incompatibilities, the
nginx-ingress [https://github.com/helm/charts/tree/master/stable/nginx-ingress]
Helm chart used by the OneClick toolset for generic k8s does not work under
OpenShift. Other solutions such as the OpenShift
cluster-ingress-operator [https://github.com/openshift/cluster-ingress-operator]
do not work with OKD (the OpenShift version that has been explicitly tested and
supported in Clio).

What does work natively for OpenShift is the automatic creation of route objects
that correspond to ingress objects. This works because OpenShift OKD
route controller [https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html]
watches for ingress objects that are associated with ready services/pods,
and automatically manages routes related to those ingresses. However, the
OpenShift router does not support one key nginx-ingress feature: URL path
re-writing. So only those ingress rules that do not modify the URL as it passes
through the router, will work with OpenShift. See for more information:

	OpenShift - How to redirect an $url/$path into an $url <https://stackoverflow.com/questions/49740805/openshift-how-to-redirect-an-url-path-into-an-url>

At this time, the workaround to this for OneClick toolset based deployments, is
to use the Kong proxy, and skip creation of ingress resources (Kong has its own
API for that). This is enabled by:

	setting the following values for the deployment, e.g. through a
customize_env.sh script:

export ACUMOS_DEPLOY_INGRESS_RULES=false
export ACUMOS_INGRESS_SERVICE=kong
export ACUMOS_KONG_HTTPS_ONLY=false

	ACUMOS_DEPLOY_INGRESS_RULES is set ‘false’ to prevent conflict between the
set of standard k8s ingress objects and OpenShift routes

	ACUMOS_KONG_HTTPS_ONLY is used to indicate that Kong is being deployed
behind an ingress controller (the OpenShift route controller) that
terminates HTTPS and forwards requests internally via HTTP

	setup_kong.sh creates a single ingress rule for the Kong service, if
ACUMOS_KONG_HTTPS_ONLY=false

One side-effect of this workaround is that the NiFi Registry and Acumos platform
internal support for NiFi users must be disabled for OpenShift, and an external
NiFi service used instead. This limitation is due to Kong’s lack (at least in
the Kong version used by the OneClick tools) of the ingress controller features
NiFi requires (an auth callout API).

For future releases, focus on these areas of investigation/options is recommended:

	upgrade Kong (and the Kong configuration job/objects) to a version that
supports the ingress annotations in
AIO/mlwb/nifi/kubernetes/ingress-registry.yaml, or similar;
this will enabled Acumos platform-internal NiFi support

	upgrade the supported OKD version to OKD4, which may be compatible with the
OpenShift ingress operator

	find/develop a version of the nginx-ingress Helm chart that is compatible with
OpenShift; see Leverage upstream projects for some considerations about this

	figure out how to use OpenShift routes natively (thus leave out Kong), yet
address lack of URL re-writing support (maybe newer versions will support it)

Azure-AKS

In supporting Acumos on Azure-AKS, three main adaptations were involved:

	lack of support for PVCs that are shared across pods

	use of Azure-AKS LoadBalancer ingress

Note that the issues and adaptations may be related to the type of Azure-AKS
service provided to the service account that was used to develop/test the
OneClick toolset support for Azure-AKS. Further analysis into or use of
other Azure-AKS service account options may lead to other solutions.

Lack of shared PVCs in Azure-AKS

Azure-AKS does not support sharing of PVCs by multiple pods. This is because in
the tested environment,
Azure Disks [https://docs.microsoft.com/en-us/azure/aks/azure-disks-dynamic-pv]
are used for PVs, and do not support the RWX (read-write many) mode for PVs.

This issue also prevents distributing Acumos components across the nodes of an
Azure-AKS cluster, as long as they all need to reference a shared PVC, e.g. for
logs, since in order to access the PVC, all components would need to be deployed
as one pod.

	this resulted in the initial approach of deploying all Acumos components
as a single pod, by the tools in system-integration/acumosk8s-public-cloud

	however for node capacity / reliability reasons deploying all components
in a single pod is not a recommended approach, thus for using the OneClick
toolset, a different approach is recommended at this time:

	references to logs volumes are removed from all templates prior to
deployment

	filebeat is not deployed

Note:

	the above workarounds eliminate log collection/presentation by the ELK
stack, but other possible workarounds are too complicated/expensive/risky:

	deploy a filebeat instance as part of every component deployment; this would
require ~20 filebeat instances

	group components into pods, and deploy the groups of components across the
nodes; this would reduce the number of filebeat instances needed, but would
also impact reliability and node resource management in the cluster

	as described in `Logs Location`_, the logs are still being created by the
components, and are accessible via the kubectl command

The following code can be used to prepare the OneClick toolset templates for
deployment without log volumes, and can be executed as part of a
customize_env.sh script as described under
`Customizing the aio_k8s_deployer environment`_.

Disable use of log PVs

function clean_yaml() {
 for f in $fs; do
 for s in $ss; do
 sed -i -- "/$s/d" $1/$f.yaml
 done
 done
}

ss="volumeMounts logs volumes persistentVolumeClaim claimName"
fs="azure-client-deployment cds-deployment deployment-client-deployment \
dsce-deployment kubernetes-client-deployment license-profile-editor-deployment \
license-rtu-editor-deployment msg-deployment onboarding-deployment \
portal-fe-deployment sv-scanning-deployment"
clean_yaml system-integration/AIO/kubernetes/deployment

fs="mlwb-dashboard-webcomponent-deployment mlwb-model-service-deployment \
mlwb-predictor-service-deployment mlwb-home-webcomponent-deployment \
mlwb-notebook-webcomponent-deployment mlwb-pipeline-catalog-webcomponent-deployment \
mlwb-pipeline-webcomponent-deployment mlwb-project-service-deployment \
mlwb-project-catalog-webcomponent-deployment mlwb-project-webcomponent-deployment"
clean_yaml system-integration/AIO/mlwb/kubernetes

ss="logs persistentVolumeClaim claimName"
fs="portal-be-deployment federation-deployment"
clean_yaml system-integration/AIO/kubernetes/deployment

fs="nifi-registry-deployment"
clean_yaml system-integration/AIO/mlwb/nifi/kubernetes

fs="mlwb-notebook-service-deployment mlwb-pipeline-service-deployment"
clean_yaml system-integration/AIO/mlwb/kubernetes

ss="logs var.log.acumos persistentVolumeClaim claimName"
fs="docker-proxy-deployment"
clean_yaml system-integration/AIO/docker-proxy/kubernetes

For future releases, focus on these areas of investigation/options is recommended:

	other options for PV service, per
Storage options for applications in Azure Kubernetes Service (AKS) [https://docs.microsoft.com/en-us/azure/aks/concepts-storage]

	other approaches to log collection, e.g.

	avoid use of filebeat and logs PVCs, by sending all logs direct to STDOUT
and directing pod STDOUT to logstash

	whether this has any impact on the reliability of logging needs to be
considered

Use of Azure-AKS LoadBalancer ingress

Azure-AKS provides a load balancer service, which provides ingress to the
cluster at a domain name that can be assigned to a specific namespace component, e.g.
the nginx-ingress controller. This is the design used in Clio, and is the same
as for generic k8s except that:

	the IP address associated with the platform domain name is provided in the
values input for the nginx-ingress Helm chart, as
controller.service.loadBalancerIP.

For deploying Acumos into Azure-AKS, an environment flag
ACUMOS_INGRESS_LOADBALANCER was added to indicate that the adaptation above
should be made during ingress controller deployment. This flag should be set
to ‘true’ prior to deploying the platform, e.g. in a customize_env.sh script
as described under `Customizing the aio_k8s_deployer environment`_.

update_acumos_env ACUMOS_INGRESS_LOADBALANCER true

Layered tools that support distinct roles

In Boreas, the OneClick toolset was updated to support
`Deploying via the Prep-Deploy process`_, which cleanly separated the actions
needed to:

	as a privileged (sudo) user in the role of a host/cluster admin, to prepare
the host/cluster for deployment of the platform, e.g. install/configure
the host, and install/configure the target environment (docker or k8s)

	as a normal user in the role of a host user or k8s tenant / namespace admin,
to deploy/maintain the Acumos platform

Generally, a design pattern was followed in which prep steps that are related
to a particular component are provided in a script that deploys that component,
and executed if the first parameter to the script (an ‘action’ parameter) is
‘prep’. This helps ensure that all aspects related to a component are developed
and documented (as code) in a single place.

However, additional work is recommended on this in future releases, in
setup_prereqs.sh and the scripts it calls. See the related functions below in
setup_prereqs.sh for examples of code that could/should be migrated to the
specific setup scripts’ ‘prep’ function, which may also require update to
add ‘action’ parameters:

	setup_keystore vs AIO/setup_keystore.sh

	setup_docker_engine_on_host, prepare_docker_engine, setup_docker vs
AIO/docker-engine/setup_docker_engine.sh

	prepare_mariadb vs charts/mariadb/setup_mariadb.sh

	prepare_elk vs charts/elk-stack/setup_elk.sh

	prepare_nexus vs prepare_nexus

	prepare_ingress vs AIO/kong/setup_kong.sh

	prepare_mlwb vs AIO/mlwb/setup_mlwb.sh

Leverage upstream projects

A key goal of the OneClick toolset design was to leverage as much as possible
projects that already provide implementations of components that the Acumos
platform needs. This supports two key goals of Acumos as a contribution-driven
open source project with limited resources:

	allow Acumos developers to focus on Acumos core components and differentiators

	strengthen support for the upstream projects, by demonstrably expanding thebase of downstream projects and user leveraging their work

	build a stronger cross-project community of contributors

Current examples of using pre-built releases of upstream project components
include:

	Helm charts under system-integration/charts

	CouchDB

	ELK

	Nginx-Ingress

	Jenkins

	JupyterHub

	MariaDB

	Zeppelin

	Component images used directly in docker-compose or k8s templates

	docker-dind (under AIO/docker-engine)

	Nginx (under AIO/docker-proxy)

	ELK (under AIO/elk-stack)

	Kong (under AIO/kong)

	MariaDB (under AIO/mariadb)

	Nexus (under AIO/kong)

	NiFi (under AIO/mlwb/nifi)

In most cases upstream component docker images can be used as-is; where the
OneClick tools provide a Dockerfile it’s usually related to preparing
the container-internal configuration for the component, for deployment under
docker (for k8s, the components are configured via configmaps and PVCs).

The same is true for the Helm charts, though in some cases customizations at the
chart level are required:

	MariaDB (see charts/mariadb/setup_mariadb.sh:mariadb_customize_chart)

	support insertion of rows with non-default values (broken in MariaDB 10.2)

	for OpenShift, support initContainer runAsUser value other than 0

	Jenkins (in charts/jenkins/setup_jenkins.sh)

	for OpenShift, allow Jenkins to run in privileged mode, to allow the init
container to change owner/permissions on data in mounted PVs

	Zeppelin (in charts/zeppelin/setup_zeppelin.sh)

	use image apache/zeppelin

	allow use of NodePort

The types of Helm chart customizations above are pretty minor. If more extensive
chart updates were required, it would be good to consider other options e.g. other
chart versions.

Note that leveraging upstream components as docker images and Helm charts does
still require someone to consider the following as the Acumos platform and the
upstream projects evolve:

	what new capabilities are needed by the Acumos platform, and what new versions
of upstream components might support them

	the generally recommended goal of using the latest stable version of an
actively developed/supported upstream component

	as projects evolve/fork, which upstream component version should be used

	which versions are compatible with the Acumos platform and OneClick toolset

	how much effort, if any, is required to update the OneClick toolset for
newer versions

At the application layer, additional customizations are required for many of the
upstream components, and can be seen in the related deployment scripts and
templates. In most cases the customization relates to how the component is
configured and used by the Acumos platform, rather than addressing some aspect
of the upstream component design. However, where possible the reason for these
customizations should be clarified in the script/template,

In future releases, it’s recommended to consider:

	whether the Helm chart customizations above could/should be addressed in the
upstream projects (with Acumos developer contribution, if needed)

	adding additional clarifications in the various scripts/templates for how/why
the component is customized for use in Acumos

Leverage state-of-the-art deployment tools

This goal relates mostly to deployment under k8s, since the direction of the
Acumos project and OneClick toolset is to use k8s-based environments and tools.

The principle tool that relates to this goal is Helm. As of Clio, the OneClick
toolset (in tools/setup_helm.sh) installs Helm v2.12.3. The Helm version to be
used is important, since it can affect compatibility with Helm charts
developed by the Acumos project or used from upstream projects. Helm v2.12.3 is
the latest stable release of Helm v2 tested with the Acumos platform.

A key consideration however is how the Acumos project leverages Helm, for
deploying the platform overall and its Acumos-project components, vs upstream
components. Here are some perspectives on Helm, given the current experience in
the system-integration project:

	Helm is a great tool for application management, reducing the choices that
application users need to make to possibly a very few (if any) items in a
values file passed to Helm when the chart is deployed

	However, its TBD whether Helm is flexible enough to support managing a complex
platform (such as Acumos) at the platform level through a single parent chart
which contains a hierarchy of child charts (which can themselves have
children) in which:

	values in the parent chart only need to be defined once, and can be use
as-is by all child charts; this seems to be supported in
Helm v3 charts [https://helm.sh/docs/topics/charts/]

	dependency values for some components are not known until deployment of
those components is complete, thus the components need to be deployed in
a specific sequence; this is why the OneClick tools follow a specific
deployment sequence in oneclick_deploy.sh

	this requirement seems to imply that the Acumos platform would need to be
composed of multiple charts that are deployed using a wrapper script,
which

	deploys a prerequisite chart

	updates dependent charts with values obtained from the deployed
components; examples include assigned ports and secrets

	proceeds with the next step of deployments per dependencies

	Such a complex, ordered process for deploying a platform is analogous to
what application lifecycle managing frameworks such as
JuJu [https://github.com/juju/juju] or Cloudify [https://cloudify.co/]
support. In Cloudify’s case, the Acumos platform could be represented as a
TOSCA-based application, similar to how complex VNFs (virtual network functions)
such as Orange’s
opnfv-cloudify-clearwater [https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater]
can be deployed. For Acumos, this is so far designed in the OneClick toolset
using a structured set of bash scripts, Helm charts, and other templates.

In future releases, it’s recommended that:

	the OneClick tools migrate to use of
Helm v3 [https://github.com/helm/helm/releases/tag/v3.0.0],
which may also require Acumos/upstream chart updates, if Helm v3 is not
backward-compatible with current charts

	investigations consider how the Acumos platform can be deployed using a
hierarchical Helm chart, or a set of them with a minimal values discovery
capability, as needed to publish significant values to subsequent charts

	investigations consider whether Acumos as a complex multi-component /
multi-subsystem platform, might better benefit from management methods more
similar to that used for managing VNFs, e.g. TOSCA defined and managed by
VNF manager / orchestration systems

Selection of which components to deploy

In Athena, the OneClick toolset focused on deploying Acumos as a unified,
all-in-one (AIO) platform so that developers and new users could more easily
experience and start further developing the platform. Since the platform as of
Athena was already quite complex with dependencies on various external
components and configurations that were not well documented, and beyond the
expertise of most end-users/developers to deploy as a whole, it was essential
that the OneClick toolset close that gap. As a result, users were able to
deploy the entire platform with a minimum of preparation and choices.

In Athena and since, a lot of research, design, and pattern/tool development
effort went into Athena’s OneClick toolset, to help establish the automated
tooling that it provides. As of Clio, that need remains, and in fact is even
greater now that the platform:

	is experiencing wider adoption as of its third release

	has a wider set of technologies and areas of technical purpose, which
for end-users is great, but puts their ability to stand up the platform
further from reach

In Boreas and Clio, additional focus was put on supporting those users who
were not just deploying the platform for personal research or development, but
as a platform for teams and organizations to use in a tool infrastructure
environment where various of the “supplemental/external” service components
(as shown in the diagrams in `What is an AIO deploy?`_) were already deployed
and needed to be used, in place of Acumos platform internal instances of those
services. As a result, many more options for selecting which components to
deploy (or redeploy) were added, e.g.:

	databases: MariaDB and CouchDB

	Maven artifact repositories: Nexus

	Docker registries: Nexus or other docker registry compliant implementation

	ELK stack services

	docker engine (docker API service)

	MLWB user-related services: NiFi, JupyterHub

	Jenkins

Given the high number of permutations of the resulting choices, the approach to
validating the OneClick toolset continued reliability for successfully
deploying the platform under the wide range of options has also evolved. The
current approach includes a program of continual (yet manually invoked)
deployment and testing with each code commit, across these types of environments:

	bare-metal servers (Ubuntu Bionic / Centos 7)

	VMs (Ubuntu Bionic)

	docker, generic k8s, OpenShift (OKD), Azure-AKS

	lab/AIO, multi-node enterprise k8s clusters, public cloud

Using a combination of Jenkins and manual deployment invocation through the
aio_k8s_deployer, regular testing covers as many permutations of the environments
and options above as possible.

In future releases, it is recommended that:

	the success at developing a completely automated process for platform
deployment be coupled with a Jenkins environment and cluster of test
environments that represent the types above, and that can be driven on a
regular basis for deployment tests across a more comprehensive set of
environment/option permutations

	support for docker-based environments be dropped, in order to expand efforts
to more k8s-based environments (e.g. AWS, GKE), and complete development of
full support for commercial/multi-node OpenShift

Various platform lifecycle use cases

The Athena release of the OneClick toolset supported the following deployment
use cases:

	deployment the entire platform into a clean environment

	cleaning/redeploying the entire platform

	deploying/redeploying with existing databases (including upgrading)

	delete/clean a deployment

Boreas added these platform deployment and lifecycle management use cases:

	redeploying/upgrading specific core components

	redeploying/upgrading all components other than MariaDB

Clio further added:

	redeploying using a new version of the Acumos OneClick tools, and applying
the environment from a previous deployment

In future releases, is is recommended that:

	these OneClick support for these use cases be leveraged in a CI/CD
environment, to enable automated component/release deployment and upgrade such
as described in the previous section

Maintain platform state across deployments

As described in `Configuration`_, the OneClick toolset includes a set of
environment files and environment setup scripts that represent the “state” of the
platform, beyond data held in the backend service databases (Nexus Maven repo,
docker registry, CouchDB, and LUM database). The environment variable state is
exportable and transferable through a process using the update_env.sh script in
the tools folder.

In future releases, is is recommended that:

	a more generalized/unified method is developed to maintain the environment
variable state, e.g. a set of k8s configmaps and secrets that provide the
values currently maintained in environment scripts; that set of configmaps
could then be directly usable in deployment tools and templates

	NOTE: for use in templates, an open issue is how configmap/secret values
can be used within container environment variables such as the
SPRING_APPLICATION_JSON variables used to expose environment variables to
the Acumos Java based components

Minimize platform service external exposure

A key design goal of the OneClick toolset is to limit any externally-exposed
services to those which are essential for access by external systems or users.
Thus since Athena, services exposed outside the platform internal network
environment, e.g. as docker host ports or via k8s HostPort/ingress, have been
limited as described under `Security Considerations`_.

Enabling this design goal is the use of cluster-internal service names
wherever possible, so that client-service interfaces remain inside the cluster.
Thus various of the “HOST” environment variables support (and in some cases default)
a platform-internal service domain name, which keeps transactions strictly
internal to the platform. Examples include:

	ACUMOS_JENKINS_API_HOST

	ACUMOS_DOCKER_API_HOST

	ACUMOS_CDS_HOST

	ACUMOS_NEXUS_HOST

	ACUMOS_DOCKER_REGISTRY_HOST

	ACUMOS_MARIADB_HOST

In future releases, is is recommended that:

	As the platform evolves and gains end-user experience, this design goal needs to
reviewed and further optimized to balance service exposure and risks. A key
aspect of that is the ability to collect/assess the actual utilization of the
platform’s externally exposed interfaces, and dependency upon platform external
services, over time. The ELK logging platform should be usable for that, but it
needs to support logs from all components involved in external service access, or
logs from those components monitored/logged directly.

	Specific opportunities for improvement such as below be considered

	the ELK stack may be deployed in the same cluster; in that case, only the
Kibana UI service needs to be externally exposed, and should be accessed via
an ingress rule, assuming that the Kibana configuration supports use of a
unique context path so that the ingress rule can forward requests to it

	A typical developer-focused use case is access to the Swagger API UI that
documents the APIs for various components. The current ingress rule for the
CDS service enables this, but other components may need support through
additional ingress rules.

	The ability to limit access to NodePorts or ingress paths to specific
sources (e.g. by IP subnet) should be investigated and if possible
implemented through the ingress rules.

Use a consistent naming/allocation scheme for resources

The project’s initial approach to assigning address identifiers (e.g. service
names and ports) resulted in significant effort to avoid conflicts between
components (especially re host-exposed ports) in different test environments.
This was due to two aspects that are partially addressed by the OneClick toolset
design approach and recommendations in
Minimize platform service external exposure:

	services were accessed through the host network, using the host’s hostname/FQDN
as the service domain; this necessitated the allocation of a host port specific
to the target service, which was mapped to the container-internal port

	container-internal ports were typically assigned (by configuration) an
internal port consistent with the external host port, even though that
was not strictly required, since every container in a docker network can
actually use the same internal port, without conflict

This pattern resulted in host port allocation conflicts which had to be resolved,
and resulted in an inconsistent service configuration across platforms.

While the internal-port assignments have largely been kept consistent between
docker and k8s deployments, it’s recommended in future releases that the following
changes resolve those potential conflicts. The changes below should be possible
purely through the k8s templates and Helm charts for the components:

	all deployments use a consistent internal port (port / target port value),
e.g. 8080 for the main service exposing container

	if additional containers will run in the pod and expose services outside the
pod, they should be assigned port / target port 8081, 8082, etc.

	each corresponding service template should reference the same port values for
cluster-internal use as port / target port

These approaches work because every service and pod are exposed at a unique
IP address, so reuse of the same port values is not a problem.

 One Click Deploy User Guide

One Click Deploy User Guide

	1. Acumos OneClick / All-in-One (AIO) User Guide
	1.1. What is an AIO deploy?

	1.2. Quickstart Guide to Platform Deployment (TL;DR)

	2. Release Scope
	2.1. Current Release (Clio)

	3. Deployment Step-by-Step Guide
	3.1. Host/VM Preparation

	3.2. Install Host Preparation by Admin

	3.3. Pre-Arrangement of Ingress Certs

	3.4. Platform Deployment

	3.5. Updating Configuration and Components

	3.6. Stopping, Restarting, Redeploying

	3.7. Deployment notes for specific k8s distributions

	4. Logs Location

	5. Security Considerations

	6. Debugging Hints
	6.1. Accessing Logs

	6.2. Enable Debug Log Level

	7. Known Issues
	7.1. Out of Space Issues

	7.2. MariaDB Mirror Reliability

 1. Acumos OneClick / All-in-One (AIO) User Guide

1. Acumos OneClick / All-in-One (AIO) User Guide

This user guide describes how to deploy Acumos platforms using the
“One Click deploy” tools designed for those who want a simple and automated way
to deploy an Acumos platform.

1.1. What is an AIO deploy?

By default, the AIO deploy tools build an all-in-one instance of Acumos, with
all Acumos data and components running under docker or kubernetes (k8s) on a
single virtual machine or physical host machine.

For k8s based deployments, both generic (standard k8s project tools) and
OpenShift (RedHat’s k8s distribution) are supported.

Options allow the user to deploy the platform:

	on a cluster of k8s nodes (note: distributing specific components across nodes
based upon node labels is planned for future releases)

	with a subset of the components

	to use some components that have previously deployed somewhere, e.g. as a
shared service

The resulting Acumos platform is illustrated in the following two figures, the
first representing the overall architecture, and the second the architecture of
the MLWB (Machine-Learning Workbench) subsystem.

[image: ../../../../_images/acumos-architecture-detail1.png]
[image: ../../../../_images/mlwb.png]

1.2. Quickstart Guide to Platform Deployment (TL;DR)

NOTICE:

	if you are deploying to a host/VM and will be executing the prerequisites step
of this process, be aware that the process will remove/install software on your
target host, and configure it e.g. firewall and security rules. Only execute
this process if you understand the implications or are executing the process
in a VM/host that you can easily re-create.

	by default, the Acumos platform is deployed with service exposure options
typical for development environments. Production environments and especially
public environments will need additional planning and restrictions on exposed
services, that otherwise could expose your host to security risks. See
Security Considerations for recommendations on what/how to lock down as
needed, for exposure of an AIO-based Acumos platform outside development/test
environments.

Please make sure you review the host prerequisite requirements under
Host/VM Preparation.

See these specific sections based upon how you want to deploy the platform:

	if you have a server/VM or existing k8s cluster upon which you want to install
the Acumos platform under k8s, using your local workstation to manage the
platform, see `Deploying from Your Workstation, via the AIO Deployer Tool`_

	if you have a server/VM upon which you want to directly install/manage the
Acumos platform under k8s, see:

	`Deploying as a Privileged (sudo) User`_ if you are a sudo user on that
server/VM, and want to deploy/manage the platform under your own account

	Preparation by Host Admin with Platform Deployment by Normal (non-sudo) User
if you are a sudo user on the server/VM, and want to prepare the server/VM
for another to install/manage the platform upon.

	Docker Based Deployment, if you want to use the legacy docker-compose
based method of installation. NOTE not all Boreas release features are
supported under docker-compose.

1.2.1. Kubernetes Based Deployment

The process below will support deployment under either a generic kubernetes
distribution, or the OpenShift kubernetes distribution. The scripts will detect
which distribution is installed and deploy per the requirements of that
distribution. For additional notes on deploying into specific k8s cluster types
(e.g. Azure-AKS), see Deployment notes for specific k8s distributions.

Note: the following k8s versions are explicitly supported and tested by these
tools. Other versions may work, but may require further tool customization.

	“generic” kubernetes 1.13.8 [https://github.com/kubernetes/kubernetes/releases/tag/v1.13.8]

	OpenShift Origin 3.11 (“OKD”) [https://docs.okd.io/3.11/install/running_install.html]

1.2.1.1. Deploying from Your Workstation, via the aio_k8s_deployer

This process supports users with the role of either a cluster admin (full rights
to manage cluster resources) or namespace admin (rights to manage resources
under a namespace). It also minimizes any dependencies/customization of the user’s
workstation, by use of a docker container built specifically for deploying and
managing the Acumos platform.

A typical use case for this method is a user who will manage the Acumos platform
on the k8s cluster using kubectl executed from their workstation, after basic
prerequisites have been arranged by the cluster admin:

	allocation of a namespace

	allocation of a platform FQDN (with DNS registration), external IP,
and setup of an ingress controller for the namespace/FQDN

	setup of persistent volume (PV) resources per Acumos requirements
(recommended minimum allocations are shown below)

	logs: 1Gi

	if deployed as part of the platform, vs use of external instances of these services

	MariaDB: 10Gi

	Nexus (Maven repos and docker registry): 10Gi

	docker-in-docker cache: 10Gi

	NiFi Registry: 5Gi

	NiFi users: 5Gi (for each user)

	JupyterHub: 1Gi

	Jupyter users: 10Gi (for each user)

	Elasticsearch: 10Gi

As an option, a user that has cluster admin role can include these prerequisite
steps in the process below.

To use this process, the script aio_k8s_deployer.sh in the tools/aio_k8s_deployer
folder is used, with these prerequisite steps:

	the user has installed, or has access to, a remote k8s cluster (single/multi-node)

	if the k8s cluster does not provide an ingress service with a registered
DNS name for the platform ingress, the user needs to ensure that the
external IP address to be used by the ingress controller is registered in DNS
or configured in the hosts file of their workstation.

	the user has installed a bash shell and docker on their workstation

	the user has created a folder (referred to here as the “staging” folder)
to contain any customizations to be used in this process, as described below

	the user cloned the system-integration repo into the staging folder as
subfolder “system-integration”

	the user has prepared any desired customizations in the staging folder,
as described under Customizing the aio_k8s_deployer environment

	if not providing a k8s config file in the staging folder as described
in Customizing the aio_k8s_deployer environment, the user has logged into
the k8s cluster using the applicable client (kubectl or oc), so that the
correct k8s config is present in ~/.kube/config

Given those prerequisites, in the simplest case the deployment can be launched
with the single command below:

$ bash system-integration/tools/tools/aio_k8s_deployer/aio_k8s_deployer.sh \
 all <host> <user> <k8s distribution> [as-pod=<docker image>]

where:

	all: build the acumos_deployer image, prep, and deploy the platform

	host: hostname of k8s cluster master node

	user: SSH-enabled sudo user on the platform

	k8s distribution: type of k8s cluster (generic|openshift)

	as-pod: (optional) run the oneclick_deploy.sh script from within the cluster
as an acumos-deployer pod

	as-pod provides the advantage of being able to run the deployer under the
platform, and use it later as a platform maintenance/debug tool, containing
all the customized and configured data for the deployment, as well as any
additional tools/data you want to package in it

	you can specify the image “acumos-deployer” which will be built locally by
aio_k8s_deployer.sh, or a pre-built/customized image in a docker registry,
e.g. blsaws/acumos-deployer in Docker Hub, which offers tags for use with
generic k8s (tag: latest or kubectl) or OpenShift (tag: oc)

When aio_k8s_deployer.sh is called with “all” as the first parameter, it will:

	archive any earlier deployment in folder “aio_k8s_deployer” into a timestamped
subfolder of “archived”

	create a new subfolder “aio_k8s_deployer”

	copy everything in the staging folder (except for folders “archived” and
“aio_k8s_deployer”) as staged customizations into “aio_k8s_deployer/deploy”

	if there is a version of aio_k8s_deployer.sh in the staging folder, copy that
to “aio_k8s_deployer” since presumably the user has customized it; otherwise
the current version will be copied from the system-integration clone

	kick off the build, prep, and deploy process

The steps above and overall process of the aio_k8s_deployer is shown in the
following diagram:

[image: ../../../../_images/aio-k8s-deployment.png]

1.2.1.1.1. Customizing the aio_k8s_deployer environment

Following are examples of customizations that are possible for the
aio_k8s_deployer and the files/configurations it uses. In summary, all aspects
of the deployment process are customizable, but the most common are described
below. These customizations are made by providing files in the staging
folder, or in the system-integration clone under it.

	updating the aio_k8s_deployer.sh script

	you may find that the script needs to be adapted to your specific docker
build or execution environment, thus if a aio_k8s_deployer.sh exists in the
staging folder, it will be used in this process

	providing a k8s config file

	by default, aio_k8s_deployer.sh will copy the user’s ~/.kube/config file
for use in the acumos_deployer container; in cases which the user cannot
use a k8s client directly on their workstation (or doesn’t want to), a
k8s config file can be provided in advance in the staging folder, as
kube-config.

	providing a customize_env.sh script

	by default, aio_k8s_deployer.sh will customize the default customize_env.sh
script to set the three parameters to it, as described above
(<host> <user> <distribution>). Any other values in the various environment
files (acumos_env.sh, mlwb_env.sh) or environment file creation scripts
(setup_mariadb_env.sh, setup_nexus_env.sh, setup_elk_env.sh) can also be
updated by using the functions in customize_env.sh to pre-set a non-default
value for any of the values in those files.

	alternatively, the user can prepare the following files in the folders below,
which will be supplemented with any unspecified parameters when the related
environment setup script is run:

	mariadb_env.sh in system-integration/charts/mariadb

	elk_env.sh in system-integration/charts/elk-stack

	nexus_env.sh in system-integration/AIO/nexus

	the complete set of customizable environment parameters is described in
`Configuration`_

	providing a Dockerfile for the desired k8s client

	by default, aio_k8s_deployer.sh will build a docker image that contains
the k8s client for the selected k8s distribution, and other tools needed by
the OneClick toolset. You can customize the Dockerfile to be used by
providing an updated one based upon the default in
system-integration/tools/aio_k8s_deployer/deploy/kubectl (for generic k8s)
or system-integration/tools/aio_k8s_deployer/deploy/oc (for OpenShift). Once
you have customized the Dockerfile, copy the parent folder (kubectl or oc)
to your staging folder.

	providing a post_deploy.sh script

	aio_k8s_deploy.sh will execute a script named post_deploy.sh in the
deploy folder, if present. Such a script can be used for any arbitrary
purpose, e.g. to create user accounts, onboard default models, further
configure the platform though the available APIs, etc.

	other customizations to the system-integration clone

	you can provide any other customizations by updating the various scripts,
templates, Helm charts, etc in the system-integration clone in the install
base folder.

	starts the acumos-deployer container

	updates the AIO tools environment to run under the container

	executes oneclick_deploy.sh, and saves a log

	executes the post_deploy.sh script, if present

	copies the updated files from the acumos-deployer container to the user’s
workstation deploy subfolder, including the log files and all updated files
under the system-integration repo

1.2.1.2. Deploying via the Prep-Deploy process

The “Prep-Deploy” process is the original two-stage process which has been
automated by the aio_k8s_deployer for k8s based deployments. It still can be
used for k8s-based deployments, and is required for docker based deployments.

The process is called Prep-Deploy as it is broken down into two stages:

	host/cluster preparation, executed by a host/cluster admin (sudo user) through
the system-integration/AIO/setup_prereqs.sh script

	platform deployment, executed by a normal user through the oneclick_deploy.sh
script

These steps are described below.

1.2.1.2.1. Using the Prep-Deploy process as a privileged (sudo) user

This process is for a privileged (sudo, not root) user that wants to execute all
steps in the deployment process using their host account. To deploy the Acumos
platform with the default options, as a user on a linux host with at least 16GB
RAM and admin (sudo) permission, follow the process below.

	clone the system-integration repo

$ git clone https://gerrit.acumos.org/r/system-integration

	using bash, check if the user is part of the docker group, and add if not

$ if [["$(id -nG "$USER" | grep docker)" == ""]]; then sudo usermod -aG docker $USER; fi

	if you see “usermod: group ‘docker’ does not exist”, install docker (e.g.
using setup_docker.sh in the system-integration/tools folder) and run the
command above again. Once you do not see the message above, logout and
re-login, to activate your docker group membership.

	if you don’t have an existing k8s cluster, run the following command to setup
a cluster

	NOTE: this command will setup a single-node k8s cluster using the
generic k8s distribution (for Ubuntu) or OpenShift (for Centos). It also
installs docker-ce and links /var/lib/docker to /mnt/docker to avoid out
of space issues on the root volume, which can destabilize your k8s cluster.
Make sure you have the /mnt folder on a device with adequate disk, e.g. at
least 256GB.

$ bash system-integration/tools/setup_k8s_stack.sh setup

	execute the following command to install/configure prerequisites, including
k8s, MariaDB, and the ELK stack, using your user account, and the hostname or
domain name you will use to access the deployed platform.

$ bash system-integration/AIO/setup_prereqs.sh k8s <domain> $USER <generic|openshift> 2>&1 | tee aio_prep.log

	When you see “Prerequisites setup is complete.” as the result of the
command above, execute the following commands to complete platform setup

$ cd system-integration/AIO
$ bash oneclick_deploy.sh 2>&1 | tee aio_deploy.log

	The commands above include saving of the detailed deployment actions to a
log file ‘deploy.txt’. This can be helpful in getting support from the
Acumos project team, to overcome issues you might encounter. If you don’t
want to save the log, just leave out the part of the commands above that
starts with the ‘pipe’ (‘|’).

	As described above, if you don’t need to save the deploy logs, leave out the
the part of the commands above that starts with the ‘pipe’ (‘|’).

	See When Deployment is Complete for further steps

1.2.1.2.2. Preparation by Host Admin with Platform Deployment by Normal (non-sudo) User

This process is for a host Admin (sudo user, not root) to prepare the host for a
normal (non-sudo) user that will complete the platform deployment, under their
account on the host.

	Admin completes steps in the previous section, through setup of a k8s cluster

	Admin executes the following command to install/configure prerequisites,
including k8s, MariaDB, and the ELK stack, using their account. <user> in this
case is the username of the normal user that will complete the deployment.

$ bash system-integration/AIO/setup_prereqs.sh k8s <domain> $USER <generic|openshift> 2>&1 | tee aio_prep.log

	When prerequisites setup is complete, the resulting environment files and
system-integration clone will have been copied to the user account.

	The user executes the following commands to complete platform setup

$ cd system-integration/AIO
$ bash oneclick_deploy.sh 2>&1 | tee aio_deploy.log

	As described above, if you don’t need to save the deploy logs, leave out the
the part of the commands above that starts with the ‘pipe’ (‘|’).

	See When Deployment is Complete for further steps

1.2.2. Docker Based Deployment

NOTE: Not all Acumos features will work as expected under docker, so those will
not be deployed. Examples include the new services in support of model training.

To deploy the components that do work under docker, follow the instructions in
the sections below.

1.2.2.1. Prerequisites for Docker Based Deployment

Prerequisites for docker based deployment:

	Deployment is supported only on Ubuntu Xenial (16.04), Bionic (18.04), or
Centos 7 hosts

	All hostnames or FQDNs specified in environment files must be DNS-resolvable
(entries in /etc/hosts or in an actual DNS server)

	User running this script

	is not running as root

	has sudo privileges

	has installed docker per system-integration/tools/setup_docker.sh

	has added themselves to the docker group (sudo usermod -aG docker $USER),
and re-logged-in to activate docker group membership

	if deploying in preparation for use by a non-sudo user, has created the
user account (sudo useradd -m <user>)

	has cloned or otherwise provided the system-integration repo, in the
user’s home folder

	has customized or created as needed

	the main environment file system-integration/AIO/acumos-env

	ELK-stack environment: see `ELK Stack configuration`_ as a guide to what
environment values can be customized. Customize the default values in
that script, by changing the values after ‘:-” e.g. to change “true” to
“false” replace the first line below with the second

	export ACUMOS_DEPLOY_METRICBEAT=”${ACUMOS_DEPLOY_METRICBEAT:-true}”

	export ACUMOS_DEPLOY_METRICBEAT=”${ACUMOS_DEPLOY_METRICBEAT:-false}”

	MariaDB: as for the ELK_stack, customize
system-integration/charts/mariadb/setup_mariadb_env.sh

1.2.2.2. Deploying for Yourself, as a Host Admin (sudo user)

NOTE: If you are deploying into an Azure-based VM, pay attention to this
special configuration need for the docker-engine; update the acumos_env.sh
(in system-integration/AIO) script to set the ACUMOS_DEPLOY_DOCKER_DIND flag to
“false”, which will ensure that the docker-dind service is not installed.
Docker-dind has known issues under Azure.

export ACUMOS_DEPLOY_DOCKER_DIND=false

If deploying the platform for yourself, run these commands:

cd system-integration/AIO/
bash setup_prereqs.sh docker <domain> $USER 2>&1 | tee aio_deploy.log
bash oneclick_deploy.sh 2>&1 | tee -a aio_deploy.log

	where:

	<domain> is the name you want to use for the Acumos portal. This can be a
hostname or FQDN.

	See When Deployment is Complete for further steps

1.2.2.3. Preparing as a Host Admin, with Platform Deployment as a Normal User

If a Host Admin needs to run the privileged-user steps for a normal user that
will take it from there:

	NOTE: If you are deploying into an Azure-based VM, pay attention to this
special configuration need for the docker-engine; update the acumos_env.sh
(in system-integration/AIO) script to set the ACUMOS_DEPLOY_DOCKER_DIND flag to
“false”, which will ensure that the docker-dind service is not installed.
Docker-dind has known issues under Azure.

export ACUMOS_DEPLOY_DOCKER_DIND=false

	As the Host Admin, run these commands:

cd system-integration/AIO/
bash setup_prereqs.sh docker <domain> <user> 2>&1 | tee aio_deploy.log

	where:

	<domain> is the name you want to use for the Acumos portal. This can be a
hostname or FQDN.

	<user> use the normal user’s account name on the host

	As the normal user, run this command

bash oneclick_deploy.sh 2>&1 | tee -a aio_deploy.log

	As described above, if you don’t need to save the deploy logs, leave out the
the part of the commands above that starts with the ‘pipe’ (‘|’).

1.2.3. When Deployment is Complete

When deployment has completed, you should see a success message with a set of
URLs to access the various platform services. You can also view the file
“acumos.url” which will be in the system-integration/AIO folder (example below)

You can access the Acumos portal and other services at the URLs below,
assuming hostname "acumos.example.com" is resolvable from your workstation:

Portal: https://acumos.example.com
Common Data Service Swagger UI: https://acumos.example.com/ccds/swagger-ui.html
- if you have issues with using the CDS swagger over HTTPS, try the HTTP link
 http://$ACUMOS_DOMAIN:$ACUMOS_CDS_NODEPORT/ccds/swagger-ui.htm
Portal Swagger UI: https://acumos.example.com/api/swagger-ui.html
Onboarding Service Swagger UI: https://acumos.example.com/onboarding-app/swagger-ui.html
Kibana: http://acumos.example.com:30561/app/kibana
Nexus: http://acumos.example.com:30881

By default, the platform is not configured to require email confirmation of
new accounts, so you can create a new account directly on the Portal home. To
create an account with the Admin role (needed for various platform admin
functions), use the create_user.sh script in the system-integration/tests folder

2. Release Scope

2.1. Current Release (Clio)

The Acumos wiki [https://wiki.acumos.org/display/OAM/System+Integration]
describes the principle goals and related deployment scenarios supported by the
AIO toolset, and regularly verified in testing.

2.1.1. What’s included in the AIO tools

In system-integration repo folder AIO:

	setup_prereqs.sh: Script to be used by a host admin (a user with privilege
to install applications and configure the host) to prepare a host for a normal
user to later deploy/manage the Acumos platform there. Typically used for
lab environments.

	oneclick_deploy.sh: the main script that kicks off the deployment, to setup
an AIO instance of Acumos under a docker or kubernetes environment.

	acumos_env.sh: environment setup script that is customized as new
environment parameters get generated (e.g. passwords). Used by various
scripts in this toolset, to set shell environment variables that they need.

	setup_acumosdb.sh: script that initializes the Acumos database under MariaDB.

	setup_keystore.sh: script that enables use of pre-configured CA and server
certificates for an Acumos platform, or creation of new self-signed
certificates.

	docker_compose.sh: Script called by the other scripts as needed, to take
actions on the set of Acumos docker services. Used by oneclick_deploy.sh and
clean.sh for docker-based deployments. You can also call this directly e.g.
to tail the service container logs. See the script for details.

	utils.sh: utility script containing functions used by many of these scripts.

	redeploy_component.sh: Script that allows the redeployment of a single
component.

	clean.sh: if needed, this script allows a privileged user to remove all
components and dependencies of the Acumos platform installed by the tools
above.

In AIO/beats:

	deployment scripts and templates for the Filebeat and Metricbeat services
as ELK stack components deployed along with the Acumos platform.

In AIO/certs:

	setup_certs.sh: creates self-signed certificates (CA and server), keystore,
and truststore for use by core platform components.

	This folder is also used to stage user-provided certs to be used in Acumos
platform deployment.

In AIO/docker:

	docker-compose yaml files and deployment script for Acumos core components.

In AIO/docker-engine:

	scripts and templates to deploy docker-in-docker as the docker-engine service
for k8s-based Acumos platforms, or the docker-engine service on the AIO host

In AIO/docker-proxy:

	scripts and templates for deployment of the docker-proxy core component of the
Acumos platform

In AIO/elk-stack:

	scripts and templates to deploy the ELK stack core components under docker

In AIO/ingress:

	scripts and templates to deploy the
NGINX Ingress Controller for Kubernetes [https://github.com/kubernetes/ingress-nginx],
and ingress rules for Acumos core components.

In AIO/jenkins:

	script to deploy Jenkins as a service under k8s, supporting solution
deployment and security verification functions for the Acumos platform.

In AIO/kong:

	scripts and templates to deploy the Kong service as an ingress controller for
the Acumos platform, as deployed under docker or k8s

In AIO/kubernetes:

	under deployment, kubernetes deployment templates for all system components

	under service, kubernetes service templates for all system components

	under configmap, kubernetes configmap templates for all system components

	under rbac, kubernetes role-based access control templates enabling system
components to invoke kubernetes cluster operations

In AIO/lum:

	scripts and templates to deploy the License Management components under k8s

In AIO/mariadb:

	scripts and templates to deploy MariaDB, as the Acumos platform database
backend service

In AIO/mlwb:

	scripts and templates to deploy the MLWB components of the Acumos platform

In AIO/nexus:

	scripts and templates to deploy the Nexus service for the Acumos platform

In charts:

	scripts and templates to deploy the following components for k8s-based
deployments, using Helm as deployment tool

	couchdb: CouchDB service as used by the MLWB

	elk-stack: ELK stack core components

	ingress: Nginx-ingress controller

	jenkins: the Jenkins service as used by the Deployment Client and SV Scanning
Service

	jupyterhub: the JupyterHub/JupyterLab services for notebook-based model
development

	mariadb: MariaDB service

	zeppelin: the Zeppelin service for notebook-based model development

	NOTE: Zeppelin deployment is a single, multi-user instance which is
provided for experimental use in Boreas. Single-user instance deployment
is coming in the next release (Clio).

In tests:

	bootstrap_models.sh: Model package onboarding via curl, for all models in
a folder.

	create_peer.sh: Automated setup of a peer relationship between two Acumos
AIO deployments.

	create_subscription.sh: creates a federation subscription for all models
published by a federated Acumos platform.

	create_user.sh: Automated user provisioning and role assignment. Used by
scripts in this repo to create default admin accounts. Can also be used to
create user accounts for testing or platform use.

	delete_user.sh: deletion of a user account

	license_scan.sh: invokes a license scan for a solution, using the Security
Verification Scanning Service.

	onboard_model.sh: Model package onboarding via curl.

	peer_test.sh: Peering and marketplace subscriptions setup for two AIO platforms.
Used to test federation use cases.

In tools:

	aio_k8s_deployer: deployment script and configuration to deploy Acumos
under k8s using a docker container based approach, which minimizes
dependencies on the user workstation

	add_host_alias.sh: adds a host alias to an Acumos core component, e.g.
for hostnames/FQDNs that are not resolvable through DNS.

	setup_docker.sh: deploys the docker version used for docker-based
platform deployment and interaction.

	setup_helm.sh: deploys Helm as a service deployment tool.

	setup_k8s.sh: deploys a generic k8s cluster.

	setup_kubectl.sh: deploys and uses the kubectl tool used by other scripts and
the user to manage and interact with generic k8s based deployments.

	setup_mariadb_client.sh: deploys the MariaDB client as used by other
scripts to configure the Acumos database.

	setup_openshift.sh: deploys an OpenShift Origin 3.11 kubernetes cluster, for
subsequent Acumos platform deployment on Centos 7 servers.

	setup_openshift_client.sh: deploys the OpenShift client (oc) tool
used by other scripts and users to manage and interact with OpenShift based
platform deployments.

	setup_prometheus.sh: deploys the Prometheus monitoring service, with
Grafana as a data visualization tool, for monitoring the Acumos platform’s
resources at the k8s level. Also deploys Grafana dashboards in the dashboards
folder.

	setup_pv.sh: deploys host-based persistent volumes for use with
docker and k8s-based platform deployments.

	trust_cert.sh: Adds a cert to the Acumos truststore under k8s

	update_env.sh: Compares the environment variable set between two
AIO versions, and updates the latter version with the values as set in
the previous version, for use in upgrading a platform to the new version

3. Deployment Step-by-Step Guide

The steps in this process are illustrated by the following figure. Note this
figure refers to kubernetes, but the same basic process applies for docker.

	Host Admin prepares the platform host environment, per
Host/VM Preparation and Install Host Preparation by Admin

	Host Admin clones the system-integration repo, or uses a local/customized
clone, and runs the applicable host/environment preparation script(s) as
described in Install Host Preparation by Admin

	The user (Admin, if installing for their self) customizes the environment
files and/or certs (per Pre-Arrangement of Ingress Certs) as desired,
either manually or through a ‘customize_env.sh’ script as described in
`Deploying from Your Workstation, via the AIO Deployer Tool`_,

	The user deploys the platform components via the ‘aio_k8s_deployer.sh’ script
or via the ‘oneclick_deploy.sh’ script

	‘aio_k8s_deployer.sh’ provides a convenient docker-based wrapper environment
for running ‘oneclick_deploy.sh’, making it easy to execute k8s-based
Acumos platform deployment on any type of workstation, and snapshot the
resulting deployment tools state for later use/sharing.

[image: ../../../../_images/aio-k8s-deployment.png]

3.1. Host/VM Preparation

For developer-focused AIO deployments, it’s assumed that the developer has a
minimum of one host machine (physical workstation/server or VM) that they will
use for the platform.

The AIO platform is also deployable on a cluster of machines or in a multi-node
kubernetes cluster, but note:

	for docker-based deployment, the AIO toolset supports limited distribution of
components across nodes, primarily the backend services (Nexus, MariaDB, ELK,
…), in addition to the core platform components in one node

	for kubernetes-based deployment, the components will be distributed across
nodes in a kubernetes cluster per the default scheduling configuration of the
cluster

Following are basic requirements for single-node/AIO machines:

	minimum 16 GB RAM (32 GB or more recommended)

	minimum 2 core/vCore (4 or more recommended)

	minimum 1 network interface

	network security rules in place to allow incoming traffic on the following ports:

TCP Ports

	Port(s)

	Purpose

	22

	SSH into the VM

	80

	Ingress controller (Kong)

	443

	Ingress controller (http)

	443

	Ingress controller (https)

	6443

	kubernetes API

	30000-32767

	direct service access, e.g. k8s nodeports

3.2. Install Host Preparation by Admin

NOTE: If you are deploying under k8s into an Azure-based VM, pay attention to the
special configuration need for the docker-engine, as described below.

Prerequisites:

	Ubuntu Xenial/Bionic or Centos 7 server

	All hostnames specified in acumos_env.sh must be DNS-resolvable on all hosts
(entries in /etc/hosts or in an actual DNS server)

	For deployments behind proxies, set ACUMOS_HTTP_PROXY and ACUMOS_HTTPS_PROXY in acumos_env.sh

	Admin user running this script has:

	Installed docker per system-integration/tools/setup_docker.sh

	Added themselves to the docker group (sudo usermod -aG docker $USER)

	Logged out and back in, to activate docker group membership

	Initial basic setup (manual)

	If you are an Admin and deploying the platform for a normal user, assuming
the non-sudo user is “acumos”

sudo useradd -m acumos

This process prepares the host with prerequisites that normal users do not have
permission to arrange. This includes:

	installing software packages

	configuring host settings

	creating folders for host-mapped volumes

The Admin user will follow this process:

	‘install root folder’ refers to the Admin user’s home folder. Installation
in other root folders is a work in progress, and not yet fully verified.

	create in the install root folder a subfolder “acumos” and folders “env”,
“logs”, “certs” under it.

	in the install root folder, clone the system-integration repo (branch, tag,
commit, or master), and make any desired updates to it (e.g. checkout a
specific patch)

	if you are installing under k8s and don’t have a pre-installed k8s cluster,
install a cluster e.g. using the setup_k8s_stack.sh script
(in system-integration/tools).

	If you are deploying the platform under k8s in an Azure VM, update acumos_env.sh
(in system-integration/AIO) script to set the ACUMOS_DEPLOY_DOCKER_DIND flag to
“false”, which will ensure that the docker-dind service is not installed.
Docker-dind has known issues under Azure.

export ACUMOS_DEPLOY_DOCKER_DIND=false

	If you are deploying under docker, run the command

bash setup_prereqs.sh <under> <domain> <user>

	under: docker (install prereqs for docker or k8s based deployment)

	domain: FQDN of platform

	
	user: user that will be completing Acumos platform setup via

	oneclick_deploy.sh (if installing for yourself, use $USER)

	If you are deploying under k8s, and do not have an existing k8s cluster or
need to deploy a new cluster e.g. an AIO cluster on a VM, run the command
below on the host for the new cluster

bash system-integration/tools/setup_k8s_stack.sh setup

	If you are deploying under k8s, run the command

bash system-integration/AIO/setup_prereqs.sh k8s <domain> $USER <generic|openshift>

	k8s: indicates deployment under k8s

	user: non-sudo user account (use $USER if deploying for yourself)

	domain: domain name of Acumos platform (resolves to this host)

	generic|openshift: use generic k8s or openshift

When the process is complete, the updated system-integration clone and environment
will have been copied to the platform deployment user’s home folder. If you are
deploying the platform for yourself, proceed to the next section. If preparing
the platform for a normal user, the user should execute the process in the next
section.

3.3. Pre-Arrangement of Ingress Certs

If you deploy the AIO platform often or in multiple test environments, you may
find it useful to pre-arrange the ingress certs that will be used to access the
platform(s), either using commercial cert providers, or the self-signed cert
tools provided in the system-integration repo. This allows you and users for
example to use web browser tools to trust self-signed certs, avoiding browser
warnings.

The Acumos tool supporting creation of self-signed certs is in
system-integration/AIO/certs/setup_certs.sh. An example is given below, showing
how to select the parameters for setting up a cert and related files that are
usable on multiple hosts, by hostname/domain and IP address:

	This script is invoked as:

bash setup_certs.sh <name> <subject-name> ["alt-names"] ["alt-ips"]

Where:

	name: name prefix to use in the generated files (e.g. acumos)

	subject-name: primary domain name to associate

	alt-names: quoted, space-delimited set of alternate names

	alt-ips: quoted, space-delimited set of alternate IP addresses

as in the example:

cd system-integration/AIO/certs
bash setup-certs.sh acumos acumos \
 "test01 test02 test03 acumos-test04.eastus.cloudapp.azure.com" \
 "10.1.0.2 10.1.0.3 10.1.0.4 10.1.0.5"

This will generate the following files:

	acumos-ca.key: self-signed CA private key

	acumos-ca.crt: self-signed CA certificate

	acumos.key: server cert private key

	acumos.crt: server cert

	acumos-keystore.p12: PKCS12 format keystore with server cert

	acumos-truststore.jks: JKS format truststore with CA cert

	cert_env.sh: environment file with the related passwords

NOTE: the process below has not been verified. If you need to following this
process and encounter issues, reach out to the
Acumos Community mail list [https://lists.lfai.foundation/g/acumosai-community]
for help.

To use commercial certs with the Acumos AIO platform, follow these steps:

	place the server cert and private key in folder system-integration/AIO/certs

	update related values in system-integration/AIO/acumos_env.sh and put these
commands into a file system-integration/AIO/cert_env.sh

	export ACUMOS_CERT_PREFIX=<prefix you want to use for your keystore/truststore

	export ACUMOS_CERT=<name of the server cert file)

	export ACUMOS_CERT_KEY=<name of the server cert private key file>

	export ACUMOS_CERT_KEY_PASSWORD=<passphrase for the cert private key>

	run the commands below, which create the keystore and truststore for Acumos

cd system-integration/AIO/certs
source cert_env.sh
KEYSTORE_PASSWORD=$(uuidgen)
echo "export KEYSTORE_PASSWORD=$KEYSTORE_PASSWORD" >>cert_env.sh
openssl pkcs12 -export \
 -in $ACUMOS_CERT \
 -inkey $ACUMOS_CERT_KEY \
 -passin pass:$CERT_KEY_PASSWORD \
 -certfile $ACUMOS_CERT \
 -out $ACUMOS_CERT_PREFIX-keystore.p12 \
 -passout pass:$KEYSTORE_PASSWORD

TRUSTSTORE_PASSWORD=$(uuidgen)
echo "export TRUSTSTORE_PASSWORD=$TRUSTSTORE_PASSWORD" >>cert_env.sh
keytool -import \
 -file $ACUMOS_CERT \
 -alias $ACUMOS_CERT_PREFIX-ca \
 -keystore $ACUMOS_CERT_PREFIX-truststore.jks \
 -storepass $TRUSTSTORE_PASSWORD -noprompt

3.4. Platform Deployment

The script supporting this step is system-integration/AIO/oneclick_deploy.sh.

Prerequisites:

	User workstation is Ubuntu Xenial/Bionic, Centos 7, or MacOS

	prerequisites setup via setup_prereqs.sh, or otherwise provided

This process deploys the Acumos platform with options selected by the user, e.g.

	as described in the `Acumos OneClick / All-in-One (AIO) Configuration Guide`_

	use of pre-created certs per Pre-Arrangement of Ingress Certs

To deploy the platform components, run the commands:

cd system-integration/AIO
bash oneclick_deploy.sh

When the process is complete, you will see a set of URLs to the main platform
component/UI features, as described above.

3.5. Updating Configuration and Components

Changes to the configuration can be applied as described in the previous section.
Note that if you are making changes to the configuration of a deployed platform,
some changes may break some aspects of the platform, so be careful.

	docker-compose templates in AIO/docker/acumos or kubernetes templates in
AIO/kubernetes

	Note: make sure the template modifications are compatible with previously
deployed components, and the version of the related Acumos component you
are deploying/re-deploying

Update options and tools related to specific components are described in the
following sections.

Two supported options for updating Jenkins are:

	upgrading the Helm release (deployed Helm chart), using an updated values.yaml
file in system-integration/charts/jenkins/deploy/values.yaml

source system-integration/AIO/acumos_env.sh
helm upgrade $ACUMOS_NAMESPACE-jenkins stable/jenkins \
 -f system-integration/charts/jenkins/deploy/values.yaml

	adding a host alias, e.g. so a Jenkins job can contact a host that does not
have a DNS-resolvable hostname; examples include a kubernetes cluster to be
used with a solution-deploy job, or a code scanning service to be used with
a security-verification-scan job.

bash system-integration/charts/jenkins/setup_jenkins.sh alias:<HOST>:<IP>

	where

	HOST: hostname/FQDN of the system to add as a hostAlias

	IP: IP address of the system

	after you have added the alias and Jenkins has restarted, you will need to
login to the Jenkins UI at https://<ACUMOS_DOMAIN>/jenkins/, and execute
the initial-setup job

3.6. Stopping, Restarting, Redeploying

Note: the following sections assume that you have deployed the Acumos platform
from the system-integration folder in your user home directory, i.e. “~/”.

If you just want to redeploy Acumos components, without affecting any data in the
MariaDB or Nexus, be sure to set these variables in AIO/acumos_env.sh:

export ACUMOS_DEPLOY_MARIADB=false
export ACUMOS_SETUP_DB=false
export ACUMOS_DEPLOY_NEXUS=false

To stop components running under docker and remove the containers, execute the
following commands from the “docker” folder related to the type of component,
referencing the related docker-compose yaml file as “<yml>”:

cd ~/system-integration/<docker folder>
source ~/system-integration/AIO/acumos_env.sh
docker-compose -f acumos/<yml> down

The related docker folders are:

	AIO/docker, for Acumos core components azure-client, common-data-svc,
dsce (AcuCompose), federation, kubernetes-client, microservice-generation,
onboarding, portal-be, portal-fe, sv-scanning

	AIO/docker-proxy/docker, for the docker-proxy core component

	AIO/mlwb/docker, for the MLWB components

	AIO/nexus/docker, for nexus

	AIO/mariadb/docker, for mariadb

	AIO/kong/docker, for kong

	AIO/elk-stack/docker, for the core ELK-stack components elasticsearch,
logstash, kibana

	AIO/beats/docker, for the “beats” components filebeat, metricbeat

To restart these components, e.g. after updating the related configuration files,
issue the following command:

cd ~/system-integration/<docker folder>
source ~/system-integration/AIO/acumos_env.sh
docker-compose -f acumos/<yml> up -d --build

If you want to automatically stop and redeploy the components in one command:

	for Acumos core components (azure-client-service, cds-service, dsce-service,
federation-service, kubernetes-client-service, msg-service, onboarding-service,
portal-be-service, portal-fe-service, sv-scanning-service)

bash ~/system-integration/AIO/redeploy_component.sh <component>

	for the other components, a specific redeployment script is provided in the
related folder (docker-proxy, mlwb, nexus, mariadb, kong, elk-stack, beats)

bash ~/system-integration/AIO/<folder>/setup_*.sh ~/system-integration/AIO/

Because kubernetes-based components may depend upon a variety of other
kubernetes resources specific to them or shared with other components (e.g.
configmaps, secrets, PVCs), simply redeploying the specific
components after any required configuration updates is recommended.

The configuration files specific the components are generally under a subfolder
“kubernetes”, and are specific to the type of resource (e.g. service, deployment,
configmap, secret, PVC, etc). Once you have updated these as needed, you can’
redeploy the component and any resources specific to it (not shared) via the
command:

	for core components under AIO/kubernetes/deployment, using the component names
per the “app:” value in the related deployment template (azure-client, cds,
dsce, federation, kubernetes-client, msg, onboarding, portal-be, portal-fe,
sv-scanning):

bash ~/system-integration/AIO/redeploy_component.sh <component>

	for the other components, running the related “setup_*.sh” command as described
for docker

If you just need to stop a component, use the following command and reference the
related “app” label:

kubectl delete deployment -n acumos -l app=<app>

You can see all the component-related “app” labels via the command:

kubectl get deployment -n acumos -o wide

After stopping the component, you can redeploy it as needed using the methods
described above.

3.7. Deployment notes for specific k8s distributions

Azure supports its own variant of the generic k8s distribution, and has some
features that require the following prerequisites, adaptations, and specific
steps in Acumos platform deployment, at least as tested/supported so far with
the OneClick toolset.

	creation of namespace(s) as needed for the Acumos core platform and Nexus
(if not externally deployed already)

	(recommended) pre-registered DNS names (A-records) for the Acumos platform
services below, associated with IP addresses in the Azure resource group for
the target k8s cluster:

	Acumos nginx-ingress controller service

	Federation service

	Nexus service (if deployed as part of the platform)

In all cases, if using the aio_k8s_deployer, the following settings are
recommended to be provided in customize_env.sh:

...
update_acumos_env ACUMOS_DEPLOY_AS_POD true
update_acumos_env ACUMOS_NAMESPACE <namespace>
update_acumos_env DEPLOYED_UNDER k8s
update_acumos_env K8S_DIST generic
update_acumos_env ACUMOS_HOST_USER $USER
update_acumos_env ACUMOS_DOMAIN <Acumos Portal FQDN>
update_acumos_env ACUMOS_HOST $ACUMOS_DOMAIN
update_acumos_env ACUMOS_CERT_PREFIX $ACUMOS_DOMAIN
Use controller.service.loadBalancerIP for nginx-ingress helm chart
update_acumos_env ACUMOS_INGRESS_LOADBALANCER true
Azure provides dynamic PV allocation, so no need to create PVs explicitly
update_acumos_env ACUMOS_CREATE_PVS false
update_acumos_env ACUMOS_PVC_TO_PV_BINDING false
Set to true to clean any existing PV data for related PVCs (default: false)
update_acumos_env ACUMOS_RECREATE_PVC false

update_nexus_env ACUMOS_NEXUS_DATA_PV_SIZE 100Gi

Azure-AKS is incompatible with Acumos log collection design (for now)
update_acumos_env ACUMOS_DEPLOY_ELK false
update_acumos_env ACUMOS_DEPLOY_ELK_FILEBEAT false
Disable use of log PVs

function clean_yaml() {
 for f in $fs; do
 for s in $ss; do
 sed -i -- "/$s/d" $1/$f.yaml
 done
 done
}
ss="volumeMounts logs volumes persistentVolumeClaim claimName"
fs="azure-client-deployment cds-deployment deployment-client-deployment dsce-deployment kubernetes-client-deployment license-profile-editor-deployment license-rtu-editor-deployment msg-deployment onboarding-deployment portal-fe-deployment sv-scanning-deployment"
clean_yaml system-integration/AIO/kubernetes/deployment
fs="mlwb-dashboard-webcomponent-deployment mlwb-model-service-deployment mlwb-predictor-service-deployment mlwb-home-webcomponent-deployment mlwb-notebook-webcomponent-deployment mlwb-pipeline-catalog-webcomponent-deployment mlwb-pipeline-webcomponent-deployment mlwb-project-service-deployment mlwb-project-catalog-webcomponent-deployment mlwb-project-webcomponent-deployment"
clean_yaml system-integration/AIO/mlwb/kubernetes
ss="logs persistentVolumeClaim claimName"
fs="portal-be-deployment federation-deployment"
clean_yaml system-integration/AIO/kubernetes/deployment
fs="nifi-registry-deployment"
clean_yaml system-integration/AIO/mlwb/nifi/kubernetes
fs="mlwb-notebook-service-deployment mlwb-pipeline-service-deployment"
clean_yaml system-integration/AIO/mlwb/kubernetes

ss="logs persistentVolumeClaim claimName"
fs="docker-proxy-deployment"
clean_yaml system-integration/AIO/docker-proxy/kubernetes
sed -i -- '/mountPath: \/var\/log\/acumos/d' system-integration/AIO/docker-proxy/kubernetes/docker-proxy-deployment.yaml

If using the aio_k8s_deployer, the pre-registered domain names for the services
describe above just need to be included along with the following other
recommended options in customize_env.sh, as shown below.

...
update_acumos_env ACUMOS_FEDERATION_DOMAIN <Acumos Federation service FQDN>
update_nexus_env ACUMOS_NEXUS_DOMAIN <Nexus FQDN>

Given those settings and the base options for customize_env.sh described above,
an example scripted process for a clean install of the Acumos platform is:

#!/bin/bash
set -x -e
WORK_DIR=$(pwd)
mkdir -p deploy
cp customize_env.sh deploy/customize_env.sh
echo "Copy kube-config"
cp ~/.kube/config deploy/kube-config
Prerequisite: save helm/tiller version compatible with your Azure-AKS
echo "Copy helm"
wget https://get.helm.sh/helm-v2.12.3-linux-amd64.tar.gz | unzip
tar -xvf helm-v2.12.3-linux-amd64.tar
cp linux-amd64/helm deploy/.
cp linux-amd64/tiller deploy/.
echo "Clone system-integration"
rm -rf deploy/system-integration
git clone "https://gerrit.acumos.org/r/system-integration" deploy/system-integration
optional: env scripts to be copied into system-integration/AIO/ by customize_env.sh
rm deploy/env/*
cp -r env deploy/.
optional: pre-arranged certs to be copied into system-integration/AIO/certs by customize_env.sh
cp -r certs deploy/.
cp deploy/system-integration/tools/aio_k8s_deployer/aio_k8s_deployer.sh .
bash aio_k8s_deployer.sh deploy as-pod=blsaws/acumos-deployer:latest

This process is appropriate for test environments or platforms for which you
will register FQDNs for the allocated loadBalancer IP addresses, after
deployment of the platform. The example process below modifies the example
above by:

	pre-creating certs for the platform, without specifying the allocated IP
address in the cert (optional, anyway). This is required since:

	the assigned ingress IP address is not known until it is allocated, and

	it will not be allocated until the nginx-ingress controller is deployed, but

	the deployment of the controller depends upon the applicable cert/key
being specified in the deployment process… a “catch-22”

	installing the ingress controller first, so that the chosen platform
domain name and allocated ingress IP address can be used in adding hostAlias
entries for all platform components that need to access the platform via
the ingress controller; this happens though use of the “add-host” option of
aio_k8s_deployer.sh.

#!/bin/bash
set -x -e
ACUMOS_NAMESPACE=acumos-prod
ACUMOS_DOMAIN=acumos-prod.westus.cloudapp.azure.com
ACUMOS_FEDERATION_DOMAIN=federation-$ACUMOS_DOMAIN
WORK_DIR=$(pwd)
mkdir -p deploy
cp customize_env.sh deploy/customize_env.sh
echo "Copy kube-config"
cp ~/.kube/config deploy/kube-config
Prerequisite: save helm/tiller version compatible with your Azure-AKS
echo "Copy helm"
wget https://get.helm.sh/helm-v2.12.3-linux-amd64.tar.gz | unzip
tar -xvf helm-v2.12.3-linux-amd64.tar
cp linux-amd64/helm deploy/.
cp linux-amd64/tiller deploy/.
echo "Clone system-integration"
rm -rf deploy/system-integration
git clone "https://gerrit.acumos.org/r/system-integration" deploy/system-integration
optional: env scripts to be copied into system-integration/AIO/ by customize_env.sh
rm deploy/env/*
cp -r env deploy/.
cd deploy/system-integration/AIO/certs/
bash setup_certs.sh $ACUMOS_DOMAIN "$ACUMOS_FEDERATION_DOMAIN"
cd $WORK_DIR
cp -r deploy/system-integration/AIO/certs deploy/.
sed -i -- 's/ACUMOS_INGRESS_LOADBALANCER=false/ACUMOS_INGRESS_LOADBALANCER=true/' \
 deploy/system-integration/AIO/acumos_env.sh
certs="$(pwd)/deploy/system-integration/AIO/certs"
bash deploy/system-integration/charts/ingress/setup_ingress_controller.sh \
 $ACUMOS_NAMESPACE $certs/$ACUMOS_DOMAIN.crt $certs/$ACUMOS_DOMAIN.key
while [["$(kubectl get svc -n $ACUMOS_NAMESPACE $ACUMOS_NAMESPACE-nginx-ingress-controller -o json | jq -r ".status.loadBalancer.ingress[0].ip")" == 'null']]; do
 sleep 10
done
ACUMOS_DOMAIN_IP=$(kubectl get svc -n $ACUMOS_NAMESPACE $ACUMOS_NAMESPACE-nginx-ingress-controller -o json | jq -r ".status.loadBalancer.ingress[0].ip")
sed -i -- 's/ACUMOS_DEPLOY_INGRESS true/ACUMOS_DEPLOY_INGRESS false/' deploy/customize_env.sh
env scripts to be copied into system-integration/AIO/. by customize_env.sh
cp -r env deploy/.
cp deploy/system-integration/tools/aio_k8s_deployer/aio_k8s_deployer.sh .
bash aio_k8s_deployer.sh deploy as-pod=blsaws/acumos-deployer:latest add-host=$ACUMOS_DOMAIN:$ACUMOS_DOMAIN_IP

4. Logs Location

If the ELK stack is deployed, logs should be available through the Kibana UI.
If you want to look at the logs on the platform or through the k8s client
API, use one of the methods below. Note that while generally the Acumos logs
design pattern is to create logs under a subfolder of the logs folder, not all
components yet support that fully. So you will see some miscellaneous log files
associated with those components.

	for docker-based deployments, the logs are easily accessible on the AIO host
under /mnt/<ACUMOS_NAMESPACE>/logs directory (‘<ACUMOS_NAMESPACE>’ is by
default ‘acumos’). That directory is mounted by most Acumos components as
their log directory.

	for k8s-based deployments, logs in most cases will be available through one
or more PVCs.

	If you did not customize the SERVICE_LABEL values for the
components, by default the logs can be located under the “logs” PVC, e.g.:

kubectl get pvc logs -o yaml | awk '/volumeName/{print $2}'
pv-10gi-3

	In the example above, if you are using the default hostPath-based PV
service setup by the OneClick tools for a single-node k8s cluster, and
you have access to the k8s master node, you can find the logs under
/mnt/$ACUMOS_NAMESPACE/<pv name>, e.g.

$ pvdir=$(kubectl get pvc logs -n $ACUMOS_NAMESPACE -o yaml | awk '/volumeName/{print $2}')
$ ls -lat /mnt/$ACUMOS_NAMESPACE/$pvdir
total 176
drwxr-xr-x 2 root root 4096 Nov 27 00:28 portal-fe
drwxr-xr-x 3 root root 4096 Nov 27 00:28 on-boarding
drwxr-xr-x 3 root root 4096 Nov 27 00:28 microservice-generation
drwxr-xr-x 2 root root 4096 Nov 27 00:28 federation-gateway
drwxr-xr-x 2 root root 4096 Nov 27 00:28 ds-compositionengine
drwxr-xr-x 2 root root 4096 Nov 27 00:27 project-service
drwxr-xr-x 2 root root 4096 Nov 27 00:27 predictor-service
drwxr-xr-x 2 root root 4096 Nov 27 00:27 pipeline-service
drwxr-xr-x 2 root root 4096 Nov 27 00:27 model-service
drwxr-xr-x 2 root root 4096 Nov 27 00:04 notebook-service
-rw-r--r-- 1 ubuntu ubuntu 19085 Nov 26 22:11 nifi-registry-app.log
-rw-r--r-- 1 ubuntu ubuntu 10870 Nov 26 22:11 nifi-registry-bootstrap.log
drwxrwxrwx 15 ubuntu ubuntu 4096 Nov 26 22:11 .
-rw-r--r-- 1 root root 4750 Nov 26 22:10 docker-proxy.log
-rw-r--r-- 1 ubuntu ubuntu 19087 Nov 26 19:27 nifi-registry-app_2019-11-26_19.0.log
drwxr-xr-x 2 root root 4096 Nov 26 19:24 portal-be
drwxr-xr-x 2 root root 4096 Nov 26 19:22 cmn-data-svc
-rw-r--r-- 1 ubuntu ubuntu 5435 Nov 25 04:42 nifi-registry-bootstrap_2019-11-25.log
-rw-r--r-- 1 ubuntu ubuntu 5435 Nov 24 17:33 nifi-registry-bootstrap_2019-11-24.log
-rw-r--r-- 1 ubuntu ubuntu 5435 Nov 23 19:10 nifi-registry-bootstrap_2019-11-23.log
-rw-r--r-- 1 ubuntu ubuntu 27175 Nov 22 19:23 nifi-registry-bootstrap_2019-11-22.log
-rw-r--r-- 1 ubuntu ubuntu 0 Nov 22 00:40 nifi-registry-event.log
-rw-r--r-- 1 root root 0 Nov 22 00:40 access.log
-rw-r--r-- 1 root root 0 Nov 22 00:40 docker-proxy-access.log
-rw-r--r-- 1 root root 0 Nov 22 00:40 docker-proxy-error.log
drwxr-xr-x 5 root root 4096 Nov 22 00:37 deployment
drwxr-xr-x 32 ubuntu ubuntu 4096 Nov 22 00:02 ..

	You can also access the logs though one of the containers that has mounted
the logs PVC, e.g. as in the following example which uses an aio_k8s_deployer
container to access the cluster information remotely. In this case you see
that specifying the namespace is not required, since that is automatically
scoped per the kube-config file provided when the container was created.

$ docker exec -it acumos-deploy-opnfv04 bash
root@a29adaebcc84:/# pod=$(kubectl get pods | awk '/portal-be/{print $1}')
root@a29adaebcc84:/# kubectl exec -it $pod -- ls -lat /maven/logs
total 164
-rw-r--r-- 1 1000 1000 19087 Nov 29 02:56 nifi-registry-app.log
-rw-r--r-- 1 1000 1000 5435 Nov 29 02:56 nifi-registry-bootstrap.log
drwxrwxrwx 15 1000 1000 4096 Nov 29 02:56 .
-rw-r--r-- 1 root root 2850 Nov 29 02:56 docker-proxy.log
drwxr-xr-x 2 root root 4096 Nov 29 02:38 portal-fe
drwxr-xr-x 3 root root 4096 Nov 29 02:38 on-boarding
drwxr-xr-x 3 root root 4096 Nov 29 02:38 microservice-generation
drwxr-xr-x 2 root root 4096 Nov 29 02:38 federation-gateway
drwxr-xr-x 2 root root 4096 Nov 29 02:38 ds-compositionengine
drwxr-xr-x 2 root root 4096 Nov 29 02:37 project-service
drwxr-xr-x 2 root root 4096 Nov 29 02:37 predictor-service
drwxr-xr-x 2 root root 4096 Nov 29 02:37 notebook-service
drwxr-xr-x 2 root root 4096 Nov 29 02:37 model-service
drwxr-xr-x 2 root root 4096 Nov 29 02:13 cmn-data-svc
drwxr-xr-x 2 root root 4096 Nov 29 02:13 portal-be
drwxr-xr-x 2 root root 4096 Nov 29 00:01 pipeline-service
-rw-r--r-- 1 1000 1000 19085 Nov 28 04:03 nifi-registry-app_2019-11-28_04.0.log
-rw-r--r-- 1 1000 1000 5435 Nov 28 04:03 nifi-registry-bootstrap_2019-11-28.log
-rw-r--r-- 1 1000 1000 19084 Nov 27 21:45 nifi-registry-app_2019-11-27_21.0.log
-rw-r--r-- 1 1000 1000 21740 Nov 27 21:45 nifi-registry-bootstrap_2019-11-27.log
-rw-r--r-- 1 1000 1000 0 Nov 27 01:27 nifi-registry-event.log
-rw-r--r-- 1 root root 0 Nov 27 01:00 access.log
-rw-r--r-- 1 root root 0 Nov 27 01:00 docker-proxy-access.log
-rw-r--r-- 1 root root 0 Nov 27 01:00 docker-proxy-error.log
drwxr-xr-x 5 root root 4096 Nov 27 00:39 deployment
drwxrwxrwx 1 root root 4096 Nov 7 11:16 ..

	If you did customize the SERVICE_LABEL values, the logs will be associated
with PVCs named per the SERVICE_LABEL values you chose. Each PVC will host
the logs for the components that you associated with the same SERVICE_LABEL
value.

	If instead of an AIO deployment, you are using a multi-node k8s cluster
for which you don’t have direct access to the logs PV, the only way to
access the logs without using a pod running under the same cluster and
mounting the same PVC folder, is to execute a command that runs in one
of the pods that is mounting the PVC. This is pretty easy, e.g.:

root@7b13a31255f2:/# source /deploy/system-integration/AIO/acumos_env.sh
root@7b13a31255f2:/# pod=$(kubectl get pods -n $ACUMOS_NAMESPACE | awk '/portal-be/{print $1}')
root@7b13a31255f2:/# kubectl exec -it -n $ACUMOS_NAMESPACE $pod -- ls -lat /maven/logs
total 20
drwxr-sr-x 2 root 1000 4096 Nov 28 03:26 portal-fe
drwxr-sr-x 2 root 1000 4096 Nov 28 01:16 portal-be
drwxr-sr-x 3 root 1000 4096 Nov 27 16:36 on-boarding
drwxrwsr-x 5 root 1000 4096 Nov 27 02:51 .
drwxrwxrwx 1 root root 4096 Nov 26 12:12 ..

	The example above accessing the logs from within the aio_k8s_deployer
container, but will also work in other environments, just use the correct
path for your acumos_env.sh script.

	In the example above you also see that not all of the log folders in the
previous (AIO) example are shown; this is because in this case the
SERVICE_LABEL values in acumos_env.sh have been configured to distribute
the components across the nodes of the k8s cluster in a cluster that
only supports hostPath PVs, and thus a separate PVC has been used for
each set of components scheduled on a node.

5. Security Considerations

As noted in `Introduction`_, the AIO deployment approach includes various
development/test environment-enabling aspects, that for a more “production” or
publicly-exposed deployment, should be reconsidered and as needed, locked down.

For k8s-based platforms, some of these aspects are related to work-in-progress
on more fully supporting platform exposure through ingress controllers. An
ingress controller is a convenient place to apply subnet-based restrictions on
service access. See the
NGINX ingress annotations guide for whitelist-source-range [https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#whitelist-source-range]
for more information. Following are the services exposed in the Acumos platform
that can be access-controlled using a whitelist-source-range source annotation,
by updating the related ingress template:

	Service

	Recommendation

	Ingress template

	CDS (Common Data Service)

	Admin access only

	AIO/ingress/templates/cds-ingress.yaml

	NiFi Registry

	Admin access only

	AIO/mlwb/nifi/kubernetes/ingress-registry.yaml

	NiFi User

	User access (required)

	AIO/mlwb/nifi/templates/ingress.yaml

	JupyterHub (Hub and User)

	User access (required)

	See note below

	Kubernetes client

	User access (required)

	AIO/ingress/templates/k8s-client-ingress.yaml

	Onboarding

	User access (required)

	AIO/ingress/templates/onboarding-ingress.yaml

	Portal

	User access (required)

	AIO/ingress/templates/portal-ingress.yaml

	MLWB Dashboard

	User access (required)

	AIO/mlwb/kubernetes/mlwb-dashboard-webcomponent-ingress.yaml

	MLWB Home

	User access (required)

	AIO/mlwb/kubernetes/mlwb-home-webcomponent-ingress.yaml

	MLWB Notebook

	User access (required)

	AIO/mlwb/kubernetes/mlwb-notebook-webcomponent-ingress.yaml

	MLWB Notebook Catalog

	User access (required)

	AIO/mlwb/kubernetes/mlwb-notebook-catalog-webcomponent-ingress.yaml

	MLWB Pipeline

	User access (required)

	AIO/mlwb/kubernetes/mlwb-pipeline-webcomponent-ingress.yaml

	MLWB Pipeline Catalog

	User access (required)

	AIO/mlwb/kubernetes/mlwb-pipeline-catalog-webcomponent-ingress.yaml

	MLWB Project

	User access (required)

	AIO/mlwb/kubernetes/mlwb-project-webcomponent-ingress.yaml

	MLWB Project Catalog

	User access (required)

	AIO/mlwb/kubernetes/mlwb-project-catalog-webcomponent-ingress.yaml

Notes on the table above:

	JupyterHub ingress rules are currently created by the deployment script
in charts/jupyterhub/setup_jupyterhub.sh.

For other components, k8s nodeports are currently used for primary access or
supplemental access. Note that if possible, these services will be migrated to
access via the ingress controller, early in the next release. However, in many
cases these services may be provided as shared application services, and
deployed outside the Acumos platform. The AIO toolset supports that as an option,
which eliminates any concern about exposing these services as part of an Acumos
platform:

	Service

	NodePort (default)

	Rational for NodePort Use

	Security Recommendation

	CDS (Common Data Service)

	30800

	Alternative swagger UI (see note)

	Apply firewall rule if needed

	Docker Proxy

	30883

	Ingress rule is WIP (see note)

	Leave open (required)

	Federation (peer access)

	30984

	requires SSL termination

	Leave open (required)

	Federation (local access)

	30985

	requires SSL termination

	Leave open (required)

	Nexus (Maven)

	30881

	Admin access to Nexus UI (see note)

	Apply firewall rule if needed, or use external service

	Nexus (Docker)

	30882

	Admin access to Nexus Docker Registry (see note)

	Apply firewall rule if needed, or use external service

	JupyterHub

	(dynamic ports)

	Access to the Jupyter proxy (see note)

	Apply firewall rule if needed

	Security Verification (SV) Scanning Service

	30982

	Admin access to the SV service (see note)

	Apply firewall rule if needed

Notes on the table above:

	The CDS NodePort addresses current issues (under investigation) with access to
the CDS swagger UI via HTTPS thru the ingress controller

	The Docker Proxy NodePort is currently required because an ingress rule for
it has not been implemented/tested. An update will be published as soon as this
has been done.

	Configuration of JupyterHub to avoid NodePort use is a WIP.

	Access to the Security Verification Scan API is provided so that Admins can
invoke scans manually or through external systems, and also for the future
support of external scan result notifications.

6. Debugging Hints

6.1. Accessing Logs

For k8s-based deployments, the simplest way to view/tail log files is to run
the following command in the pod for the specific component, modifying the
example as needed per the specific component, as shown in the table following:

source system-integration/AIO/acumos_env.sh
pod=$(kubectl get pods -n $ACUMOS_NAMESPACE -l app=cds | awk '/cds/{print $1}')
kubectl exec -n $ACUMOS_NAMESPACE $pod -- cat maven/logs/cmn-data-svc/cmn-data-svc.log

6.2. Enable Debug Log Level

For components deployed through kubernetes templates (not via Helm), the AIO
toolset creates parameter-substituted component deployment templates in
a “deploy” subfolder under:

	AIO (for most core components)

	AIO/docker-proxy

	AIO/mlwb

	AIO/mariadb

	AIO/nexus

	AIO/beats

For the Java Springboot-based Acumos core components, you can enable debug logs
using the following example bash commands, which will enable debug for the
CDS, Portal-FE, and Portal-BE components.

For the Security Verification Client Library (SVCL) which is built into the
Portal-BE image, enable debug logs via:

7. Known Issues

Following are some things to watch out for in the process of deploying the
Acumos platform with the AIO toolset. Solutions to improve the reliability of
platform deployment are being implemented with each release, but this is a
work-in-progress, and given that the Acumos platform deployment depends upon
a number of upstream projects/components, issues such as the below may be
encountered. This list will be updated as needed after the final Clio release
user guide is published, and will be available on the Acumos wiki at
Hints and Known Issues [https://wiki.acumos.org/display/OAM/Hints+and+Known+Issues]

7.1. Out of Space Issues

“Out of space” issues can happen periodically and need to be managed manually,
using the techniques below. A goal of the Acumos project is to develop
monitoring and cleanup tools to help address some of these issues, but for now
the following advice should work.

The most commonly affected components are:

	the docker engine, on the host or in a container, which has run out of space
in /var/lib/docker; this

	

The OneClick toolset by default creates fairly small PVs for k8s deployments,
and you may find that some services

7.1.1. Nexus service is out of space in the nexus-data PV

The AIO default PV size for the nexus-data PVC and the backing PV is 10Gi.
This can be exhausted after a few images have been generated, and needs to be
periodically cleaned. The effect is that artifacts or images can’t be saved by
the Nexus service. Onboarding service logs such as the below can indicate
such issues are occurring:

2019-11-29T10:46:46.724Z http-nio-8090-exec-2 ERROR org.acumos.onboarding.services.impl.CommonOnboarding Severity=DEBUG
Fail to upload artifact for OnboardingLog.txt - Failed to transfer file: http://nexus-service.acumos-prod.svc.cluster.local:8081
/repository/acumos_model_maven/org/acumos/64cd4781-d5b0-4ced-89e2-7fb3616d56ba/OnboardingLog/1.0.2/OnboardingLog-1.0.2.txt.
Return code is: 500 org.apache.maven.wagon.TransferFailedException: Failed to transfer file: http://nexus-service.acumos-prod.svc.cluster.local:8081
/repository/acumos_model_maven/org/acumos/64cd4781-d5b0-4ced-89e2-7fb3616d56ba/OnboardingLog/1.0.2/OnboardingLog-1.0.2.txt.
Return code is: 500

To verify that there actually is an out-of-space issue:

kubectl exec -it $(kubectl get pods | awk '/nexus/{print $1}') -- df -k

Note that expanding a PV while preserving the data on it may be a complicated
process and require certain PV features such as Dynamic Provisioning which may
not be available. As a fallback, the process below will expand the PV but does
require recreation of the Acumos database and all artifacts. For development/test
platforms this is usually not a major concern, but for production platforms the
process below should only be used if you are OK with losing all data in the
platform.

kubectl exec -it $(kubectl get pods | awk '/nexus/{print $1}') -- df -k
sed -i 's/ACUMOS_NEXUS_DATA_PV_SIZE=.*/ACUMOS_NEXUS_DATA_PV_SIZE=100Gi/' \
 system-integration/AIO/nexus/nexus_env.sh
bash system-integration/AIO/nexus/setup_nexus.sh all
bash system-integration/AIO/nexus/setup_nexus_repos.sh
bash system-integration/AIO/setup_acumosdb.sh

7.1.2. Docker-dind service is out of space in the docker-volume PV

The AIO default PV size for the docker-volume PVC and the backing PV is 10Gi.
This can be exhausted after a few images have been generated, and needs to be
periodically cleaned. The effect is that image generation fails, with logged
errors in the msg log, that you can see by:

kubectl log $(kubectl get pods | awk '/msg/{print $1}') | \
 grep -e "ERROR" -e "E: You don't have enough free space"
...
2019-11-28T11:31:35.429Z http-nio-8336-exec-2 ERROR org.acumos.microservice.services.impl.GenerateMicroserviceController
User=f3c25ebe-572e-4e69-a9a4-84728b06d836, RequestID=55d69f4e-4489-48e6-b089-08d5a0640240, ServiceName=/onboarding-app/v2/models,
ResponseDescription=com.github.dockerjava.api.exception.DockerClientException: Could not build image:
The command '/bin/sh -c apt-get clean && apt-get update && apt-get -y install libgtk2.0-dev' returned a non-zero code: 100
...
2019-11-28T14:15:04.570Z dockerjava-netty-28-1 INFO org.acumos.microservice.component.docker.cmd.CreateImageCommand
Severity=DEBUG E: You don't have enough free space in /var/cache/apt/archives/.
...
kubectl log $(kubectl get pods | awk '/docker-dind/{print $1}') -c docker-daemon | grep -e "no space"
log is DEPRECATED and will be removed in a future version. Use logs instead.
time="2019-11-28T08:06:50.520301700Z" level=error msg="Download failed: write /var/lib/docker/tmp/GetImageBlob259950183: no space left on device"
time="2019-11-28T08:06:58.323230667Z" level=info msg="Attempting next endpoint for pull after error:
write /var/lib/docker/tmp/GetImageBlob406994074: no space left on device"
time="2019-11-28T10:15:56.663192359Z" level=info msg="Attempting next endpoint for pull after error: failed to register layer:
Error processing tar file(exit status 1): write /usr/local/lib/python3.5/lib-dynload/_pickle.cpython-35m-x86_64-linux-gnu.so: no space left on device"

To detect, fix, and verify the fix for out of space on the docker-volume, run these commands:

kubectl exec -it $(kubectl get pods | awk '/docker-dind/{print $1}') -c docker-daemon -- sh
/ # df -k
Filesystem 1K-blocks Used Available Use% Mounted on
overlay 101584140 41489332 60078424 41% /
tmpfs 65536 0 65536 0% /dev
tmpfs 3556832 0 3556832 0% /sys/fs/cgroup
/dev/sda1 101584140 41489332 60078424 41% /dev/termination-log
/dev/sda1 101584140 41489332 60078424 41% /etc/resolv.conf
/dev/sda1 101584140 41489332 60078424 41% /etc/hostname
/dev/sda1 101584140 41489332 60078424 41% /etc/hosts
shm 65536 0 65536 0% /dev/shm
/dev/sdd 10190136 10109740 64012 99% /var/lib/docker
tmpfs 3556832 12 3556820 0% /run/secrets/kubernetes.io/serviceaccount
none 3556832 0 3556832 0% /tmp
overlay 10190136 10109740 64012 99% /var/lib/docker/overlay2/5be16850f14618b331e8728ed5750078998fc278b5a77c4c772edb808c06dd53/merged
shm 65536 0 65536 0% /var/lib/docker/containers/f30e1f576078b8fc98b1afbcbcd9ecdfca7be8fb01ced32c2b97486bb43110a5/mounts/shm
/ # exit

kubectl exec -it $(kubectl get pods | awk '/docker-dind/{print $1}') -c docker-daemon -- docker system prune -a -f
Deleted Containers:
9a4124be5079ce7cd78ef7d4d934bfb2d9745cc983ba910f1938826c4f7611dd
fd952e94d799cce8dda9e7971d96dd03338773a7aec63b7308c15a1b46da8cd7
be6c614b693f3fd4ded60a538dae437f5266be1ba964fcb3a6f01b3f19a5c31e
...
deleted: sha256:7c82a79e7c32df5cd4d9f9ec8da86396c06e6dcfa99d5e991c2e98b8e804e8d0
deleted: sha256:8823818c474862932702f8a920abea43b2560ddceb910d145be9ba0eb149a643

Total reclaimed space: 9.407GB

kubectl exec -it $(kubectl get pods | awk '/docker-dind/{print $1}') -c docker-daemon -- df -k
Filesystem 1K-blocks Used Available Use% Mounted on
overlay 101584140 41489424 60078332 41% /
tmpfs 65536 0 65536 0% /dev
tmpfs 3556832 0 3556832 0% /sys/fs/cgroup
/dev/sda1 101584140 41489424 60078332 41% /dev/termination-log
/dev/sda1 101584140 41489424 60078332 41% /etc/resolv.conf
/dev/sda1 101584140 41489424 60078332 41% /etc/hostname
/dev/sda1 101584140 41489424 60078332 41% /etc/hosts
shm 65536 0 65536 0% /dev/shm
/dev/sdd 10190136 201992 9971760 2% /var/lib/docker
tmpfs 3556832 12 3556820 0% /run/secrets/kubernetes.io/serviceaccount
none 3556832 0 3556832 0% /tmp
overlay 10190136 201992 9971760 2% /var/lib/docker/overlay2/5be16850f14618b331e8728ed5750078998fc278b5a77c4c772edb808c06dd53/merged
shm 65536 0 65536 0% /var/lib/docker/containers/f30e1f576078b8fc98b1afbcbcd9ecdfca7be8fb01ced32c2b97486bb43110a5/mounts/shm

7.2. MariaDB Mirror Reliability

Periodically, the list of active mirrors for the MariaDB project may change.
This can break Acumos installation at the point of setting up the MariaDB client,
which is the only MariaDB component that needs to be installed on the platform
host. The client enables the AIO tools to setup/upgrade the Acumos database as
needed. If you encounter an AIO install failure of the type below, you will need
to update the MariaDB mirror found in charts/mariadb/setup_mariadb_env.sh:

...
Reading package lists...
W: The repository 'http://ftp.utexas.edu/mariadb/repo/10.2/ubuntu xenial Release' does not have a Release file.
E: Failed to fetch http://ftp.utexas.edu/mariadb/repo/10.2/ubuntu/dists/xenial/main/binary-i386/Packages 403 Forbidden
E: Some index files failed to download. They have been ignored, or old ones used instead.
++ fail
++ set +x

fail:42 (Wed Jul 17 17:06:41 UTC 2019) unknown failure at setup_mariadb_client 70

If you see such a failure, select and configure a new MariaDB mirror from the
MariaDB mirror list [https://downloads.mariadb.org/mariadb/repositories/#],
as needed using a site such as
the status of MariaDB mirrors [http://spenntur.askmonty.org/] to know which
mirrors are active. Update the following line in
charts/mariadb/setup_mariadb_env.sh and restart the deployment, selecting
a new mirror host to replace ‘sfo1.mirrors.digitalocean.com’.

export MARIADB_MIRROR="${MARIADB_MIRROR:-sfo1.mirrors.digitalocean.com}"

You may also need to manually remove old/inactive MariaDB mirrors from
/etc/apt/sources.list, if you get later errors from using ‘apt-get update’,
via these commands:

sudo sed -i -- '/mariadb/d' /etc/apt/sources.list
sudo apt-get update

 Acumos OneClick / All-in-One (AIO) deployment toolset

Acumos OneClick / All-in-One (AIO) deployment toolset

This folder contains tools and component configurations for deploying the Acumos
platform as a collection of docker containers (via docker-compose) or as a
collection of components under a kubernetes cluster.

 Acumos docker-proxy

Acumos docker-proxy

This folder contains scripts, templates, and configuration data for deployment
of the Acumos docker-proxy service under docker and kubernetes.

Boreas planned features and status

Authenticated Access

(implemented) Restrict access for pulling and pushing images, by first
authenticating the user as a registered Acumos platform user.

Pull Authorization

Verify that the user is authorized to pull an image, as the image meets any
of the criteria:

	is owned by the user

	is an open source image available in a marketplace

	is a non-open-source image for which the user has a “right-to-use” (RTU)
of their own, or access per a RTU for all users of the Acumos platform

Push Authorization

Verify that the user is authorized to push an image, as the image meets all of
the criteria:

	the image name (a combination of model name and solutionId) matches that of
a model owned by the user

	the image tag (version) matches one of the user’s solution revisions

Logging

Logs of all operations will be created per the Acumos logging standard, and
collected by the ELK stack.

Demo Guide

Following are notes illustrating the operation of the authenticated docker-proxy
service. To replicate the detailed example that follows:

Prepare your workstation

Create and run this script to add the Acumos docker-proxy as an insecure
registry, and restart docker. NOTE: this will overwrite /etc/docker/daemon.json
if existing. If you have other insecure registries in that file, just add
another entry in the “insecure-registries” array, e.g.(30883 is the Acumos AIO
default port for the docker-proxy service)

,"<acumos_domain>:30883"

cat <<'EOF' >add_insecure_registry.sh
#!/bin/bash
dockerProxy=$1
if [[$(sudo grep -c $dockerProxy /etc/docker/daemon.json) -eq 0]]; then
 echo "configure the docker service to allow access to the Acumos platform docker proxy as an insecure registry."
 cat << EOF | sudo tee /etc/docker/daemon.json
{
 "insecure-registries": [
 "$dockerProxy"
],
 "disable-legacy-registry": true
}
EOF
 sudo systemctl daemon-reload
 sudo service docker restart
fi
EOF

Verify docker login

Verify that you can login to the Acumos docker registry via the docker-proxy

 $ docker login <acumos_domain>:30883 -u <username> -p <password>

You should see “Login Succeeded”

Pull a model image

View the artifact details for a model on the Acumos platform, and try to
pull it. The docker image will be the artifact that follows the naming
convention “<model_name>_<solutionId>:<version>”, e.g.

 $ docker pull <acumos_domain>:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1

Push a model image

Verify that you can push an image to the Acumos registry by downloading
some image (e.g. httpd), tagging it per the name of the image you downloaded,
and pushing the updated image back to the Acumos registry, e.g.

 $ docker pull httpd
 $ docker tag httpd <acumos_domain>:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1
 $ docker push <acumos_domain>:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1

After tagging and pushing the image, you can verify that the updated image
was actually the image pushed, by listing the docker images on your
workstation, e.g. as below, where you can see the iris image as originally

 $ docker image list
 REPOSITORY TAG IMAGE ID CREATED SIZE
 acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1 <none> 731eac61b57c 2 hours ago 1.46GB
 httpd latest 2d1e5208483c 2 weeks ago 132MB
 acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1 1 2d1e5208483c 2 weeks ago 132MB

Example Output

An example of these steps is provided below. As extra info, the output below
includes the log of the docker-proxy as it handles the individual HTTP requests
in the operations.

$ docker login acumos-lab:30883 -u test -p P@ssw0rd
WARNING! Using --password via the CLI is insecure. Use --password-stdin.
127.0.0.1 - - [22/Mar/2019 23:22:10] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:22:10 +0000] "GET /v2/ HTTP/1.1" 200 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:22:11] "GET /auth HTTP/1.0" 200 0
WARNING! Your password will be stored unencrypted in /home/superuser/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded
204.178.3.200 - - [22/Mar/2019:23:22:11 +0000] "GET /v2/ HTTP/1.1" 200 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"

$ docker pull acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1
127.0.0.1 - - [22/Mar/2019 23:22:22] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:22:22 +0000] "GET /v2/ HTTP/1.1" 200 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:22:22] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:22:23 +0000] "GET /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/manifests/1 HTTP/1.1" 200 2000 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
1: Pulling from iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1
7448db3b31eb: Already exists
81a33a47e336: Already exists
de23491efb8d: Already exists
a79d5d9eeb58: Already exists
fe5f4cef0050: Pulling fs layer
5e4399bed6b2: Pulling fs layer
2d0dd5a5e7e5: Pulling fs layer
3d46a38a3388: Waiting
127.0.0.1 - - [22/Mar/2019 23:22:23] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:22:23 +0000] "GET /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:731eac61b57c74557ae7b1da0e462c399a621d9baaf7466d39fb0120ebf61915 HTTP/1.1" 200 7861 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
5e4399bed6b2: Download complete
204.178.3.200 - - [22/Mar/2019:23:22:23 +0000] "GET /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:5e4399bed6b2804274ec3cb9cc16615761d5cdc7cab14a4f2e7385a3fdf94a18 HTTP/1.1" 200 7395 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
fe5f4cef0050: Pull complete
5e4399bed6b2: Extracting [==>] 7.395kB/7.395kB
5e4399bed6b2: Pull complete
2d0dd5a5e7e5: Downloading [===>] 177.9MB/178.6MB
3d46a38a3388: Downloading [=====================>] 146.5MB/339.4MB
2d0dd5a5e7e5: Pull complete
3d46a38a3388: Downloading [===>] 337.4MB/339.4MB
204.178.3.200 - - [22/Mar/2019:23:24:35 +0000] "GET /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:3d46a38a3388b99037a8b3ca114ea984d7524245bf31d32027aaab982b6a7587 HTTP/1.1" 200 339372267 "-" 3d46a38a3388: Pull complete
Digest: sha256:c5a259588a925a1b77653843a17772416bb20f8e48596c711423952a03927b6e
Status: Downloaded newer image for acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1

$ docker tag httpd acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1

$ docker push acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1:1
The push refers to repository [acumos-lab:30883/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1]
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "GET /v2/ HTTP/1.1" 200 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
85f2134b775c: Preparing
348e7202c3ba: Preparing
6d3625e8d3b1: Preparing
2882431cb66d: Preparing
6744ca1b1190: Preparing
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:9a4113020573f9f9d5b288ee3c768131f42bcd48b734d2ab44a5eba3b06d6e22 HTTP/1.1" 404 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:dae6fe3c5e81fce55ed1b582bd9fe2cd0c8ffd8a1ef56e4aba49526c9a7ebd9f HTTP/1.1" 404 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:84006542c6886808e4a237c4c382d5b3b471c8c10415e4b997f218acda71a306 HTTP/1.1" 404 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:33fc493aff90095281a8938d001dbe01c988c5765a392d2a4b52c84cff0b62f0 HTTP/1.1" 404 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:f7e2b70d04ae3f516c08c24d88de0f82699aaf3ee98af6eb208bd234136142b4 HTTP/1.1" 404 0 "-" "docker85f2134b775c: Pushing [==>] 512B
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "POST /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/ HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "POST /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/ HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
85f2134b775c: Pushing [==>] 3.584kB
eric os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
2882431cb66d: Pushing 2.56kB
eric os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:37] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:37 +0000] "POST /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/ HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:38] "GET /auth HTTP/1.0" 200 0
127.0.0.1 - - [22/Mar/2019 23:26:38] "GET /auth HTTP/1.0" 200 0
127.0.0.1 - - [22/Mar/2019 23:26:38] "GET /auth HTTP/1.0" 200 0
127.0.0.1 - - [22/Mar/2019 23:26:38] "GET /auth HTTP/1.0" 200 0
127.0.0.1 - - [22/Mar/2019 23:26:38] "GET /auth HTTP/1.0" 200 0
348e7202c3ba: Pushing [>] 438.3kB/43.09MB
6d3625e8d3b1: Pushing [>] 350.2kB/33.33MB
204.178.3.200 - - [22/Mar/2019:23:26:38 +0000] "PATCH /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/abd39b61-44f0-495a-8cde-3d2d3993ad61 HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:26:38] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:26:38 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/9d2dcf1e-f257-4a84-8abc-f04f7026161f?digest=sha256%3A9a4113020573f9f9d5b288ee3c768131f42bcd48b734d2ab44a5eba3b06d6e22 HTTP/1.1" 201 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
85f2134b775c: Pushed
204.178.3.200 - - [22/Mar/2019:23:26:38 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/abd39b61-44f0-495a-8cde-3d2d3993ad61?digest=sha256%3A84006542c6886808e4a237c4c382d5b3b471c8c10415e4b997f218acda71a306 HTTP/1.1" 201 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
2882431cb66d: Pushed
127.0.0.1 - - [22/Mar/2019 23:26:39] "GET /auth HTTP/1.0" 200 0
348e7202c3ba: Pushing [==================>] 16.04MB/43.09MB
6d3625e8d3b1: Pushing [==>] 34.61MB
348e7202c3ba: Pushing [====================>] 17.41MB/43.09MB
6744ca1b1190: Pushing [====================>] 22.25MB/55.28MB
204.178.3.200 - - [22/Mar/2019:23:26:58 +0000] "PATCH /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/71b44a09-bc7c-45d4-8a52-2d722c221aca HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 gi
348e7202c3ba: Pushing [=====================>] 18.79MB/43.09MB
6744ca1b1190: Pushing [=====================>] 23.87MB/55.28MB
204.178.3.200 - - [22/Mar/2019:23:26:59 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/71b44a09-bc7c-45d4-8a52-2d722c221aca?digest=sha256%3Adae6fe3c5e81fce55ed1b582bd9fe2cd0c8ffd8
348e7202c3ba: Pushing [==>] 43.59MB
6d3625e8d3b1: Pushed
204.178.3.200 - - [22/Mar/2019:23:27:00 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:dae6fe3c5e81fce55ed1b582bd9fe2cd0c8ffd8a1ef56e4aba49526c9a7ebd9f HTTP/1.1" 200 0 "-" "docker
6744ca1b1190: Pushing [==>] 58.45MB
204.178.3.200 - - [22/Mar/2019:23:27:15 +0000] "PATCH /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/3c88d4b2-394b-4236-b817-01c95286be02 HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
204.178.3.200 - - [22/Mar/2019:23:27:15 +0000] "PATCH /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/2ac33d12-e7b8-43e7-bc8c-1d6b7ad3d448 HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:15] "GET /auth HTTP/1.0" 200 0
127.0.0.1 - - [22/Mar/2019 23:27:15] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:16 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/3c88d4b2-394b-4236-b817-01c95286be02?digest=sha256%3Af7e2b70d04ae3f516c08c24d88de0f82699aaf3ee98af6eb208bd234136142b4 HTTP/1.1" 201 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
204.178.3.200 - - [22/Mar/2019:23:27:16 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/2ac33d12-e7b8-43e7-bc8c-1d6b7ad3d448?digest=sha256%3A33fc493aff90095281a8938d001dbe01c988c5765a392d2a4b52c84cff0b62f0 HTTP/1.1" 201 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:16] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:16 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:f7e2b70d04ae3f516c08c24d88de0f82699aaf3ee98af6eb208bd234136142b4 HTTP/1.1" 200 0 "-" "docker348e7202c3ba: Pushed
127.0.0.1 - - [22/Mar/2019 23:27:16] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:16 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:33fc493aff90095281a8938d001dbe01c988c5765a392d2a4b52c84cff0b62f0 HTTP/1.1" 200 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:16] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:16 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:2d1e5208483c26822b518c4ffa34ce1cd960f3e90e9be6ffe4c52cc6f5d5492c HTTP/1.1" 404 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:17] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:17 +0000] "POST /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/ HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:17] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:17 +0000] "PATCH /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/fa621277-50d7-444f-9057-dd72defc6e74 HTTP/1.1" 202 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:18] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:18 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/uploads/fa621277-50d7-444f-9057-dd72defc6e74?digest=sha256%3A2d1e5208483c26822b518c4ffa34ce1cd960f3e90e9be6ffe4c52cc6f5d5492c HTTP/1.1" 201 5 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:18] "GET /auth HTTP/1.0" 200 0
204.178.3.200 - - [22/Mar/2019:23:27:18 +0000] "HEAD /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/blobs/sha256:2d1e5208483c26822b518c4ffa34ce1cd960f3e90e9be6ffe4c52cc6f5d5492c HTTP/1.1" 200 0 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"
127.0.0.1 - - [22/Mar/2019 23:27:18] "GET /auth HTTP/1.0" 200 0
1: digest: sha256:d93278029af342292a3af350bfb3d89edbe064f1d5c82f6841cb6abf79902875 size: 1367
204.178.3.200 - - [22/Mar/2019:23:27:19 +0000] "PUT /v2/iris_9d294c20-7b1f-4ab7-b8b3-03bc7f069ac1/manifests/1 HTTP/1.1" 201 1367 "-" "docker/18.06.3-ce go/go1.10.3 git-commit/d7080c1 kernel/4.15.0-46-generic os/linux arch/amd64 UpstreamClient(Docker-Client/18.06.3-ce \x5C(linux\x5C))"

 <no title>

 This is a placeholder folder for certs to be created for JupyterHub.

 Camunda Helm Chart

Camunda Helm Chart

 Acumos Design Studio

Acumos Design Studio

This Gerrit repository contain code for 1. ds-compositionengine & 2. TOSCAModelGeneratorClient.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Design Studio SQL Databroker

Design Studio SQL Databroker

This project is to support Design Studio to build the composite solutions which fetch the data from DB using tool SQL Databroker.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Design Studio CSV Databroker

Design Studio CSV Databroker

This project is to support Design Studio to build the composite solutions which accept the CSV data using tool CSV Databroker.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Design Studio Composition Engine Application Programming Interfaces

Design Studio Composition Engine Application Programming Interfaces

API

1. Create New Composite Solution

	Operation Name

	createCompositeSolution

	Trigger

	This API is called when the user creates a new composite solution by clicking the + sign in the Design Studio.

	Request

	
	{

	userId:string;//mandatory

}

	Response

	
	{

	cid: string //serves as session Id.

	successboolean,

	errorMessage: string // if generated by the Composition Engine

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must return the success as false if the userId is not provided and should return a user friendly error message such as – “User Id required”.

	The Composition Engine will create a new cdump file, which will be named and versioned later on when the save composite solution API is called. Initially the cdump file will not have any nodes or links populated in it. They will be added with each addNode and addLink operation called by the UI Layer, or modified with deleteNode, deleteLink, modify Node, modifyLink operations, described later.

	The Composition Engine will generate a UUID, which serves as a session Id, and populate the cid field in the cdump file with this UUID.

	The Composition Engine must associate the user Id with the cid.

	The Composition Engine will populate the ctime field with the current time stamp.

	The solution Id is not available to Composition Engine at this time. It will be available when the solution is stored in the backend catalog.

	Make the ProbeIndicator in the cdump file as “false”.

	Mark the validSolution flag in the cdump file as “false”.

	At this time the Composition Engine is not storing any data in the Catalog DB nor in the Nexus repository.

	The Composition engine must return the cid and success code to the caller.

2. Save Composite Solution - User clicks Disk Icon on Design Studio

Operation Name

saveCompositeSolution

This operation creates an entry for a new solution and its version or updates an entry for the existing solution version in Catalog DB and commits the solution (cdump file) to the Nexus repository.

Trigger

This operation is called when the user request the SAVE of the composite solution.

Request

{

userId: string,// user logged into Portal – mandatory

solutionName: string, //name provided by the user – mandatory – this can be changed at any time on SAVE operation

solutionVersion: string, //version provided by the user – mandatory – this can be changed at any time on SAVE operation

solutionId: String, //provided only if an existing solution is being updated, otherwise it will be empty.

description: string, //provided by user

cid: string // composition Id originally generated by backend and returned to UI Layer as a response to createNewCompositeSolution API, now it is provided as input by UI Layer – this field is mandatory if the solution Id is missing. Mandatory for initial save request.

ignoreLesserVersionConflictFlag: boolean //populated if the user wants to ignore overwriting of lesser version of this solution.

}

Response

{

Success: boolean, //

errorMessage: string // (for example – when the user attempts to over write a previous

cdump file of the composite solution// includes nodes & edges of graph

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that the mandatory parameters have been populated, otherwise it should return a user friendly message, such as “Solution Name missing”, “Solution Version missing”, etc.

	The Composition Engine must ensure that the cid provided in the input is one of the cid’s it had generated earlier, otherwise it should return an error message to the UI Layer – “Unknown Composition Id”.

	Mark the validSolution flag in the cdump file as “false”.

	(Future) The Composition Engine must call the Modeling Engine to ensure the TOSCA validation of cdump file. (Future Sprint actions)

	The Composition Engine will:

	CASE – 1: If this is a new solution (cid is provided and solutionId is missing)

	Create a new solution entry in the Catalog DB with the solution name and solution version provided as the input of the API. The Catalog DB will generate and provide the solutionId. The Composition Engine must make sure to set the following values as follows in the backend Catalog DB:

	isComposite is set to TRUE

	toolKitType = “DS”

	visibility level = PRIVATE

	Correlate the solution Id with the cid provided by the API.

	Store the validated cdump JSON file, so far built, in the Nexus – cdump file location.

	Update the cdump file location in the solution version table.

	Populate the solutionId field of the cdump file with the solutionId provided by the Catalog DB.

	Populate cname and version fields in cdump file with solution name and version provided in the API input.

	Populate the mtime field in the cdump file with the current timestamp.

	CASE – 2: If the solutionId already exists and the solution name and solution version provided (inputted) by the API also already exists (version conflict) in the Catalog, then:

	(Now there exists an updated cdump file in the Composition Engine)

	Composition Engine must now make an association between cid and solutionId.

	Populate the mtime field in the cdump file with the current timestamp.

	Composition Engine will now replace (and discard) the existing cdump file in Nexus repository with the updated (i.e., in memory) cdump file.

	Update the existing solution version entry to point to the location of the updated cdump file saved in the Nexus repository.

	Update the timestamp in the catalog DB.

	CASE – 3: : If the solutionId and the solution name already exists in the Catalog DB, but the solution version provided by API is different which does not exist in the Catalog DB, then

	(Now there exists an updated cdump file in the Composition Engine)

	The Composition Engine will create a new version of the Solution in the Catalog DB, against the version number that is provided in the API input.

	Populate cname and version fields in cdump file with solution name and version provided in the API input.

	Populate the mtime field in the cdump file with the current timestamp.

	The Composition Engine will save the in – memory cdump file in the Nexus.

	The Composition Engine will populate the cdump file location in the new Solution Version table, created in the step above.

	The Composition Engine will update the timestamp if the Catalog DB.

	CASE – 4: SolutionId, Solution Name and Solution Version already exists in the DB, but the solution version provided by the user is not the latest one (i.e., it is smaller than the most recent version) and the “ignoreLesserVersionConflictFlag” flag is set to False (default value).

	The Composition Engine will do a lookup operation as usual, and if it finds the solution version provided by the user already exists and it is smaller than the most recent version, it must set success flag as false and send error message to the UI Layer – “Do you want to update a previous version of this solution?”

	The UI Layer will present this message to the user.

	If the user accepts, then the UI Layer will send another saveCompositeSolution API call to the Composition Engine, this time with “ignoreLesserVersionConflictFlag” flag set to True.

	CASE – 5: Solution Id, Solution Name and Solution Version already exists in the DB, but the solution version provided by the user is not the latest one (i.e., it is smaller than the most recent version) and the “ignoreLesserVersionConflictFlag” flag is set to True.

	Populate the mtime field in the cdump file with the current timestamp.

	Composition Engine will now replace the existing cdump file in Nexus repository with the updated (i.e., in memory) cdump file.

	Update the existing solution version entry to point to the location of the updated cdump file saved in the Nexus repository.

	The Composition Engine will populate the following fields in the Catalog DB:

	userId (provided in the request)

	ownerId: Same as userId

	provider: The provider (Organization) should have been already provisioned in the USER TABLE - (check with Chris and Ashwin)

	toolKitType Code: “DS”

	category: (Check with Chris)

	description: provided in the input

	visibilityLevel: “PR”

3. Read complete Solution Graph from Nexus

Operation Name
readCompositeSolution
Trigger
This operation is called when the user performs a double click operation on an existing composite solution in the Catalog Palette in order to display the complete solution in the Design Canvas.

Request

	{

	userId: string // mandatory

solutionId: string, // id of composite solution in catalog - mandatory

version: string //mandatory

}

Response

{

cdump: JSON, //JSON of cdump

errorMessage: string //optional

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must check if the solutionId and version are found in the Catalog DB, otherwise it should return a user friendly error message back in the response, such as “Requested Solution Not Found”.

	The Composition Engine must retrieve the location of the cdump file from the Catalog DB, via a query into Solution and Version Tables.

	The Composition Engine must retrieve the cdump file from the Nexus repository and return the JSONised string of the file to the client.

4. Delete Composite Solution

Operation Name

deleteCompositeSolution

Trigger

This operation is called by the UI Layer when the user requests the deletion of the composite solution.

Only the owner of the solution can request this operation, otherwise “Not authorized to perform this operation” is returned by the Composition Engine.

Request

{

solutionId: string, // id of composite solution in catalog - mandatory

version: string, //mandatory

userId: string ///mandatory

}

Response

{

success: boolean,

errorMessage: string //optional

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must check if the solutionId and version are found in the Catalog DB, otherwise it should return a user friendly error message back in the response, such as “Requested Solution Not Found”.

	The Composition Engine must check the Catalog DB if the userId provided is the owner of the composite solution – both the solutionId and Version, otherwise it should return the success flag as False and send a user friendly error message back in the response, such as “User not authorized to perform the operation”.

	If the user is the owner of the solution, then Composition Engine must perform the following functions:

	Delete the cdump file associated with the solution version from the Nexus.

	Delete the Version entry of the solution in the Catalog DB.

5. Add node

Operation Name

addNode

Trigger

This operation is called when the user drags and drops:

	A basic building block such as an ML Model, or a DataMapper, or a DataBroker, or a Collator, or a Splitter (generally referred to as node) from the Catalog Palette to the canvas.

Request

{

userId: string, // mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string //this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

nodeName: string,// optional – it may not be available initially, provided by the DS User

nodeId: string, // mandatory – generated by UI Layer

nodeSolutionId: string //mandatory – solution Id of the basic node in Common Catalog DB. This value is retrieved from fetchCatalogItems API

nodeVersion: string // mandatory – version of the basic node in Common Catalog DB. This value is retrieved from fetchCatalogItems API

proto_url: url of the proto file of the ML model or data broker or data mapper, //  change for all nodes – Data Broker or Data Mapper

type: {“name”: “DataMapper or MLModel or DataBroker”}, //  Change for Data Mapper or Data Broker

typeInfo: {}, // Type information - empty in this Sprint

properties: [], // JSON List of Node Properties.

requirements: [// this field should be populated by UI Layer if a node has one or more requirements in the TGIF.json file. This is a list of requirements.

{

“name”:”“,

“relationship”:”“,

“id” : “”,

“capability” : {

“name” : “calls.request.format+calls.request.version+calls.response.format+calls.response.version For DM or DB populate Any,initially and when connected name of the output message”, Change for Data Mapper, Data Broker

“id” : “”

},

“target” : {

“name” : ” name-of-target-node-of-this-requirement-if-it-is-connected”, //otherwise empty

“description”: “”

},

“target_type” : “Node”

},

{

Another requirement spec.

}

], //end of requirements list

capabilities: [// this field should be populated by UI Layer if a node has one or more capabilities in the TGIF.json file. This is a list of capabilities.

{

“id” : “”,

“name” : “”,

“target” : {

“name” : “provides.request.format+provides.request.version+provides.response.format+provides.response.versionFor DM populate Any “,  Change for Data Mapper

“id” : “”

},

“target_type” : “Capability”,

“properties” : null

},

{

“id” : “”,

“name” : “”,

“target” : {

“name” : “provides.request.format+provides.request.version+provides.response.format+provides.response.version version For DM or DataBroker populate Any and connected one of the input message”,  Change for Data Mapper or Data Broker

“id” : “”

},

“target_type” : “Capability”,

“properties” : null

}

], //end of capabilities list

“ndata” : {// node’s position in the design canvas

“ntype” : “”,

“px” : 385.89287722216187, number

“py” : 380.5962040115248,  number

“radius” : 10,  number

“fixed” : boolean,

}

}//end – of – Request

Response

{

success: boolean,

errorMessage: string // error string to be displayed to DS User.

}

Behavior

	The Composition Engine must ensure that all the fields marked mandatory are populated and the request JSON structure is valid, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation - Node Name missing”, “Cannot perform requested operation - Node Id missing”, etc.

	The Composition Engine must make sure that the nodeId does not already exist in the cdump file, otherwise it must send success as false and an error message such as “Node Id already exists – cannot perform the requested operation”.

	The Composition Engine must create/add a child node entry under the “nodes” list of the cdump file.

	The Composition Engine must populate the node element in the cdump file as follows:

	name = node name provided by the API – this is inputted by the DS user

	id = node Id provided by the API – this is generated by the UI Layer

	solutionId = solution Id of the node provided by the API – this is the solution Id of the Node in the Common Catalog Database

	version = version of the node provided by the API – this is the solution version number of the Node in the Common Catalog Database

	proto_url = url of the proto file of the model or data broker or data mapper.

	type = {} – populate as provide by API. {“name”: “DataMapper or MLModel or DataBroker or Probe”},

	requirements = List of requirements as received by the API (see sample JSON file)

	capabilities = List of capabilities as received by the API (see sample JSON file)

	properties = [] – populate as empty list

	typeInfo = {} – populate as empty JSON object

	ndata = populate this JSON object with values received by the API.

	The Composition Engine need not save the cdump file in the Nexus repository.

	(Future – Validation Steps)

6. Add Link

Operation Name

addLink

Trigger

This operation is called when the user:

	Connects a REQ port to a CAP port between a pair of ML Model nodes, or

	Connects a REQ port of the ML Model to the input Port of a Data Mapper, or

	Connects an output port of the Data Mapper to a CAP port of the ML Model or,

	Connects the output port of the Collator to the input port of the next ML Model (output message signature for collator should be added collator_map in cdump file). This is because this link can be added any time even before the collation scheme is selected which is sent via modifyNode.  Collator change

	Connects the input port of the Splitter to the output port of the previous ML Model (input message signature for splitter should be added splitter_map in cdump file). This is because this link can be added any time even before the splitting scheme is selected which is sent via modifyNode.  Splitter change

Request

{

userId: string // mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string //this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

linkName: string, // optional

linkId: string, // unique to this graph – mandatory

sourceNodeName: string, // mandatory

sourceNodeId: string, // id of node already in graph - mandatory

targetNodeName: string, //mandatory

targetNodeId: string, // id of node already in graph – mandatory

sourceNodeRequirement: string //mandatory

targetNodeCapabilityName: string //mandatory

“properties”: [// NOTE: Input fields are populated by UI Layer when a REQ port of ML Model is connected to DM and output fields are populated when DM is connected to the CAP port of ML Model.  DM Change

{

“data_map”: {

“map_inputs”: [

{

“message_name”: “Prediction”,

“input_fields”: [

{

“tag”: “1 or 2 or 3”,

“role”: “repeated or optional etc - not used in this sprint”,

“name”: “name of the field”,

“type”: “type of the field such as int32 string”,

“mapped_to_message”: “output field message_name such as Classification or empty if it is not yet mapped”,  this field is not populated in this API. It will be populated in modifyNode() API

“mapped_to_field”: “tag number of the field in the message, such as 1 or 2 or empty if it is not yet mapped”  this field is not populated in this API. It will be populated in modifyNode() API.

}

]

}

],

“map_outputs”: [

{

“message_name”: “Classification”,

“output_fields”: [

{

“tag”: “1 or 2 or 3”,

“role”: “repeated or optional or”,

“name”: “name of the field”,

“type”: “type of the field such as int32 string”

}

]

}

]

}

},

{

“collator_map”: {

“output_message_signature”: “json representation of output message signature”

}

},

{

“splitter_map”: {

“input_message_signature”: “json representation of output message signature”

}

}

]

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must ensure that all the fields marked mandatory are populated and the request JSON structure is valid, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Source Node Name missing”, “Source Node Id missing”, etc.

	The Composition Engine must create/add a child node entry under the “relations” list of the cdump file.

	The Composition Engine must populate the node elements as follows:

	linkName = provided by the API

	linkId = provided by the API

	sourceNodeName = provided by API

	sourceNodeId = provided by API

	targetNodeName = provided by API

	targetNodeId = provided by API

	sourceNodeRequirement = provided by API

	targetNodeCapability = provided by API

	relationship = [] – an empty list

	The Composition Engine must populate the properties section of the Data Mapper node in the cdump file as follows:  DM Change

	Create map_inputs structure and populate the input fields of the target Data Mapper when a REQ port of a ML Model is connected to Data Mapper, with

	Message name

	Field details – tag, role, name and type

as shown in the cdump file.

	Create map_outputs structure and populate the output fields of the source Data Mapper when the Data Mapper is connected to CAP port of the ML Model, with

	Message name

	Field details – tag, role, name and type.

as shown in the cdump file.

	The Composition Engine must populate the “output_message_signature” of the “collator_map” section.  Collator Change

	The Composition Engine must populate the “input_message_signature” of the “splitter_map” section.  Splitter Change

	The Composition Engine need not save the cdump file in the Nexus repository. It will be saved by explicit save composite solution API call.

7. Delete Node

Operation Name

deleteNode

Trigger

This operation is requested when the user deletes a node in the composition graph. This node may be connected to other nodes or it may be an isolated (un-connected) one. When a node is deleted all links connected to it (either originate from it or terminate on it) must also be deleted. This operation may result in some existing nodes becoming isolated.

Request

{

userId: string, //mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string // composition Id originally generated by backend and returned to UI Layer as a response to createNewCompositeSolution API, now it is provided as input by UI Layer – this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

nodeId: string// mandatory

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Node Id missing”, etc.

	If the requested nodeId is not found in the cdump file, the Composition Engine must return success as false and a user friendly message, such as “Invalid Node Id – not found”.

	The Composition Engine must:

	Delete the specified node entry in the nodes list of the cdump file.

	Find all the links that are connected to the specified node (originate from the node or terminate on the node) and delete these link entries in the relations list of the cdump file.

	(Sprint - 4) For each link that terminates on the specified node, find the corresponding source node of the link. These source node are the ones whose Requirements are now un-fulfilled. These nodes may now need to display a warning message to the Design Studio user. (I think the UI Layer would automatically be able to display the warning message when a Requirement is un-fulfilled. Perhaps there is no need for the composition engine to send a warning message to be displayed on the affected nodes).

	Return success as True to the client.

	(NOTE: In future, composition engine may have rules to reject deletions)

8. Delete Link

Operation Name

deleteLink

Trigger

This operation is requested when the user deletes a link between a pair of nodes in the composition graph. When a link is deleted its target node may become un-connected (isolated).

This operation is called to delete the link between

	A REQ port and a CAP port between a pair of ML Model nodes, or

	A REQ port of the ML Model and the input Port of a Data Mapper, or

	An output port of the Data Mapper and a CAP port of the ML Model.

	An output port of the Data Broker and a CAP (input) port of the ML Model.  Data Broker change

	An output port of the ML Model and the input port of the ML Model  Collator change

	An output port of the Collator and the input port of the ML Model  Splitter Change

Request

{

userId: string // mandatory

cid: string // mandatory if the solutionId is not available to UI Layer, otherwise not

solutionId: string // mandatory if it is available to the UI Layer – i.e., after the initial SAVE

version: string // mandatory if it is available to the UI Layer – i.e., after the initial SAVE

linkId: string //mandatory

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – JSON Invalid”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Link Id missing”, etc.

	If the requested linkId is not found in the cdump file, the Composition Engine must return success as false and a user friendly message, such as “Invalid Link Id – not found”.

	The Composition Engine must delete the specified link entry in the relations list of the cdump file.

	If a Data Mapper node is the target of the deleted link, then the Composition Engine must delete map_inputs entry in the data_map part of the node’s property section in the cdump file.  DM Change

	If a Data Mapper node is the source of the deleted link, then the Composition Engine must delete map_outputs entry in the data_map part of the node’s property section in the cdump file.  DM Change

	If the Data Broker node is the source of the deleted link, then the Composition Engine must delete the “data_broker_map” section of the of the Data Broker node in the cdump file.  DB change

	If the Collator node is the source node of the deleted link, then the Composition Engine must delete the value of (i.e., make it empty) the output_message_signature in the “collator_map” section of the of the Collator node in the cdump file.  Collator change

	If the Splitter node is the target node of the deleted link, then the Composition Engine must delete the value of (i.e., make it empty) the input_message_signature in the “splitter_map” section of the of the Splitter node in the cdump file.  Splitter change

	Return success as True to the client.

	(In future, engine may have rules to reject deletions).

9. Modify Node

Operation Name

modifyNode

Trigger

This operation is called by the UI Layer:

	When the user moves an existing node(ML Model, Data Mapper, Data Broker, Collator, Splitter) on the design canvas or

	When the user changes the name of the node in the design canvas, or

	When the user maps, i.e, connects an input field of the Data Mapper node to an output field of the Data Mapper node, or

	When the user deletes the existing mapping between a pair of input and output fields inside a Data Mapper, or

	When the user inputs a Script or local system data file path or target file url, or csv file field separator or first row (contains data or field names), or selects the data broker type or any of them by clicking the DONE button in the Pop UP UI associated with the S Port of the Data Broker, or

	When the user selects the field type of the source field name from the drop down list in the source table of the Data Broker, or

	When the user checks a field in the source table (then store field name, field type and checked box in cdump), or

	When the user maps, i.e., connects a source table field to the target table field of the Data Broker node via the drop down in the mapping area, or

	When the user deletes the existing mapping between a pair of source and target table fields inside a Data Broker, or

	When the user selects the collation scheme (Array based or Parameter based) followed by clicking the DONE button on the Pop Up UI associated with the Collation Selection Port (or URL) of the Collator, or

	When the user maps, the source parameter to the target parameter by selecting a drop down (tag number) value in mapping area of the Parameter – based Collator (not applicable for array based collation) and clicks the DONE button on Mapping Table, or

	When the user deletes the existing mapping between a pair of source and target parameters by removing a selected value to an empty value in the mapping area of the Parameter – based Collator and clicks the DONE button. (not applicable for array based collation).

Request

{

userId: string // mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string //this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

nodeId: string, // mandatory

nodeName: string // populated if a new name is assigned to the node (Model, Data Mapper, Data Broker, Collator), otherwise empty.

ndata: {

ntype: string // populated as “” in this Sprint

px: number,

py: number

}//either nodeName or ndata field or field_map should or data_broker_script should be populated be populated

field_map: {  Change for Data Mapper

map_action: “add or delete”

input_field_message_name: string,

input_field_tag_id: string,

output_field_message_name: string

output_field_tag_id: string

}//either nodeName or ndata field or field_map or data_broker_map or data_broker_script should be populated

data_broker_map: {  Change for Data Broker – Note complete mappings need to be saved, along with their source and target fields. However, the source and target tables are auto generated in the UI based on the script and output protobuf message of Data Broker.

“map_action”: “add or delete or update” //NOTE “add” and “delete” actions are always associated with a pair of source and target field mappings The mappings need to be added or deleted in the mapped_to_field. If it is “update” then cdump file needs to be updated with the corresponding field values (4/4/2018: this field will be empty because of the revised mapping table in UI)

“data_broker_type”: “CSV_File or JSON_File or Image_File or SQL_Database”,

“map_inputs”: [

{

“input_field”: {

“name”: “name of source field”,

“type”: “string or int or float or boolean or Long or Double, Byte”,

“checked”: “YES or empty means NO”,

“mapped_to_field”: “tag number of the field in the target table, such as 1.2 or 2.3.4 or empty if it is not yet mapped”

}

}

],

“map_outputs”: [

{

“output_field”: {

“tag”: “1.1 or 1.2 or 4.3.2 etc.”,

“name”: “name of target field sepal_len”,

“type_and_role_hierarchy_list”: [

{

“name”: “string”,

“role” : “null”

},

{

“name”: “DataFrameRow”,

“role”: “repeated”

},

{

“name”: “DataFrame”,

“role”: “null”

}

]

}

}

],

“script”: “user provided multi line SQL or File system commands to read, parse and retrieve data from file or directory”,

“target_system_url”: “File or JDBC url in the target system”,

“local_system_data_file_path”: “CSV or JSON Sample Data File path on users local machine”,

“first_row”: “contains_data or contains_field_names. this field is only populated for CSV file Data Broker”,

“csv_file_field_separator”: “”, or ; or | , etc. characters”,

“database_name”: “as entered by user in Design Studio”,

“jdbc_driver_data_source_class_name”: “name provided by the user in DS”,

“table_name”: “extracted by DS from the Create Table Script”,

“user_id”: “user Id for JDBC access or the File Host for SSH access”,

“password”: “password for above user Id”

},

“collator_map”: {

“collator_type”: “Array-based or Parameter-based - For Array based map_inputs and map_outputs are not populated”,

“output_message_signature”: “json representation of output message signature - required for parameter based collation”,

	“map_inputs”: [

	{

“input_field”: {

“source_name”: “name of model that provides message to collator input port”,

“parameter_name”: “parameter name in Source Protobuf file. A source may provide multiple parameters for parameter based collation”,

“parameter_type”: “name of parameter type aka message signature in Source Protobuf file”,

“parameter_tag”: “parameter tag number in Source Protobuf file”,

“mapped_to_field”: “tag number of the field in the target message side, empty if it is not yet mapped”,

“error_indicator”: “True or False”

}

}

],

“map_outputs”: [

{

“output_field”:{

“Parameter_tag”: “tag number of the field in the target message side”,

“parameter_name”: “parameter name in Target Protobuf file”,

“parameter_type”: “name of parameter type aka message signature in Target Protobuf file”,

“parameter_rule”: “Required or Optional”

}

}

]

}

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Node Id missing”, etc.

	If the requested nodeId is not found in the cdump file, the Composition Engine must return success as false and a user friendly message, such as “Invalid Node Id – not found”.

	The Composition Engine must update the nodeName, ntype, px and py elements of the specified nodeId in the cdump file with the values provided.

	For a Data Mapper node, the Composition Engine must perform the requested map_action (add or delete) by appropriately updating the data_map in the properties section of the node in the cdump file.

	The Composition Engine need not save the cdump file in the Nexus repository.

	Return success as True to the client.

	(In future, engine may have rules to reject modifications).

10. Modify Link

Operation Name

modifyLink

Trigger

This operation is called when a link name is provided or modified by the user.

Request

{

userId: string // mandatory

cid: string // mandatory if the solutionId is not available to UI Layer, i.e., before SAVE, otherwise not

solutionId: string // mandatory if it is available to the UI Layer – i.e., after the initial SAVE

version: string // mandatory if it is available to the UI Layer – i.e., after the initial SAVE

linkId: string, //mandatory

linkName: //mandatory

layout: {}

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Link Id missing”, etc.

	If the requested linkId is not found in the cdump file, the Composition Engine must return success as false and a user friendly message, such as “Invalid Link Id – not found”.

	The Composition Engine must update the linkName element of the specified linkId in the cdump file with the value provided.

	Return success as True to the client.

	(In future, engine may have rules to reject modifications).

11. Fetch Basic Building Blocks for a User

Operation Name

fetchCatalogItems

Trigger

This operation is called by the UI Layer when the user initially logs into the Design Studio in order to populate the Palette of catalog items to be displayed to the user based on his credentials. Both the simple solutions and composite solutions are retrieved. Only the following catalog items can be populated in the Palette for a given user:

	Catalog items marked “Public”

	Catalog items marked “Private” to the user.

	Catalog items marked as belonging to the user’s “Organization” of which the user is a member.

Request

{

userId: String // mandatory

}

Response

{

items: [list of catalog items

{

solutionId: string,

version : string,

ownerId : string,

solutionName: string,

description: string,

created: date as string,

modified: date as string

visibilityLevel: “private”, “organization”, “public”,

provider: string,

toolKit: string,

category: string,

icon: string // url or other resource id to display as icon in palette

},

{

Another catalog item

}

]//end item list

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – User Id missing”, etc.

	If the requested userId is not found in the catalog DB, the Composition Engine must return success as false and a user friendly message, such as “User Id – not found”.

	Composition engine will call the catalog database to retrieve all the existing solutions (both basic solutions as well as composite solutions) corresponding to the userId.

	If the requested userId is found in the catalog DB but there are no catalog items (either Private, or Organization, or Public) corresponding to the user Id, the Composition Engine must return success as true and an empty catalog item list to the client

	The Composition Engine must return a list of all catalog items which are:

	Marked “Public”.

	Marked “Private” to the user.

	Marked as belonging to the user’s “Organization” of which the user is a member.

	For each catalog item which meets the above criterion, the Composition Engine must retrieve the attributes specified in the response and return them to the client. The success parameter must be set to true.

12. Fetch Composite Solutions for a User

Operation Name

getCompositeSolutions

Trigger

This operation is called by the UI Layer when the user initially logs into the Design Studio in order to populate the List of Composite Solutions to be displayed to the user based on his credentials. Based on input parameter “visibilityLevel” this operation retrieves the Composite Solutions. User can pass either one, two or all the below option as value for the input parameter “visibilityLevel”, in order to retrieve the required list of Composite Solutions:

	“PR”: to include the private Composite Solutions in the list

	“OR”: include the organization level visible Composite Solutions.

	“PB”: to include the public level Composite Solutions.

Request

{

userId: string,// user logged into Portal – mandatory,

visibilityLevel : string // PR,OR,PB – mandatory. You can specify multiple value separated by ‘,’.

}

Response

{

items: [list of catalog items

{

solutionId: string,

version : string,

ownerId : string,

solutionName: string,

description: string,

created: date as string,

modified: date as string

visibilityLevel: “private”, “organization”, “public”,

provider: string,

toolKit: string,

category: string,

icon: string // url or other resource id to display as icon in palette

},

{

Another Composite Solution

}

]//end item list

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – User Id missing”, etc.

	If the requested userId is not found in the catalog DB, the Composition Engine must return success as false and a user friendly message, such as “User Id – not found”.

	Composition engine will call the catalog database to retrieve all the existing Composite solutions corresponding to the userId.

	If the requested userId is found in the catalog DB but there are no Composite Solutions (either Private, or Organization, or Public) corresponding to the user Id, the Composition Engine must return success as true and an empty catalog item list to the client

	The Composition Engine must return a list of Composite Solutions depending on the value(s) of input parameter “visibilityLevel”.

13. Clear canvas of Composite Solution

Operation Name

clearCompositeSolution

Trigger

This operation is requested when the user clicks “Clear” button to clear the contents of the canvas. This operation should delete all the nodes and links from the CDUMP file.

Request

{

userId: string, //mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string // composition Id originally generated by backend and returned to UI Layer as a response to createNewCompositeSolution API, now it is provided as input by UI Layer – this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Node Id missing”, etc.

	The Composition Engine must:

	Delete all the link entry in the nodes list of the cdump file.

	Delete all the node entry in the nodes list of the cdump file.

	Return success as True to the client.

14. Fetch TOSCA JSON of Basic Solution

Operation Name

fetchToscaJSON

Trigger

This operation is called by the UI Layer immediately after user has logged in and all the catalog items for the user have been populated in the Palette, via the fetchCatalogItems API.

For each item in the Palette, the UI Layer calls this operation to retrieve the JSON TOSCA file, i.e., the TGIF.json associated with the basic solution. Note that there is no TGIF.json file associated with the composite solution. TGIF.json only needs to be associated with the basic solutions (nodes).

Request

{

userId: string // mandatory

solutionId: string, // mandatory - global id of basic solution in catalog

version: string // mandatory

}

Response

{

JSON representation of TGIF.json file for the requested solution

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Solution Id (or Version) missing”, etc.

	If the requested solutionId is not found in the catalog DB, the Composition Engine must return success as false and a user friendly message, such as “Incorrect Solution Id – not found”, or “Incorrect Version – not found”.

	For the requested solution Id and version, the Composition Engine must retrieve the location of the TGIF.json from the Catalog DB.

	The Composition Engine must retrieve the TGIF.json from Nexus at the location pointed out by Catalog DB

	The Composition Engine must return the json string of the TGIF.json file to the client, success set to true.

15. Fetch Protobuf JSON of Basic Solution

Operation Name

fetchProtobufJSON

Trigger

This operation should be called, for each node, when:

	A node is dragged from the catalog palette to the design canvas, or

	A composite solution is dragged from the catalog palette to the design canvas.

Note that each node, aka, the basic ML Solution (identified by the combination of solutionId and version), in a composite solution is associated with the following files:

	Protobuf file

	Protobuf.json file

	TGIF.json file

Output: This operation returns the JSON representation of all the operations specified in the Protobuf File, i.e, the serialized Protobuf.json

For each operation in the Protobuf.json file, this API should return the

	Operation name

	Input Message name(s)

	Output Message name(s)

	Detailed schema of each input message – as defined in the original Protobuf file. Each schema should be associated with the corresponding message name

	Detailed schema of each output message – as defined in the original Protobuf file. Each schema should be associated with the corresponding message name.

Request

{

userId: string //mandatory

solutionId: string // mandatory – solution Id of the basic node – this id is available from a previous fetchCatalogItems API call

Version: string // mandatory – version if the basic node - this value is available from a previous fetchCatalogItems API call

}

Response

{

protobuf_json: // JSON representation of Protobuf file.

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – Node Id missing”, etc.

	Identify the Protobuf.json file associated with the node type.

	For each operation in the Protobuf.json file, the Composition Engine must retrieve the

	Operation name

	Input Message name(s)

	Output Message name(s)

	Detailed schema of each input message – as defined in the original Protobuf file. Each schema should be associated with the corresponding message name

	Detailed schema of each output message – as defined in the original Protobuf file. Each schema should be associated with the corresponding message name.

	The Composition Engine must return the serialized representation of Protobuf.json file.

16. Close Composite Solution

Operation Name

closeCompositeSolution

Trigger

This operation is called when the user requests the closing of the composite solution currently open in the design canvas. This operation should be called when the user clicks the “X” mark on the top right hand corner of the canvas.

If there are unsaved changes when the user clicks “X”, then the user should be prompted to save the solution first.

	User chooses to save the solution: Call the saveCompositeSolution API and when its response is received by the UI Layer, then call the closeCompositeSolution API on the Composition Engine.

	User declines to save the solution: Any unsaved changes will not be saved to Nexus, but the cdump file will be closed (deleted). Call the closeCompositeSolution API.

Request

{

userId: string, //mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string // composition Id originally generated by backend and returned to UI Layer as a response to createNewCompositeSolution API, now it is provided as input by UI Layer – this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

}

Response

{

success: boolean,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – User Id missing”, etc.

	The Composition Engine must close the cdump file, without saving it in Nexus repository. The cdump that existed in the Nexus at the last SAVE operation will serve as the latest cdump when the user wants to read the composite solution later on).

17. On Hover Input Port

Operation Name

onHoverInputPort – This operation is not handled by the Composition Engine.

Trigger

This operation is called when the user hovers the mouse over the input port of the node.

Request

{

solutionId: string // mandatory – solution Id of the basic node – this id is available from a previous fetchCatalogItems API call

Version: string // mandatory – version if the basic node - this value is available from a previous fetchCatalogItems API call

operationName: string// mandatory – each input port is identified by the name of the operation

}

Response

Behavior

	The UI Layer should retrieve a list of one or more input message names associated with the given operation name from the JSON object representation of Protobuf already associated with the node. Note that this JSON object is already associated with the node when the node was dragged inside the canvas (or when the composite solution containing this node was dragged into the canvas).

	The UI Layer should display a pop up.

	The UI Layer should display the name of the operation and a list of one or more input message names inside the pop up. The message names should enclosed inside brackets – such as fit(DataFrame1, DataFrame2).

	The message names should be a hyperlink into the corresponding message schema – as defined in the original Protobuf file.

18. On Hover Output Port

Operation Name

onHoverOutputPort

Trigger

This operation is called when the user hovers the mouse over the output port of the node.

Request

solutionId: string // mandatory – solution Id of the basic node – this id is available from a previous fetchCatalogItems API call

Version: string // mandatory – version if the basic node - this value is available from a previous fetchCatalogItems API call

operationName: string// mandatory – each output port is identified by the name of the operation

Response

Behavior

	The UI Layer should retrieve a list of one or more output message names associated with the given operation name from the JSON object representation of Protobuf already associated with the node. Note that this JSON object is already associated with the node when the node was dragged inside the canvas (or when the composite solution containing this node was dragged into the canvas).

	The UI Layer should display a pop up.

	The UI Layer should display the name of the operation and a list of one or more output message names inside the pop up. The message names should enclosed inside brackets – such as fit(Prediction).

	The message names should be a hyperlink into the corresponding message schema – as defined in the original Protobuf file.

19. On Click of Message (Input or Output)

Operation Name

onClickMessage

Trigger

This operation is called when the user clicks on an input or an output message in the input/output port of the node.

Request

{

operationName: string //// mandatory – each input port is associated with an operation

messageName: string// mandatory – each operation name has input and output message(s)

}

Response

Behavior

	The UI Layer should retrieve the message schema of the named message from the JSON Object representation associated with the node.

	The UI Layer should convert the JSON representation of the message into its original Protobuf message schema format.

	The UI Layer should send the Protobuf message schema format to the Properties box.

	The Properties Box should display the message schema in the original Protobuf format.

20. Get Matching Models for a Port

Operation Name

getMatchingModels

Trigger

This operation is called by the UI Layer when the user clicks on the port of a node in the design canvas, in order to get a list of ML Models (i.e., basic building blocks) that match the message signature of the port.

The requirement is to enable the DS user to drag and drop the matching models from the “Matching Models” pane into the design canvas.

Request

{

userId: string // mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string //this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

port_data: {

port_type: “provider” or “consumer”/ Provider and Consumer ports are associated with the Input (unfilled circle) and Output (filled in circle) of an Operation

protbuf_data: [] //Array of JSON representation of one or more messages inside the Port

}//mandatory

}

Response

{

success: boolean,

matchingModels: [

{

name: String// name of the matching ML Model,

tgifReference: String //location of TGIF file in Nexus

}

] // list of the names of matching ML Models, i.e., basic building blocks,

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – User Id missing”, etc.

	The Composition Engine must:

	Identify if the request is to find the matching models of a “Provider” port or a “Consumer” port.

	Retrieve the TGIF.json files of ML Models – the basic building blocks in the CCD, one after another.

	For a consumer port, search and match requested message signature with the message signatures on the Provider port(s) of the TGIF.json file, and if there is a match found, then populate the name of the ML Model and the TGIF.json reference of the Model in the matchingModels list (see Response section).

	For a provider port, search and match requested message signature with the message signatures on the Consumer port(s) of the TGIF.json file, and if there is a match found, then populate the name of the ML Model and the TGIF.json reference of the Model in the matchingModels list (see Response section)

	If no matches are found, then return success as false, and populate the errorMessage as “No matching models found”, otherwise return success as True.

	Return the response to the UI Layer.

21. Validate Composite Solution

Operation Name

validateCompositeSolution

Trigger

This operation is called by the UI Layer when the user clicks on the Validate Button in the Design Studio.

When the response to this API is received, the UI Layer, should populate the Validation Console with either a single success message or a list of error and warning messages returned by the backend Composition Engine.

Request

{

userId: string, //mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

version: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string // composition Id originally generated by backend and returned to UI Layer as a response to createNewCompositeSolution API, now it is provided as input by UI Layer – this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

}

Response

{

success: boolean,

validationMessages[]: string // A single “Validation Successful” message or a list of one or more Error messages and Warning Messages.

errorMessage: string // error string to be displayed to user.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

	The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the helpful error message which is displayed to the user, such as “Cannot perform requested operation – User Id missing”, etc.

	The Composition Engine must perform hte following validations:

	A composite solution can only have nodes of the following types.

	MLModel

	Splitter

	Collator

	DataBroker

	DataMapper

	A composite solution can have a single isolated (i.e., an unconnected) model of type “MLModel”.

	An isolated model of any type other than of type “MLModel” is not allowed in a composite solution.

	A composite solution cannot have more than one isolated (or unconnected) models, irrespective of their type.

	A composite solution with a combination of connected and isolated models is not a valid solution.

	Must retrieve the cdump file associated with the solution from Nexus repository.

	Perform validation of the cdump file to make sure that no model (basic building blocks) is isolated / unconnected.

	If there are isolated models in the composite solution, then for each such model, the composition engine must create an error message such as “Error – Mode Name is not connected.”

	An output port of a node can be connected to the input port of another node only if there exist matching message signatures on the pair of ports. (Rule checked by UI Layer)

	An output port of a node of type “MLModel” can be connected to ONLY one input port of another node of type “MLModel” or “DataMapper” or “Splitter” or “Collator”, [NOTE: Design Studio will NOT restrict the user, but during Validation this should be flagged as error.]

	An output port of a node of type “DataBroker” can be connected to ONLY one input port of another node of type “MLModel” or “DataMapper” or “Splitter” or “Collator”, [NOTE: Design Studio will NOT restrict the user, but during Validation we will flag this error.]

	An input port of a node of type “MLModel” can be connected to ONLY one output port of another node of any type. [NOTE: Design Studio will NOT restrict the user, but during Validation we will flag this error.]

	A node of type “DataBroker” cannot have its input port connected to any other node. (to be modified later)

	The Composition Engine must set success as False and send a list of error messages in the “validationMessages” list to the client.

	If there are no errors, the Composition Engine must:

	Create the Blueprint.json file (as described)

	Store the Blueprint.json in Nexus

	Store the location of Blueprint.json in Common Catalog DB.

	Set success as True and send “Successful” message in the “validationMessages” list to the client.

	Mark the validSolution flag in the cdump file as “true”.

	Store the cdump file in Nexus.

	If a Data Broker is included in the composite solution, then after the solution is successfully validated in the Design Studio, the Composition Engine must do the following functions:

	Retrieve the Protobuf file of the ML Model connected to the Data Broker from Nexus and populate it in the protobufFile field of the data_broker_map.

	If a Data Mapper is included in the composite solution, then after the solution is successfully validated in the Design Studio, the Composition Engine must do the following functions:

	Generate the Protobuf Wrapper for the Data Mapper – This Wrapper converts:

	From Java to Protobuf types for the outgoing message (on the output side of the Data Mapper).

	From Protobuf to Java types for the incoming message (on the input side of the Data Mapper)

	Create the jar file of the Data Mapper with the field level mappings, as designed in the Design Studio.

	Convert the jar to Microservices. Note the Data Mapper exposes an operation called mapData and the input arguments to the operation are the same as those defined on the input side of the Data Mapper.

	Create the Docker Image of the Data Mapper Microservice.

	Store the Docker image of the Data Mapper in the Nexus repository.

	Store the location of the docker image in the TGIF.json of the Data Mapper.

22. SetProbeIndicator

Operation Name

setProbeIndicator

Trigger

This operation is called by the UI Layer when the user clicks or un clicks the Probe Indicator Button in the Design Studio, to indicate if he wants the Probe to be included or not in the composite solution. By clicking this button the user intends to set or unset a probe indicator in the backend.

Request

{

userId: string, //mandatory

solutionId: string // this field will be empty for a new un – saved solution. It is mandatory for a saved solution

vetrsion: string// this field will be empty for a new un – saved solution. It is mandatory for a saved solution

cid: string // composition Id originally generated by backend and returned to UI Layer as a response to createNewCompositeSolution API, now it is provided as input by UI Layer – this field should be populated (mandatory) if the solutionId and version is missing such as for a new un – saved solution.

probeIndicator: String //True or False //Mandatory.

}

Response

{

success: boolean,

errorMessage: string //error string to be displayed to DS User.

}

Behavior

	The Composition Engine must check if the request JSON structure is valid, otherwise it should return success as false and a user friendly message, such as “Incorrectly formatted input – Invalid JSON”.

2. The Composition Engine must ensure that all the fields marked mandatory are populated, otherwise it must return success as “false” and populate the
helpful error message which is displayed to the user, such as “Cannot perform requested operation – User Id missing”, etc.

	The Composition Engine must:

	Must set the probeIndicator to either “true” or “false” value in the cdump file as received in the request.

Including a Swagger File

Acumos uses Swagger [https://swagger.io/] to generate dynamic API docs. However, to read the docs you must have access to the Swagger server running on your Acumos instance. This can be inconvenient, so the Docs project uses a Sphinx plugin called sphinx-swaggerdoc [https://github.com/unaguil/sphinx-swaggerdoc/], which provides an RST directive to render a swagger.json file. The sphinx-swaggerdoc extension is defined in the Documentation project’s conf.py file.

You an include your API JSON file either by pointing to a URL or by pointing to a file. This example uses a local file called example-swagger.json. See the sphinx-swaggerdoc [https://github.com/unaguil/sphinx-swaggerdoc/] for more examples.

.. swaggerv2doc:: example-swagger.json

Example of Rendered Content From api-docs.json File

https://docs.acumos.org/en/latest/docs-contributor-guide/templates/swaggerv2doc-example-output.html

 Design Studio Composition Engine Developer Guide

Design Studio Composition Engine Developer Guide

1. Overview

This is the developers guide to Design Studio Composition Engine.

1.1. What is Composition Engine?

The Design Studio UI invokes Composition Engine API to:

	Create machine learning applications, hereafter referred to as composite solutions, out of the basic building blocks – the individual Machine Learning (ML) models contributed by the open source user community.

	Validate the composite solutions.

	Generate the blueprint of the composite solution for deployment on the target cloud.

2. Architecture and Design

2.1. High-Level Flow

Coming soon

2.2. Class Diagrams

Coming soon

2.3. Sequence Diagrams

Coming soon

3. Technology and Frameworks

List of the development languages, frameworks, etc.

	Springboot 1.5.16.RELEASE

	Java 8

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

4. Project Resources

	Gerrit repo: desing-studio/ds-compositionengine [https://gerrit.acumos.org/r/#/admin/projects/design-studio]

	Jira [https://jira.acumos.org/browse/ACUMOS-50?jql=component%20%3D%20design-studio] design-studio

5. Development Setup

5.1. Get the code

Clone the Repository in some user accessible directory, lets call this as <homeDirectory>

git clone https://<username>@gerrit.acumos.org/r/a/design-studio

After successful clone, new directory <homeDirectory>/design-studio with following sub directories should get created.

[image: design-studio gerritRepository structure]

5.2. Import Project in Eclipse

After successful import, you should view in Project Explorer

[image: design-studio ds-compositionengine structure.]

6. How to Run

Run as Sprintboot application.

7. How to Test

7.1 Run the JUnit testcases

	7.2 Using Swagger UI

	Start the ds-compositionengine as spring boot application and test the API using swagger UI : http://localhost:8088/swagger-ui.html

[image: DS swagger UI image.]

 Design Studio Databroker Application Programming Interfaces

Design Studio Databroker Application Programming Interfaces

API

1. Set the environment configuration

	Operation Name

	configDB

Trigger

This API is invoked by Deployer/deploy.sh script to set the configuration details.
For SQL Databroker fillowing fields are mandatory :

“database_name”: “string”,

“jdbc_driver_data_source_class_name”: “string”,

“table_name”: “string”,

“target_system_url”: “string”, //value should be JDBC URL.

For CSV Databroker following fields are mandatory :

“csv_file_field_separator”: “string”,

“first_row”: “string”,

“target_system_url”: “string”, // value will be file path. (currently supporting local file only.)

Request

{

“csv_file_field_separator”: “string”, //mandatory for csv databroker.
“data_broker_type”: “string”, //mandatory
“database_name”: “string”, //mandatory for SQL databroker
“first_row”: “string”, //mandatory for csv databroker
“jdbc_driver_data_source_class_name”: “string”, //mandatory for SQL databroker
“local_system_data_file_path”: “string”,
“map_inputs”: [

{

“input_field”: {

“checked”: “string”,
“mapped_to_field”: “string”,
“name”: “string”,
“type”: “string”

}

}

],

“map_outputs”: [

{

“output_field”: {

“name”: “string”,
“tag”: “string”,
“type_and_role_hierarchy_list”: [

{

“name”: “string”,
“role”: “string”

}

]

}

}

],

“password”: “string”, // DB password, will be set by deploy.sh
“protobufFile”: “string”,
“script”: “string”,
“table_name”: “string”, //mandatory for SQL databroker
“target_system_url”: “string”, // file path in case of CSV databroker and JDBC URL in case of SQL databroker.
“user_id”: “string” // DB username, will be set by deploy.sh

}

Response

Success

{

“status”: 200,
“message”: “Environment configured successfully !!!”

}

Error

{

“timestamp”: ,
“status”: 400,
“error”: “Bad Request”,
“exception”: “Exception details”,
“message”: “Error Message”,
“path”: “/configDB”

}

Behavior

Sets the below details required by Databroker for fetching, converting into protobuf format and pass it on to the Model connector.
* The host and port of the machine where the File or Database is located
* The login credentials (user Id, password) of the Target System (prompt by deploy.sh to the user)
* The “data_broker_map” section of the Data Broker node from the Blueprint.json file
* The string version of Protobuf file contents

2. Get Data

Operation Name

pullData

This operation fetch a record from the specified resource (.csv or SQL DB)

Trigger

This operation is called by Model connector to fetch the data row.

Request

{}

Response

{

“Protobuf formatted data”

}

Behavior

Fetch the data row from the specified source and converts it into protobuf format as per the configuration details set.

 Design Studio Databroker Developer Guide

Design Studio Databroker Developer Guide

1. Introduction

This is the developers guide to Design Studio Databroker.

1.1. What is Databroker?

The DataBroker is a tool which falls under Design Studio. It retrieves the data from the different types Data Sources like Database, File systems (UNIX, HDFS Data Brokers, etc.), Router Data Broker, Zip Archives. Under Data Sources palette we can see these kind of data brokers.

	Data Broker retrieves the data from passive Data Sources.

	Converts the data into Protobuf format.

	Provides the data to Models (via Model Connector).

	Model Connector explicitly requests the Data Broker to retrieve the data from Data Source, receives the data in response, and provides the data to Models.

1.2. Data Broker Types

	File Data Broker: Retrieves the data from CSV Files, JSON Files, or other files where the records (rows) of the file have a pre-defined structure.

	SQL Data Broker: Retrieves the data from SQL databases.

2. Architecture and Design

The DataBroker Architecture is shown in below figure.

	Includes databroker in the composite solution.

[image: Backend Architecture diagram with DataBroker]

	Composite Solution with out DataBroker.

[image: Backend Architecture diagram without DataBroker]

	MP-PortalDeployer:High Level Deployment Sequence.

[image: Backend Architecture diagram of MP-PortalDeployer]

	DataBroker nested protobuf message to Linear format.

[image: Design of DataBroker nested protobuf message to linear format]

	DataBroker nested protobuf message structure.

[image: DataBroker output port nested protobuf message format]

	DataBroker Source and Target tables mapping information, which is generated after user entering the script.

[image: DataBroker source and target tables mapping data]

2.1. High-Level Flow

2.2. Class Diagrams

2.3. Sequence Diagrams

3. Technology and Frameworks

List of the development languages, frameworks, tools, etc.

	Java 8

	Maven 3.X

	SpringBoot 1.5.16

	JCraft 0.1.53

	JUnit 4.12

	Jackson 2.7.5

	Connectivity to Maven Central to download required jars

4. Project Resources

	Gerrit repo: desing-studio/csvdatabroker [https://gerrit.acumos.org/r/#/admin/projects/design-studio]

	Gerrit repo: desing-studio/sqldatabroker [https://gerrit.acumos.org/r/#/admin/projects/design-studio]

	Jira [https://jira.acumos.org/browse/ACUMOS-50?jql=component%20%3D%20design-studio] design-studio

5. Development set-up

5.1. Get the code

Clone the Repository in some user accessible directory, lets call this as <homeDirectory>

git clone https://<username>@gerrit.acumos.org/r/a/design-studio

After successful clone, new directory <homeDirectory>/design-studio with following sub directories should get created.

[image: design-studio gerritRepository structure]

5.2. Import Project in Eclipse

After successful import, you should view in Project Explorer

[image: submodules/design-studio/docs/images/sql-csv/Eclipse_csvdatabroker.jpg]
[image: submodules/design-studio/docs/images/sql-csv/Eclipse_sqldatabroker.jpg]

6. How to Run

Run the project as Spring Boot application:

	Start SQLDataBroker and CSVDataBroker as Spring Boot application service and test the application through Swagger UI.

	URL : http://localhost:8080/swagger-ui.html#/

7. How to Test

	Using Junit

	You can either run all OR the required Junit to test the code.

 Design Studio Generic Datamapper Service Developer Guide

Design Studio Generic Datamapper Service Developer Guide

1. Overview

This is the developers guide to Design Studio Generic Datamapper Service.

1.1. What is Datamapper?

	The Datamapper performs data type transformations between Protobuf data types.

	
	The Data Mapper is a Design Studio tool. Unlike other ML Models that have a Protobuf file associated with them, the Data - Mapper does not have a pre-defined Protobuf file associated with it.

	The Data Mapper is implemented as a small java package which primarily consists of data type mapping libraries.

	The data mappings inside the Data Mapper are defined in the Design Studio during “run time” of the Data Mapper jar file. - These dynamically defined mappings need to be saved in the Data Mapper package

1.2. What does it do?

	Maps data types between a pair of incompatible ports of the ML Models – map the data type of an output port to the data types of an input port.

	Any output port of a ML Model can be connected to a Data Mapper, and the Data Mapper can be connected to any input port of the ML Model.

	Composition Rule: From the Design Studio composition perspective a Data Mapper can accept any inputs and produce any outputs, depending on the ML models that are connected to its input and output side. So its requirements and capability will be indicated any.

	Data Mapper will perform transformation between basic Protobuf types only.

1.3. How it works?

For Composite solution containing datamapper, ds-composition engine performs below steps before creating Blueprint file :

	Constructs FieldMapping.json details

	Generates and compile the Protobuf java classes depending on the input and output field details.

	Unpack the gdmservice downloaded jar and updated above details and repacks into new jar.

	Construct the docker image of newly packed jar and uploaded it to the configured docker registry.

	New docker image URI (from above step) is set in the Blueprint file for the corresponding datamapper.

2. Architecture and Design

2.1. High-Level Flow

2.2. Class Diagrams

2.3. Sequence Diagrams

3. Technology and Frameworks

List of the development languages, frameworks, etc.

	Java 8

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

4. Project Resources

	Gerrit repo: desing-studio/gdmservice [https://gerrit.acumos.org/r/#/admin/projects/design-studio]

5. Development Setup

5.1. Get the code

Clone the Repository in some user accessible directory, lets call this as <homeDirectory>

git clone https://<username>@gerrit.acumos.org/r/a/design-studio

After successful clone, new directory <homeDirectory>/design-studio with following sub directories should get created.

[image: design-studio gerritRepository structure]

5.2. Import Project in Eclipse

After successful import, you should view in Project Explorer

[image: design-studio gerritRepository structure.]

6. How to Run

Run the project as Springboot application:

	Update the FieldMapping.json as per the requirement.

	Below is the sample JSON :

	Start gdmservice as Springboot application service and test the application through Swagger UI.

	URL : http://localhost:8334/gdmservice/swagger-ui.html
Below is the sample input for the above FieldMapping.json details.

7. How to Test

	Using Junit

	You can either run all OR the required Junit to test the code.

 Design Studio

Design Studio

Contents:

	Design Studio Composition Engine Application Programming Interfaces
	API

	Including a Swagger File

	Example of Rendered Content From api-docs.json File

	Design Studio Composition Engine Developer Guide
	1. Overview

	2. Architecture and Design

	3. Technology and Frameworks

	4. Project Resources

	5. Development Setup

	6. How to Run

	7. How to Test

	Design Studio Databroker Application Programming Interfaces
	API

	Design Studio Databroker Developer Guide
	1. Introduction

	2. Architecture and Design

	3. Technology and Frameworks

	4. Project Resources

	5. Development set-up

	6. How to Run

	7. How to Test

	Design Studio Generic Datamapper Service Developer Guide
	1. Overview

	2. Architecture and Design

	3. Technology and Frameworks

	4. Project Resources

	5. Development Setup

	6. How to Run

	7. How to Test

	Design Studio SQL Databroker Release Notes
	Version 1.1.0, 2018-10-01

	Version 0.0.1, 2018-09-14

	Design Studio TOSCA Model Generator Client Developer Guide
	1. Overview

	2. Architecture and Design

	3. Technology and Frameworks

	4. Project Resources

	5. Development Setup

	6. How to Run

	7. How to Test

	Design Studio Release Notes
	Version 3.0.6, 2020-05-06

	Version 3.0.5, 2020-03-12

	Version 3.0.4, 2020-01-29

	Version 3.0.3, 2019-12-16

	Version 3.0.2, 2019-12-10

	Version 3.0.1, 2019-10-16

	Version 3.0.0, 2019-09-30

	Version 2.2.3, 2019-09-20

	Version 2.2.2, 2019-09-09

	Version 2.2.1, 2019-08-09

	Version 2.2.0, 2019-07-25

	Version 2.1.0, 2019-05-30

	Version 2.0.9, 2019-05-03

	Version 2.0.8, 2019-04-22

	Version 2.0.7, 2019-04-12

	Version 2.0.6, 2019-02-28

	Version 2.0.5, 2019-02-16

	Version 2.0.4, 2019-01-30

	Version 2.0.2, 2019-01-11

	Version 2.0.0, 2018-12-14

	Version 1.40.2, 2018-10-12

	Version 1.40.1, 2018-10-01

	Version 0.0.40, 2018-09-21

	Version 0.0.39, 2018-09-20

	Version 0.0.38, 2018-09-14

	Version 0.0.37, 2018-09-07

	Version 0.0.36, 2018-09-03

	Version 0.0.35, 2018-08-16

	Version 0.0.34, 2018-08-03

	Version 0.0.33, 2018-07-30

	Version 0.0.32, 2018-07-05

	Version 0.0.30, 2018-06-06

	Version 0.0.29, 2018-05-21

	Version 0.0.28, 2018-05-15

	Version 0.0.27, 2018-05-10

	Version 0.0.26, 2018-05-03

	Version 0.0.25, 2018-04-26

	Version 0.0.24, 2018-03-25

	Version 0.0.23, 2018-03-09

	Version 0.0.22, 2018-02-16

	Version 0.0.21, 2018-02-16

	Version 0.0.20, 2018-02-14

	Version 0.19.2, 2018-01-23

	Version 0.19.1, 2018-01-15

	Version 0.0.19, 2018-01-10

	Version 0.0.18, 2017-11-16

	Version 0.0.17, 2017-11-16

	Version 0.0.16, 2017-11-16

	Version 0.0.15, 2017-10-04

	Version 0.0.14, 2017-09-28

	Version 0.0.11, 2017-09-28

	Version 0.0.10, 2017-09-28

	Version 0.0.10, 2017-09-28

	Version 0.0.9, 2017-08-25

	Version 0.0.8, 2017-08-04

	Version 0.0.7, 2017-08-01

	Version 0.0.6, 2017-07-27

	Version 0.0.5, 2017-07-11

	Version 0.0.4, 2017-07-01

	Version 0.0.3, 2017-06-29

	Version 0.0.2, 2017-06-28

	Version 0.0.1, 2017-06-28

	The Design Studio: For Composers
	Overview

	Model Ingestion

	Model Composition

	User Interface Tour

	Data Brokers

	Generic Data Mapper

	Message Splitter and Collator Tools

 Design Studio Release Notes

Design Studio Release Notes

The Design Studio Composition Engine is packaged within a Docker image and available from the
Acumos docker registry. The TOSCAGenerator Client library is published in the Acumos Nexus
repository as a jar file.

Version 3.0.6, 2020-05-06

	ACUMOS-3483 : As a Supplier, I should be able allow/deny my model to be included in creation of composite models (i.e. chaining models)

Version 3.0.5, 2020-03-12

	Updated the existing download url for protobuf-java jar in ds-compositionengine pom.xml

	Updated major, minor and patch version
TOSCAModelGeneratorClient:2.0.8

	ACUMOS-4062 : Updated TOSCAModelGeneratorClient to create new API to accept model name & protobuf to generate the TOSCA artifacts

Version 3.0.4, 2020-01-29

	Updated DS modules to CDS 3.1.1 version compatibility.

Version 3.0.3, 2019-12-16

	Added platform-oam dependency for MDC logging purpose .

Version 3.0.2, 2019-12-10

	Updated DS modules to CDS 3.1.0 version compatibility.

Version 3.0.1, 2019-10-16

	ACUMOS-1206 : Sonar 40% code coverage for Design Studio project

	ACUMOS-3480 : User Guide | Design Studio | Acu-Compose | MLWB : Few section need to update

Version 3.0.0, 2019-09-30

	ACUMOS-3453 : Update all Design Studio component to use Java 11

Version 2.2.3, 2019-09-20

	ACUMOS-3451 : Update DS component to use CDS 3.0.0 client

Version 2.2.2, 2019-09-09

	ACUMOS-3377 : DS BE need to include Revision ID in response along with other details for API to create and update composite solutions

Version 2.2.1, 2019-08-09

	ACUMOS-3302 : IST2 | Able to save publicly published solution in public solutions palette after updation

	ACUMOS-1206 : Sonar 40% code coverage for Design Studio project.

Version 2.2.0, 2019-07-25

	ACUMOS-3132 : Composite solution deleted from Portal doesn’t allow Design Studio to create new composite solution with same name.

	ACUMOS-1206 : Sonar 40% code coverage for Design Studio project.

	ACUMOS-3258 : ds-compositionengine to include flag to indicate duplicate solution (i.e. solution with same name and version)

Version 2.1.0, 2019-05-30

	ACUMOS-2844 : ds-compositionengine log output uses 100s of GB, fills disk.

Version 2.0.9, 2019-05-03

	ACUMOS-2844 : ds-compositionengine log output uses 100s of GB, fills disk.

Version 2.0.8, 2019-04-22

	Updated DSCE components to CDS 2.2.2

	ACUMOS-2756 IST |On-boarded model reflecting twice in drawers after publishing to the company market place.

Version 2.0.7, 2019-04-12

	ACUMOS-2696 : Models have disappeared from LF Design Studio.

	ACUMOS-2709 : ds-compositionengine to populate RevisionId of each solution in CDUMP.

Version 2.0.6, 2019-02-28

	ACUMOS-1670 : Allow sharing private solution created from DesignStudio with other users.

Version 2.0.5, 2019-02-16

	ACUMOS-1801 : CDS clients pass request ID from front-end thru in client calls

	ACUMOS-2327 : Logging Standardization - Design Studio

Version 2.0.4, 2019-01-30

	ACUMOS-2433 : No solutions listed in Design Studio page

	ACUMOS-2405 : Update DS component to use CDS 2.0.2

	ACUMOS-2406 : Update ds-compositionengine to used CDS Client 2.0.2

	ACUMOS-2407 : Update TOSCA-ModelGeneratorClient to use CDS client 2.0.2

Version 2.0.2, 2019-01-11

	ACUMOS-2059 : Create Protobuf (.proto) for new valid Composite Solution.

	ACUMOS-2060 : Update the .proto file of the existing composite solution (for each version).

	ACUMOS-2061 : Delete the .proto file of the existing solution (for each version) on successful deletion.

	ACUMOS-2062 : ds-compositionengine should create .proto on successful validation of new Composite Solution.

	ACUMOS-2066 : If the Data Broker is the first component of the solution, then .proto file should include text.

	ACUMOS-2067 : The .proto file should follow the same naming convention and structure as the .proto file created by the On-boarding module.

	ACUMOS-2068 : The operation name in the .proto file will be the operation name of the first model in the composite solution.

	ACUMOS-2069 : Input and output protobuf message for Composite solution should be the first and last model input and out protobuf msg respectively.

	ACUMOS-2070 : Create .proto file for validated Composite Solution (for each version).

	ACUMOS-2071 : DS should update .proto file when user update the existing version of Composite Solution.

	ACUMOS-2072 : DS should delete the .proto file along with other artifacts, when user deletes composite solution version.

	ACUMOS-2312 : Copy/Array Based composite solution showing invalid solution for valid solution.

Version 2.0.0, 2018-12-14

	ACUMOS-1989 : DC-Staging Failed onboarded models are visible in DS

	ACUMOS-1969 : Default CDS startup check interval too short, attempts too few; pls increase

	ACUMOS-1650 : Senitization for CSS Vulnerability

	ACUMOS-1968 : IST2 | UI showing validation failed error for valid solution

	ACUMOS-2036 : DSCE- If a splitter and collator node is present in cdump file, but it has zero mappings associated with it, the validation should show invalid solution.

	ACUMOS-2033 : Api to get the dsce version

	ACUMOS-2272 : Incorrect Protobuf.json and TGIF.json generated for nested messages

Version 1.40.2, 2018-10-12

	ACUMOS-1886 : IST2 Design Studio fails to start due to exception in populatePublicModelCacheForMatching

Version 1.40.1, 2018-10-01

	Upgrade DSCE and TGC to CDS 1.18.2

	Updated major, minor and patch version
csvdatabroker:1.4.0
sqldatabroker:1.2.0
gdmservice:1.2.0
TOSCAModelGeneratorClient:1.33.1

Version 0.0.40, 2018-09-21

	Upgrade DSCE and TGC to CDS 1.18.1

Version 0.0.39, 2018-09-20

	ACUMOS-1756 : Upgrade Design Studio Java server components to Spring-Boot 1.5.16.RELEASE

	ACUMOS-1770 : Unable to on-board model via web on-boarding as getting ‘Exception in TOSCA Model Generator Client’.

Version 0.0.38, 2018-09-14

	ACUMOS-624 : log standardization and consistency design studio

	ACUMOS-1665 : Update ds-composition to handle new CDUMP and BLUEPrint file.

	ACUMOS-1666 : Update ds-composition to handle databroke of type : SQL.

	ACUMOS-1667 : Validation for mapping table - user must select at least one column type.

	ACUMOS-1747 : Update CSV databroker code w.r.t change in the Databroker Map.

	ACUMOS-1699 : Design Studio must wait for CDS to start before populating matching-model cache.

	ACUMOS-1551 : Increase code coverage for modules under design-studio repository.

	ACUMOS-662 : Develop SQL DataBroker

	ACUMOS-1662 : ds-compositio changes w.r.t to SQL Databroker

Version 0.0.37, 2018-09-07

	ACUMOS-1701 : Upgrade DSCE and TGC to CDS 1.18.0

Version 0.0.36, 2018-09-03

	ACUMOS-1191 : DS should ignore model’s toolkit type attribute when populating selection palette

	ACUMOS-1563 : Improve matching model search Performance

	ACUMOS-1564 : Redesign and re-implement matching model API to improve the performance

	ACUMOS-1565 : On application Start construct the HashMap of Models (Public and company) for matching

	ACUMOS-1566 : At some configurable time interval refresh the HashMap of Models (published to Public and company) for matching

	ACUMOS-1567 : Change implementation of Matching model API

	ACUMOS-1568 : Construct the Java POJO classes KeyVO and ModelDetailVO

	ACUMOS-1570 : Implement logic to fetch all the public and company level Models from CDS

	ACUMOS-1571 : Populate models into HashMap and push it to the Application Context

	ACUMOS-1572 : Get the updated models using CDS API : findSolutionsByDate

	ACUMOS-1573 : Find the matching from HashMap (from Application Context)

	ACUMOS-1574 : Find the matching model in the private user model list

Version 0.0.35, 2018-08-16

	ACUMOS-1484 : Remove jar files from DS Gerrit repository

	ACUMOS-1599 : Update DS Composition engine w.r.t CDS 1.17.1

	ACUMOS-1585 : Rename TOSCA artifacts - TOSCATGIF and TOSCAPROTOBUF

	ACUMOS-1520 : Restriction pop up is missing if user tries to modify and the public solution.

	ACUMOS-1610 : Revised CSV Databroker, user is no more required to share IP, Location of data file and credentials to access data file

	ACUMOS-1619 : Revised CSV Databroker : User is no more required to share IP, path and credential to access data file

	ACUMOS-1627 : Switch between local and Remote Script executor

	ACUMOS-1634 : Data broker should no more use any kind of script to read the local or remote file

Version 0.0.34, 2018-08-03

	ACUMOS-1488 : Add missing license and copyright notice.

	ACUMOS-1492 : Update DS Composition engine w.r.t CDS 1.16.1

Version 0.0.33, 2018-07-30

	ACUMOS-1357 : Save the Composite Solution Description at Revision Level.

	ACUMOS-1236 : Enhance design studio to store members (parent-child relationships) of composite solutions.

	ACUMOS-1471 : Update DS Composition engine w.r.t CDS 1.16.0.

Version 0.0.32, 2018-07-05

	ACUMOS-1002 : To allow to connect output of multiple model to Collator.

	ACUMOS-1003 : Update CE Modify Node API for Collator (BE).

	ACUMOS-1004 : Update CE Delete Node API for Collator (BE).

	ACUMOS-1005 : Update CE Delete Link API for Collator (BE).

	ACUMOS-1006 : Update CE Validate Composite Solution API.

	ACUMOS-1127 : Enhance DS back end to return error when model cannot be dropped on canvas.(EPIC)

	ACUMOS-1039 : Design Studio Composition Engine (CE) to support message splitting (broadcast and parameter splitting capability).(EPIC)

	ACUMOS-1055 : Update Modify Node API for Splitter (BE).

	ACUMOS-1056 : Update Add Link API for Splitter/Collator (BE).

	ACUMOS-1057 : Update Delete Link API for Splitter (BE).

	ACUMOS-1058 : Update Validate Composite Solution API.

	ACUMOS-1065 : Update DS Modules code to point to CDS 1.15.3.

	ACUMOS-1197 : DS allow single-model composite solution.

Version 0.0.30, 2018-06-06

	ACUMOS-971 : Deploy button active for invalid solution, BluePrint File Changes.

Version 0.0.29, 2018-05-21

	ACUMOS-882 : Include SolutionRevisionId along with other details for the solution with same name and version.

	ACUMOS-928 : Junit TestCases For DS-DataBroker.

Version 0.0.28, 2018-05-15

	ACUMOS-856 : Delete node not working as per the expectations.

	ACUMOS-864 : Deploy button is active for not validated solution.

Version 0.0.27, 2018-05-10

	ACUMOS-791 : Data is present in target table when there is no node or ML is directly connected to the databroker node.

	ACUMOS-794 : Update API : createNewCompositeSolution to set the solution validate flag to false (BE).

	ACUMOS-795 : Update API : saveCompositeSolution to reset the solution validate flag to false.

	ACUMOS-796 : Update API : validateCompositeSolution to reset the solution valid flat to true or false.

	ACUMOS-800 : Construct CSV Databroker as DS tool

	Update to use latest version of Common Data Service : 1.14.4.

Version 0.0.26, 2018-05-03

	ACUMOS-760 : Validation failed if DataBroker input port connected any other node and showing the isolated model names also in error messages

Version 0.0.25, 2018-04-26

	ACUMOS-630 : Update the CDump and Blueprint structure for Databroker (BE)

Version 0.0.24, 2018-03-25

	ACUMOS-547 : Design Studio stores the protobuf URI of PROTOBUF.json instead of .proto

Version 0.0.23, 2018-03-09

	Update to use latest version of Common Data Service : 1.14.1.

	ACUMOS-291 Update API behavior : Validate Composite Solution w.r.t inclusion of Databroker

	ACUMOS-293 3. An output port of a node can be connected to ONLY one input port of another node – add this restriction until we support split and join of links allowed in Design Studio. [NOTE: Design Studio will NOT restrict the user, but during Validation we will flag this error.]

	ACUMOS-294 4. An input port of a node can be connected to ONLY one output port of another node – add this restriction until we support split and join of links allowed in Design Studio. [NOTE: Design Studio will NOT restrict the user, but during Validation we will flag this error.]

	ACUMOS-295 5. A node of type “DataBroker” cannot have its input port connected to any other node.

	ACUMOSE-335 Store the location of the docker image in the Blueprint.json file

Version 0.0.22, 2018-02-16

	Update to use latest version of Common Data Service : 1.13.1.

	ACUMOS-40 : View the on boarded Data Brokers and Training Clients in the Design Studio Palette under the Data Source drawer

	ACUMOS-47 EPIC - Create a composite solution with Data Broker, Training Client, and ML Models connected to each other

	ACUMOS-64 EPIC - Input a set of (multi – line) SQL Query statements or Filesystem scripts in the UI

	ACUMOS-126 EPIC - To validate the composite solution consisting of Data Broker, Training Client and ML Models

	ACUMOS-128 EPIC - Include details of Data Broker client in the blueprint

	ACUMOS-206 EPIC - Log Message Standardization

Version 0.0.21, 2018-02-16

	Update to use latest version of Common Data Service : 1.13.0.

	ACUMOS-130 EPIC - Deploy Link from Design Studio to Market Place – Portal

	ACUMOSE-189 EPIC – Composite Solution with Probe indicator

	ACUMOSE-193 EPIC – Blueprint Generation

Version 0.0.20, 2018-02-14

	Update to use latest version of Common Data Service : 1.13.0.

Version 0.19.2, 2018-01-23

	Update to use latest version of Common Data Service : 1.12.0.

Version 0.19.1, 2018-01-15

	Update to use latest version of Common Data Service : 1.10.1

	Fix for CD-1972 : Clear functionality not working as expected w.r.t backend.

	Enhance the Building Blocks composition capability of the Design Studio

	Generic Data Mapper to connect two incompatible nodes having same number of fields

Version 0.0.19, 2018-01-10

	Update to use latest version of Common Data Service : 1.10.1

Version 0.0.18, 2017-11-16

	Update to use latest version of Common Data Service

Version 0.0.17, 2017-11-16

	Update to use latest version of Common Data Service

	Udpated as per the LF

Version 0.0.16, 2017-11-16

	Update to use latest version of Common Data Service

Version 0.0.15, 2017-10-04

	Update to use latest version of Common Data Service

Version 0.0.14, 2017-09-28

	Code clean up

Version 0.0.11, 2017-09-28

	Updated the structure of the TGIF file

Version 0.0.10, 2017-09-28

	TGIF Request and Response , field “format” is JSON

Version 0.0.10, 2017-09-28

	GIF Request and Response , field “format” is JSON

Version 0.0.9, 2017-08-25

	to use latest version of Common Data Service

	Auto generating protobuf to Json conversion

Version 0.0.8, 2017-08-04

	to upload the tgif.json file for the solutionID

	to use Common Data Service 1.1.3

Version 0.0.7, 2017-08-01

	changes to addopt solutionRevision changes

Version 0.0.6, 2017-07-27

	changes to accept the UserID as String instead of long

Version 0.0.5, 2017-07-11

	Exception Handling

Version 0.0.4, 2017-07-01

	Fixed Integration Issues

Version 0.0.3, 2017-06-29

	Integrated with Nexus-Client and Common Data Micorservice Client

Version 0.0.2, 2017-06-28

	Updated version as its change in the API signature

Version 0.0.1, 2017-06-28

	Integrate TOSCA Model Generator Python Web Service & 2. process the response

	Invoke the library to store the files in Nexus

	Invoke the Common Data Microservice putArtifact

 Design Studio SQL Databroker Release Notes

Design Studio SQL Databroker Release Notes

The Design Studio SQL Databroker is packaged within a Docker image and available from the
Acumos docker registry. The docker image URI of SQL Databroker is configured in Design Studio Composition Engine docker-compose configuration.

Version 1.1.0, 2018-10-01

	Updated major, minor and patch version

Version 0.0.1, 2018-09-14

	ACUMOS-1655 : Develop new component : SQL Databroker

	ACUMOS-1656 : Construct SQL Databroker as DS tool

 Design Studio TOSCA Model Generator Client Developer Guide

Design Studio TOSCA Model Generator Client Developer Guide

1. Overview

This is the developers guide to Design Studio TOSCA Model Generator Client.

1.1. What is TOSCA Model Generator Client?

	TOSCA Model Generator Client generates TOSCA models

	Is included in onboarding module as lib.

	The TOSCA Model generated are : TGIF.json & Protobuf.json while onboarding the models.

2. Architecture and Design

2.1. High-Level Flow

2.2. Class Diagrams

2.3. Sequence Diagrams

3. Technology and Frameworks

List of the development languages, frameworks, etc.

	Java 8

	Maven 4.0.0

	Jackson 2.7.5

	JUnit 4.12

4. Project Resources

	Gerrit repo: desing-studio/TOSCAGeneratorClient [https://gerrit.acumos.org/r/#/admin/projects/design-studio]

	Jira [https://jira.acumos.org/browse/ACUMOS-50?jql=component%20%3D%20design-studio] design-studio

5. Development Setup

5.1. Get the code

Clone the Repository in some user accessible directory, lets call this as <homeDirectory>

git clone https://<username>@gerrit.acumos.org/r/a/design-studio

After successful clone, new directory <homeDirectory>/design-studio with following sub directories should get created.

[image: design-studio gerritRepository structure]

5.2. Import Project in Eclipse

After successful import, you should view in Project Explorer

[image: Eclipse Project Explorer for TOSCAModelGeneratorClient]

6. How to Run

NA

7. How to Test

Through JUnit test cases.

 Data Brokers

Data Brokers

A Data Broker retrieves the data from passive data sources and converts it into protobuf format. The Data Broker provides the data to the Models via the Model Connector. The Model Connector explicitly requests the Data Broker retrieve data from data sources, receives the data in response, and provides the data to the Models.

Data Brokers are displayed in Data Sources palette in the lower left corner of the Design Studio.

Acumos supports the following types of Data Brokers:

	Database Data Broker (SQL DataBroker)

	File system Data Broker (HDFS File System, UNIX, Hadoop, CSV, JSON)

	Network Data Broker (Router, Switch, etc.)

	Zip Archive Data Broker.

Note

The Data Broker functionality requires that specific a “Data Transformation & Toolkit” model be on-boarded in order for the functionality to be enabled. If you do not see Data Brokers in the Data Transform Tools palette, contact your Acumos Admin for further information.

Working With a Data Broker

DataBrokers are displayed in the Data Sources palette.

[image: ../../../../_images/GenericDataBroker.jpg]

	Create/load a solution in Design Studio.

	Select the GenericDataBroker (latest version) from the list of “Data Sources” and drag onto the canvas

[image: ../../../../_images/DataBrokeronCanvas.jpg]

	Connect the GenericDataBroker output to the input of the first model

	Select the “S” port at the top of the GenericDataBroker node, which will bring up the “Script” dialog popup

	On click of “s” port of the Data Broker to allow input a free form text – a set of (one or more) Database SQL statements or a set of file system scripts. Note: these scripts are passed on to the Data Broker after they get deployed by the MP – Portal

[image: ../../../../_images/DataBrokerScriptPort.jpg]

	Script Entry UI has the ability to edit (add, delete, modify, copy and paste) the script.

	The Design Studio has the capability of storing the script and validating it from the UI after clicking on the Done button, which saves this into a back end CDUMP file. When reloading the solution on the design canvas, the saved script from the CDUMP file is loaded as well.

The current databroker supports csvDatabroker and sqlDatabroker. The user will need to enter following details:

CSV Databroker

[image: ../../../../_images/CSVDBScriptPort.jpg]

	Data Broker Type = CSV

	File Path = Will be populated during deployment

	Enter Script = Will be populated during deployment

	Choose File = select a sample CSV file with your test data from the local machine, which has the format e.g. for a model that takes two double values:

f1,f2
2.0,4.0

	Select “First row contains field names” or “First row contains data” based on the file uploaded

	Click Done

SQL Databroker

[image: ../../../../_images/SQLDBScriptPort.jpg]

	Data Broker Type = SQL

	JDBC URL = Greyed out

	Enter Script = Greyed out

	Choose File = select a file with CREATE TABLE schema loaded in it, in order to parse the table contents for mapping. (Table Name and table field details are retrieved from the schema.)

	Select the jdbc driver name from the dropdown which supports the file uploaded. (Currently, we only support mysql)

	Enter the database name in which the table is present. It will be shown as below.

[image: ../../../../_images/SQLDBwithFile.jpg]

	Click Done

Auto-Generating Source Table from Script

After the user clicks on “Done” button, if the schema file is valid, the file
contents will be parsed, field names will be extracted, and the source table
will get auto-populated. The source table can be viewed by clicking on the
“Mapping Table” button present in the properties. If the schema file cannot be
parsed, an error message will be displayed.

[image: ../../../../_images/PropertiesPanel.jpg]

The Target table will be generated by using the single protobuf file of one of
its input messages. After connecting the ML Model to the Data Broker output,
click on the output port of the Data Broker. Then the property box will display
the protobuf input message of the ML Model.

Auto-Generating Target Table from Protobuf File

Once the output of Data Broker is connected to the input of ML model, the Data
Broker acquires its message signature and generates the target table as per the
protobuf specification. The Target table contains the N number of rows, where N
is number of basic field types in the protobuf message (basic field name and
basic field type).

On the right, under Properties, select Mapping Table and the resulting dialog should display the following:

[image: ../../../../_images/DBMappingTable.jpg]

Select each source field from the table, select the field type from the drop
down, and the target tag to be mapped to the field. The target tags are
captured from the protobuf specification of the model that is connected to Data
Broker. When you have mapped all fields, select Done.

[image: ../../../../_images/SourceTableSelection.jpg]

The Design Studio will save the Source-Table-to-Target-Table mappings in the
CDUMP file when the Save button is clicked. The Design Studio will retrieve
the saved mappings from the CDUMP file and display the them in the Property Box
when reloading the solution in the design canvas.

Saving

Above the canvas, select the Save button and enter the details of the
solution. This will be saved in “My Solutions” area.

Deploying

To generate a TOSCA blueprint for deployment to a cloud environment, select the
Validate button. If validation is successful, the deploy button will be
enabled. On click of any of the cloud platforms, you will be redirected to the
Manage my Model- Deploy to Cloud page. At this point, this model should be
usable with the Data Broker when deployed.

Dockerizing the DataBroker

The Data Broker is implemented as a Java jar package. After the composite
solution has been successfully validated in the Design Studio, the Composition
Engine performs the following functions:

	Retrieves the code of the Data Broker from a specific location in Nexus repository

	Creates the Protobuf Wrapper for the Data Broker based on the output message that the Data Broker acquires at its output port when it is connected to an input port of an ML Model in the Design Studio. The input message is of Protobuf type string. This Wrapper converts:

	From Java to Protobuf types for the outgoing messages.

	From Protobuf to Java types for the incoming messages.

	Creates the jar file of the Data Broker

	Converts the jar to Microservices

	Creates the Docker Image of the Data Broker Microservice from its jar file

	Stores the Docker image of the Data Broker in the Docker repository (or Nexus repository)

	Stores the location of the docker image in the TGIF.json of the Data Broker

	Stores the location of the docker image in the Blueprint.json file (after successful validation)

 Overview

Overview

The Design Studio is used to chain together multiple models,
along with data translation tools, filters and output adapters,
into a full end-to-end solution which can then be deployed into
any runtime environment.

An overview of the user journey for the Design Studio is shown below.

[image: ../../../../_images/compositeDesignStudioJourney.png]

Architecture

ML Models are the basic building blocks in the Design Studio. It is these models that are combined together by the designer to create complex ML application – aka composite solutions.

ML Models – Isolated and Standalone

ML Models are developed and contributed by ML subject matter experts. They may be written in any programming language and may have been developed in any toolkit – Scikit, Tensor Flow, R, H2O, etc.

The model developer may not necessarily be aware of the existence of other models. The models are usually standalone entities. They offer a standard contract – an interface definition to the external world. This contract specifies the details of the operation performed by the model, the input request (message) consumed by the model and the output response (message) produced by the model. In Acumos, this contract is specified in the Protobuf file.

ML Models – Ports, Requirements and Capabilities

Each ML Model may support one or more operations – corresponding to the functions, such as “prediction,” “classification,” etc., performed by the model. Each operation consumes an input message and produces an output message. The message signatures are specified in the Protobuf file.

Each operation is represented by two ports – an input port and an output port. An ML model may have more than two ports, if it provides (exposes) multiple operations (aka services).

	Input Port - consumes the input message and provides the service, such as prediction or classification or regression to the caller/client. The input port represents the capability of the model. The client that need a service to be performed need to send a request to input or the capability port of the model.

	Output Port – produces the output (response) message. Note that the output produced by an operation (say the Prediction message) need not necessarily be consumed by the caller/client, but in fact needs to be fed to another ML Model which provides another service, such as classification (of the Prediction message). So from a composition perspective, the output port represents a requirement that is satisfied by classification service.

 Model Composition

Model Composition

The main function of the Design Studio is to compose the ML Models to produce a meaningful application.

Criteria for Model Composition

Currently the Design Studio implements a simple model composition strategy based on matching the output message of the output port of one ML Model to the input message of the input port of another ML Model.

In the Design Studio a pair of ports are compatible if the requirement of one port can be matched with the capability of another port. Or if the output of one model can be consumed by the input port of another model so as to get some service from the latter.

The matching criterion is based on comparing the Protobuf message signature of the output port to the message signature of the input port of another model.

A pair of output and input messages are compatible if all the following conditions are satisfied:

	The number of tags in both their message signatures is the same

	For each tag number, the fields on both the sides are of the same type

	For each tag number, the fields on both the sides have the same role – repeated, optional, etc.

NOTE: the field names are not taken into consideration for determining compatibility.

A pair of output and input ports are compatible, if all the following conditions are satisfied:

	They both produce and consume identical number of messages

	Each message on one side is compatible with another message on another side, as per the compatibility definition given above

NOTE: the message names are not taken into consideration for determining the compatibility.

 Model Ingestion

Model Ingestion

How to Ingest ML Models in Design Studio

In order to ingest the onboarded ML Models into the Design Studio, the following steps must be performed:

	The models along with their Protobuf files must be onboarded via the onboarding functionality, or a Protobuf file was generated when the model was onboarded

	The Protobuf files should have both the service specification and the message specifications

	The service specification of the Protobuf file should have the complete operation signature(s) listed in them – such as the:

	Type of the operation – rpc, etc

	Name of the operation

	Input message name

	Output message name

	Each input and output messages should have their message signatures listed, and each field type should be basic Protobuf data type.

	After the models have been successfully onboarded, the modeler must login to the Acumos Marketplace Portal in order to classify the uploaded model into one of model categories. Currently four categories are supported in Design Studio: Classification, Prediction, Regression and Other. Along with the models, Design Studio supports Data Transformation Tools and Data Sources also.

	In order to classify the on boarded model into one of the four categories above, the modeler needs to:

	Go to the “My Models” in Market Place

	Click on the newly on boarded model

	Click on “Manage My Models”

	Click on “Publish to Marketplace”

	Click on “Model Category”

	Select the appropriate model category and the toolkit type

	Click Done

	The model would now appear in the “Models” (left hand side) palette of the Design Studio under the appropriate category. The model is now available to be dragged and dropped in the Design Studio canvas.

Files Generated for Design Studio

Once the models have been onboarded, the Protobuf files associated with the model is used to generate Protbuf.json and TGIF.json files

Protobuf.json File

This is an intermediary file used to represent the Protobuf.proto file in JSON format. It is used for the generation of TGIF.json file.

TGIF.json File

The TGIF.json file represents an ML Model in the Design Studio. Every model should have a TGIF.json file associated with it to allow the model to be represented in the Design Studio, dragged and dropped in the Canvas and to allow the model to be composed with another model – based on composition rules (explained next).

The TGIF.json file contains these critical pieces of information:

	Self – section: This section describes the name and version of the ML model which is displayed on the Design Studio Web UI.

	Services.provides – section: This section provides a list of services offered by the ML Model. At present only the name of the operation and JSON representation of its input messages is included here. The information provided in Services.provides and Services.calls section is used for determining the composability of a pair of output and input ports of the ML Models.

	Services.calls – section: This section provides a list of output messages of the services offered by the ML Model. As explained earlier, these output messages are consumed by the services provided by other ML Model(s). The name of the operation (same as provided in Services.provides) and JSON representation of its output messages is included here. The information provided in Services.provides and Services.calls section is used for determining the composability of a pair of output and input ports of the ML Models.

	Artifacts.Uri – section: This section contains the location of the docker image of the ML Model. This information is used by the Blueprint file to retrieve the docker image of the model in order to deploy it in cloud.

CDUMP.json File

The CDUMP file represents an composite solution metadata which contains the models input and output information. The CDUMP file having multiple fields such as cname, version, cid, solutionId, ctime, mtime, probeIndicator, nodes, relations, validSolution and revisionId.

BLUEPRINT.json File

The Blueprint file is generated after the successful validation of composite solution. The Bluepriint file looks like a replica of CDUMP file. The content inside the blueprint file is having name, version, input_ports, nodes, probeIndicator.

	input_ports - section: The input_ports having container_name and operation_signature. The operation_signature having the operation_name.

	nodes - section: The Nodes contains container_name, node_type, image, proto_uri, operation_signature_list

	operation_signature_list - section: This contains operation_signature and connected_to fields. operation_signature is having operation_name, input_message_name and output_message_name. connected_to field contains container_name, operation_signature.

	probeIndicator - section: The probe Indicator value is true or false for the validated composite solution.

 User Interface Tour

User Interface Tour

The Design Studio UI, shown below, consists of a Design Canvas with a grid background in the center flanked on left and right hand side by the Models & Solutions Catalog Palette and the Properties & Matching Model Palette. At the bottom of the Design Canvas is the Validation Console. At the top are the New, Clear, Validate, and Save buttons.

[image: ../../../../_images/DesignStudioUserInterface.png]

	Models Tab: Displays the catalog of the ML Models – the basic building blocks used for creating composite solutions. The models are currently classified under four categories – Classification, Prediction, Regression and Others

	Solutions Tab: Displays the catalog of composite solutions (built out of basic building blocks) that have either “Public” visibility, which is published to the catalogs.

	Data Transformation Tools: A set of useful data transformation utilities are displayed here. Currently there is a Data Mapper which performs mapping between some basic Protobuf data types, such as int32, string, float, double and bool. An Aggregator is another utility that is planned to be deployed there.

	Data Sources: This section is meant to represent data sources which feed the ML Models. It could be any entity that produces data that is consumed by ML Models and Data Transformation Tools, such Data Lakes, Databases, Cell Towers, Network elements which produce data such as Routers, Switches, etc.

	Properties Tab: Displays the properties of elements – such as ML Models and Messages inside the Ports. If an ML Model is selected by the user in the Design Canvas, it displays the name, type, owner, provider and tool kit type information. If a Message inside the ML port is selected by the user, it displays the Protobuf message signature – such as the fields of the message, their name, type, tag and role (repeated, optional etc.)

	Matching Models Tab: If a requirement (output) port of an ML Model is selected in the Design Canvas, then this tab shows a list of all models that have matching capabilities (in their input ports). The user can then drag the desired model in the Design Canvas and connect the output port to the input port. If a capability (input) port of an ML Model is selected in the Design Canvas, then this tab shows a list of all models that have matching requirements (in their output ports).

	My Solutions: Displays the catalog of composite solutions (built out of basic building blocks) that are marked “Private” to the logged in user. When the user clicks on an existing solution, that solution is displayed in the Design Canvas. The user can then make modification to the solution and save it as a separate solution by providing a new name or new version or both.

	New: The user clicks this button to create a new composite solution.

	Clear: The user clicks this button to clear an unsaved solution. Then design studio will displays a pop up which is telling that, Would you like to save current solution?

	Save: The user clicks this button to save a new composite solution or save changes to an existing solution. The user is prompted to provide the name, version and a description of the solution. The user can make modification to the solution and save it as a separate solution by providing a new name or new version or both.

	Validate: The user clicks this button to validate a composite solution created in the Design Canvas. Both the success and error messages are displayed in the Validation Console. If the solution is valid then a Blueprint.json file is created which is used to deploy the solution in the target cloud.

	Design Canvas: This is where the users drags one or more ML Models – the basic building blocks to create a composite solution or if the user clicks on an existing solution in Solutions or My Solutions tab, it is displayed in the Design Canvas.

Ports of the Model

A model may have multiple ports. A Requirement (output) port is represented by a filled-in circle and a Capability (input) port is represented by an empty circle. The matching pair of ports are represented by identical icons inside their ports, such as diamonds, rectangles, triangles, + sign, etc.

Composition Based on Port Matching

The Design Canvas is the place where the user performs model composition based on the port matching criterion discussed earlier. The Design Canvas ensure that only matching ports are connected via a link. It does not allow non matching ports to be connected, thereby facilitating the design – time validation of the composite solution.

How to name the ML Model

A model name is automatically generated when a model is dragged from the “Models” catalog palette into the Design Canvas. The user can change the name by double clicking on the existing name and overwriting on it.

How to name the Link

Double click on the link – a text box appears, type the name of the link.

On Click of the Model

The model properties such as its name, owner, company, toolkit (Scikit, TensorFlow, R, etc.) are displayed in the Property box.

On Click of the Link

The link properties such as its name appears in the Property box.

On Hover over a Port

The name of the operation and name of either the input or the output message, depending on the port type, pops up in Design Canvas.

On Click of the Port

If the user clicks on an Output (Requirement) port, then all ML Models that have the matching input (Capability) ports are displayed in the Matching Models tab.
If the user clicks on an Input (Capability) port, then all ML Models that have the matching Output (Requirement) ports are displayed in the Matching Models tab

On Click of the Message

When the user does a mouse click on a port, then operation and message name(s) pop up. Now the user can click on the message and Protobuf message signature appears in the Property tab.

Validation Console

When the user requests the validation of the composite solution, the Validation Console pops up from the bottom of the Design Canvas. This is where all the success and error messages related to the validation gets displayed.

 Generic Data Mapper

Generic Data Mapper

The Generic Data Mapper service enables a user to connect two ML models A and
B, where number of output fields of model ‘A’ and input fields of model ‘B’ are
same. A user is able to connect the field of model A to the required field of
model B. The Generic Data Mapper performs data type transformations between
Protobuf data types. To use the Data Mapper successfully, a user should be well
aware of the output value of each field of model A and the expected input value
of each field of model B to get desired final output.

The Generic Data Mapper has the following functionality:

	Maps data types between a pair of incompatible ports of the ML Models – map the data type of an output port to the data types of an input port

	Any output port of a ML Model can be connected to a Data Mapper, and the Data Mapper can be connected to any input port of the ML Model

	Composition Rule: From the Design Studio composition perspective a Data Mapper can accept any inputs and produce any outputs, depending on the ML models that are connected to its input and output side. So its requirements and capability will be indicated any

	Performs transformation between basic Protobuf types only

A Generic Data Mapper can be found in Design Studio UI under the “Data Transfrom Tools” palette.

Note

The Generic Data Mapper functionality requires that a specific “Data Transformation & Toolkit” model be onboarded in order for the functionality to be enabled. If you do not see a Generic Data Mapper in the Data Transform Tools palette, contact your Acumos Admin for further information.

Connecting Incompatible Ports

Coming soon.

 The Design Studio: For Composers

The Design Studio: For Composers

	Overview
	Architecture

	Model Ingestion
	How to Ingest ML Models in Design Studio

	Files Generated for Design Studio

	Model Composition
	Criteria for Model Composition

	User Interface Tour
	Ports of the Model

	Validation Console

	Data Brokers
	Working With a Data Broker

	Saving

	Deploying

	Dockerizing the DataBroker

	Generic Data Mapper
	Connecting Incompatible Ports

	Message Splitter and Collator Tools
	The Splitter

	The Collator

	Using the Splitter

	Using the Collator

	Saving

	Deploying

 Message Splitter and Collator Tools

Message Splitter and Collator Tools

The Splitter and Collator functionality supports the Directed Acyclic Graph
(DAG) [https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html]
Topology in the Design Studio, supports both the split and join semantics, and
provides the different collation semantics at join point.

Note

The Splitter and Collator require that specific “Data Transformation & Toolkit” models be onboarded in order for the functionality to be enabled. If you do not see a Collator and a Splitter in the Data Transform Tools palette, contact your Acumos Admin for further information.

The Splitter

The Splitter enables connecting one model to multiple models to support message
splitting (broadcast and parameter splitting capability). The Splitter supports
Copy-Based and Parameter-Based schemes.

The Splitter has the following features:

	Selectable splitting schemes

	Accept a single input message and produces multiple output messages of the same or different type, depending upon the splitting scheme

	The number of outputs is determined dynamically at run time

	The input port supports a single incoming link

	The output port can support one or more outgoing links in case the output message has a subset of input parameters

	Supports the addition and deletion of its input links and its output link

	Performs: 1) unmarshalling of input protobuf message into native format; 2) splitting of the unmarshalled message according to the splitting scheme selected by the user; and 3) marshalling the output messages back into Protobuf format before sending on its output port

The Collator

The Collator enables connecting multiple models and combining the input from the models into a single output message. The Collator supports Array-Based and Parameter-Based collation.

The Collator has the following features:

	Selectable collation schemes

	Accept a variable number of inputs (N) and produces a single output

	The number of inputs is determined dynamically at run time

	The input port can support one or more incoming links in case the output message has a subset of input parameters provided by one incoming link

	The output port will support only one outgoing link

	Collator will support the addition and deletion of its input links and its output link

	Performs: 1)unmarshalling of input protobuf messages into native format; 2) collation of unmarshalled messages according to the collation scheme selected by the user; and 3) marshalling the collated message back into Protobuf format before sending on its output port.

Using the Splitter

Splitters are located in the Data Transform Tools palette.

[image: ../../../../_images/COandSPL.jpg]

	Create/load a solution

	Select a Splitter from the list in the Data Transform Tools palette and drag onto the canvas

	After dragging the Splitter on the canvas, it should be displayed as rectangular icon and the input (on left-hand side) and output (on right-hand side) ports should be disabled

[image: ../../../../_images/SplitterAfterDrag.jpg]

	On the right hand side in properties box, there will be a Splitter Scheme Selector button; click on it to display the pop-up window for scheme selection

[image: ../../../../_images/SplitterSelection.jpg]

Copy-Based Splitting

The user will be able to establish a link to Splitter ports only after
selecting the splitter scheme and Send (copy) the input message on all outgoing
links. Make sure that both input and output message signatures are identical
and both the input and output message data is same. The “Splitter Map” button
(present in the properties panel) will not be enabled as it copies the
complete message from the source model to all the target models connected to
the Splitter. As it is a copy-based splitting, if either input or output port
is connected to a ML model, it acquires the message signature from the ML model
on both the input and output ports.

[image: ../../../../_images/CopyBasedSPLwithModels.jpg]

Connecting the Splitter Input Port First

If the input port of the Splitter is connected first to the output port of the (producing) Model, then:

	Splitter must display the message signature of the output port of the producing model on its input port.

	When the output ports are connected later on, Splitter must make sure that all output messages have the same message signature as the message signature of the input message, otherwise the connection should not be allowed.

Connecting the Splitter Output Port First

If the output port of the Splitter is connected first, then:

	The Splitter should allow the first outgoing link to be connected to its output port without any validation, and make a temporary copy of its message signature.

	For the second and subsequent links that are connected to the output port, the Splitter must make sure that their message signature is the same as that of the first message signature, otherwise the connection should not be allowed.

	When the input port is connected later on, the Splitter must make sure that its message signature is the same as that of output message signature on its output port, otherwise the connection should not be allowed.

Validation Rules

	May have one or more links connected at its output port (Note: The case of one link at the output port does not make sense but is allowed.)

	May have only one link connected at its input port

	Must have the same message signature for messages coming out of its output port into all the outgoing links

	The message signature at the input and output port of the Splitter must be the same

	The output of a Splitter cannot be connected to the input of a Collator

Parameter-Based Splitting

Split the input message based on its signature into (top – level) parameters
and send different parts / parameters on different outgoing links. Make sure
that Input and output message signatures are different and the collection
(i.e., specific arrangement) of output message signatures represents the input
message signature. The “Splitter Map” button will be enabled. The user must
connect one model at the input and one or more models at the output port of the
splitter. Once the input and output ports are connected, the source and target
tables are auto populated that can be viewed when the user clicks on Splitter
map button.

[image: ../../../../_images/ParameterBasedSPLWithModel.jpg]

There is a mapping area in the Splitter Map pop-up that allows the user to copy
a source field (parameter) to the target field(s) (parameter(s)). It is a drop
down having all the source table tags. All the target-side fields must be
mapped for a successful validation. At least one source field should be mapped
to a target field. A source field may be mapped to multiple target fields.

For every mapping, there is an Error Validator that helps the user know if the
mapping is valid or invalid (i,e. if the parameter types on both sides match).

[image: ../../../../_images/SplitterMappingDetailsValid.jpg]

If any of the mapping is invalid, then validation and blueprint generation will fail.

[image: ../../../../_images/SplitterMappingDetailsError.jpg]

Connecting the Splitter Input Port First

If the input port of the Splitter is connected first to the output port of the (producing) Model, then:

	Splitter must display the message signature of the output port of the producing model on its input port

	When the output port is connected later on, Splitter’s output port should remain ANY

Connecting the Splitter Output Port First

If the output port of the Splitter is connected first, then:

	The Splitter should allow all the outgoing link(s) to be connected to its output port without any validation

	When the input port is connected later on, the Splitter should allow only one incoming link to be connected to its input port without any message signature validation

The parameter-based splitter should split the input message into first-level
parameters and Copy the required input parameters on each of its outgoing link
based on the information in the Splitter Map. Arrange these parameters in
a sequence based on the parameter ordering information in the message signature
on that outgoing link. The Splitter should aggregate all parameters that needs to be
sent to a single target in a single message. The Parameter–based Splitter
should perform binary-to-native format conversion before collation and native
to binary conversion after collation.

Validation Rules

	The Splitter allows a mapping between a pair of source and target parameters only if their message signatures match, otherwise an error should be indicated in the mapping area to allow the user to correct it.

	A parameter on the source side may be mapped to more than one parameter/tag on the target side as long as target parameters belong to different target models

	Two or more parameters from the source cannot be mapped to the same parameter/tag in the target message

	When no parameters from the source are mapped to the parameters on the target message, then the Splitter displays an error until the source model is deleted or at least one of the source side parameters is mapped to a target side parameter

	All parameters on the target side models must be mapped to their matching source side parameters, otherwise an error is shown in the mapping area until this condition is satisfied

	When both the source and target side parameters have been mapped correctly, no errors are displayed

	The Splitter input port may have only one incoming link

	The Splitter output port can have one or more outgoing links (a single outgoing link case is possible if this link provides all parameters required by the single target model.)

Using the Collator

	Create/load a solution

	Select a Collator from the list in the Data Transform Tools palette and drag onto the canvas

	After dragging the Collator on the canvas, it is displayed as rectangular icon and the input (on left hand side) and output (on right hand side) ports should be disabled

[image: ../../../../_images/CollatorAfterDrag.jpg]

	On the right hand side in properties box, there will be a Collator Scheme Selector; click on it to display the pop-up window for scheme selection

[image: ../../../../_images/CollatorSelectionSchema.jpg]

Array-Based Collation

Each incoming link provides complete message data, output the collection (an
array) of all input message data. Each input message signature is the same, but
message content (data) may be different and the output message signature is a
collection (i.e., an array, or a repeated structure) of input message
signatures. The Collator Map button will not be enabled. The output port
of Collator only connects to a model which has a repeated complex message
signature of the message at the input port (i.e., if the message signature at
input port is “M”, the message signature of the output port is “repeated (M)”.
All links connected to the input port must carry the same message signature
“M”. That means the output message signature is an array of input message
signature (on the input links) which are of same message type. If either of one
of the input or the output port of the Collator is connected to an ML Model,
then the input port acquire the message signature “M” and the output port
acquires the message signature “repeated(M)”.

[image: ../../../../_images/ArrayBasedCollatorWithModels.jpg]

The Collator waits until all messages are received on all of its input ports,
based on the incoming link information in the CDUMP file. When all the messages
have been received, the Collator should convert the binary messages into native
format and construct an array of the input messages.Collator should convert the
array of input messages into a protobuf repeated message structure before
delivering it on the output port.

Connecting the Collator Output Port First

If the output port of the Collator is connected first to the input port of the (consuming) Model, then:

	Collator displays the message signature of the input port of the consuming model on its output port; note that this will be a repeated Protobuf data type

	When the input ports are connected (later on), the Collator makes sure that all input messages have the same message signature as message signature of the output message except that input should not be a repeated type

Connecting the Input Port First

If the input port of the Collator is connected first, then:

	The Collator allow the first incoming link to be connected to its input port without any validation and makes a temporary copy of its message signature.

	For the second and subsequent links that are connected to the input port, the Collator makes sure that the message signature is the same as that of the first message signature, otherwise the connection is not be allowed

	When the output port is connected later on, the Collator makes sure that its message signature is the same as that of repeated (input message signature), otherwise the connection is not be allowed

Validation Rules

	An array – based collator can have one or more links connected at its input port; note: in case of a single input link the user may want to convert a Model’s output message into an “array of message” structure before feeding it to the target model which only accepts an array structure

	The Collator can have only one link connected at its output port

	The array-based collator must have the same message signature for messages arriving at its input port from all the incoming links

	The output port of an array based collator must have a “repeated” structure of the message signature of its incoming links

	The output of a Collator cannot be connected to the input of a Splitter

Parameter-Based Collation

If a Parameter-based collation scheme is selected, the Collator Map button
will be enabled. The user must connect one model at the output port and one
or more models at the input port. Once the input and output ports are
connected, the source and target tables are auto-populated and can be viewed by
clicking on the Collator map button. As it is parameter-based collation,
Collator output port acquires the message signature of the input port of the ML
model connected to it and collator input port remains “ANY” which means any can
be connected to it.

[image: ../../../../_images/ParameterBasedCOWithModels.jpg]

There is a mapping area in the Collator Map pop up, which allows the user to
map (i.e., copy) a source field to a target field. It is a drop down having all
the target table tags. All the Target side fields must be mapped for a
successful validation. At least one field from each source should be mapped to
a target field, otherwise a validation error is displayed. Multiple source
fields cannot be mapped to the same target field. A source field cannot be
mapped to more than one target field.

For every mapping, there is a error validator that helps the user know if the
mapping is valid or invalid (i,e. if the parameter types on both sides match).
If any of the mapping is invalid, then validation and blueprint generation will
fail.

	Validation Errors

	[image: ../../../../_images/CollatorMappingDetailsError.jpg]

	No Validation Errors

	[image: ../../../../_images/CollatorMappingDetailsValid.jpg]

Connecting the Collator Output Port First

	The output port of Collator should acquire the message signature of the input port of the Model, then collator’s source table should be auto populated with details viz., the name of the source, parameter name, parameter type, its tag number and an initially empty mapping field in the collator map, based on the information contained in the protobuf file of the source

	Collator should analyse the output port message signature and split it into its component parts (i.e., into parameters which have tag numbers associated to them).

Connecting the Input Port First

	In this case the input port of Collator remains as ANY

	Collator’s target table is auto populated with details the parameter name(s), parameter type(s) parameter tag number(s), and the mapping field should be populated with the list of output tag numbers, based on the information contained in the protobuf file of the target.

Validation Rules

	The collator will allow a mapping between a pair of source and target parameters only if their message signatures match, otherwise an error should be indicated in the mapping area to allow the user to correct it. (Alternatively show Pop Up when the mapping is invalid)

	A parameter on the source side cannot be mapped to more than one tag on the target side

	Two or more parameters from the source cannot be mapped to the same tag in the target message

	Multiple parameters from a single data source (i.e., Model) may map to different tags in the target message

	When no parameters from a source are mapped to the target message (figure – 4), them the Collator should show an error until that data source is deleted or one of the parameters is mapped

	Collator must make sure that at least one parameter from each source have been mapped to their corresponding target side tags, otherwise an error should be shown in the mapping area, until this condition is satisfied (i.e., that link is removed and therefore the corresponding un necessary entries are removed)

	Collator must make sure that all target side parameters have been mapped, otherwise an error should be shown against those entries in the mapping

	When both the source and target side parameters have been mapped correctly, the error mark should be taken away

	The output port should have only one outgoing link

	The input port can have one or more links (a single link case is possible if this link provides more parameters than that required by collator’s output port).

Saving

Above the canvas, select the Save button and enter the details of the
solution. This will be saved in “My Solutions” area.

Deploying

To generate a TOSCA blueprint for deployment to a cloud environment, select the
Validate button. If validation is successful, the deploy button will be
enabled. On click of any of the cloud platforms, you will be redirected to the
Manage my Model- Deploy to Cloud page. At this point, this model should be
usable with the Data Broker when deployed.

The Splitter and Collator are not deployable models.

 Design Studio Composition Engine

Design Studio Composition Engine

This project is to support Design Studio UI, by providing the required API to render the required details on UI.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 TOSCA Model Genertor Client

TOSCA Model Genertor Client

This project is to generate TOSCA models and is included as onboarding module as lib. The TOSCA Model generated are : 1. TGIF.json & Protobuf.json while onboarding the models.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Design Studio Generic Data Mapper Service

Design Studio Generic Data Mapper Service

This project is to support Design Studio composition engine to create appropriate Generic Data Mapper.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos Common Data Service

Acumos Common Data Service

This repository holds the server and client components of the Common Data Service
for the Acumos machine-learning platform. The server exposes a REST interface for
a storage and query layer between system components and a relational database. The
client allows Java developers to access the REST endpoints easily.

Please see the documentation in the “docs” folder.

Running

For development and testing purposes, working in the cmn-data-svc directory of this
source tree you can start an instance of the CDS server that uses an in-memory
database like this:

cd cmn-data-svc-client
mvn install
cd ../cmn-data-svc-server
mvn spring-boot:run

You can configure the server to use a MariaDB or Mysql database by entering the URL,
username and password in file ‘cmn-data-svc-server/config/application-mariadb.properties’
then launch the server using the following modified command much like above:

mvn -Dspring.config.name=application-mariadb spring-boot:run

Developers

Eclipse and Spring Tool Suite IDE users should install the plugin “m2e-apt” from the
Eclipe Marketplace, then add folder “target/generated-sources/annotations” to the build
path in both the client and server projects.

License

Copyright (C) 2017–2020 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos Common Data Service Client

Acumos Common Data Service Client

This project has a Java library for using the Common Data Service via REST in the Acumos machine-learning platform.

Please see the documentation in the parent project’s “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos Common Data Service Server

Acumos Common Data Service Server

This project has a Spring-Boot application that implements the Common Data Service in the Acumos machine-learning platform.

Please see the configuration files in the local “config” folder.

Please see the documentation in the parent project’s “docs” folder.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos Common Data Service Scripts

Acumos Common Data Service Scripts

This directory has scripts for creating and populating a database used by the Common Data Service.
The simple semantic versioning system for scripts uses only 2 digits. So for example, database
scripts at version 1.3 can support service version 1.3.0, version 1.3.1 and so on. That last
digit refers to bug fixes and other changes that do not break the database/field contracts.

Install Instructions

To create a new database, run the script appropriate for the version. For example:

mysql> create database cds1130;
mysql> use cds1130;
mysql> source cmn-data-svc-ddl-dml-mysql-1-13.sql;

Upgrade Instructions

To upgrade a database, copy the data into a new database then run the upgrade script(s) appropriate for the version. For example:

mysql> create database cds1130;
$ mysqldump cds1120 | mysql cds1130
mysql> source cds-mysql-upgrade-1-12-to-1-13.sql;

Please note this skips details of logging in to the database etc.

 Developer Guide for the Common Data Service Client

Developer Guide for the Common Data Service Client

This library provides a client for using the Common Data Service in the Acumos machine-learning platform.
It depends on many Spring libraries. This document offers guidance for both client developers and client
users (developers who want to use the client in their Java projects).

Maven Dependency

The client jar is deployed to these Nexus repositories at the Linux Foundation:

<repository>
 <id>snapshots</id>
 <url>https://nexus.acumos.org/content/repositories/snapshots</url>
</repository>
<repository>
 <id>releases</id>
 <url>https://nexus.acumos.org/content/repositories/releases</url>
</repository>

Use this dependency information, ideally with the latest version number shown in the release notes:

<dependency>
 <groupId>org.acumos.common-dataservice</groupId>
 <artifactId>cmn-data-svc-client</artifactId>
 <version>1.x.x-SNAPSHOT</version>
</dependency>

Building and Packaging

As of this writing the build (continuous integration) process is fully automated in the Linux Foundation system
using Gerrit and Jenkins. This section describes how to perform local builds for development and testing.

Prerequisites

The build and test machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central to download required jars

Use maven to build and package the client jar using this command:

mvn package

Unit tests are run with an in-memory Apache Derby database.

Client Usage Example

A Java class named “BasicSequenceDemo” demonstrates use of the client.
Please browse for this file in the client project test area using this link:
BasicSequenceDemo.java [https://gerrit.acumos.org/r/gitweb?p=common-dataservice.git;a=blob;f=cmn-data-svc-client/src/test/java/org/acumos/cds/client/test/BasicSequenceDemo.java;hb=refs/heads/master].

 Common Data Service

Common Data Service

Contents:

	Common Data Service Overview
	Architecture

	Developer Resources

	Common Data Service Requirements
	Implications of Federation

	Entity and Relationship Overview

	Entity and Attribute Details

	Enumerated Code-Name Sets

	Entities

	Entity Mapping Relationships

	Required Operations

	Developer Guide for the Common Data Service Client
	Maven Dependency

	Building and Packaging

	Client Usage Example

	Developer Guide for the Common Data Service Server
	Supported Methods and Objects

	Building and Packaging

	Development and Local Testing

	Production Deployment

	Troubleshooting

	Common Data Service Server API
	CDS APIs in Clio Release

	CDS APIs in Boreas Release

	CDS API in Athena Release

	CDS Database Upgrade Scripts and Migration Tools
	Database Upgrade Scripts

	CMS Admin and User Data Migration Tool for CDS 2.0.x

	Common Data Service Release Notes
	Version 3.1.1, 29 Apr 2020

	Version 3.1.1, 31 Dec 2019

	Version 3.1.0, 3 Dec 2019

	Version 3.0.1, 29 Oct 2019

	Version 3.0.1, 10 Oct 2019

	Version 3.0.1, 4 Oct 2019

	Version 3.0.0, 2 Oct 2019

	Version 3.0.0, 13 Sep 2019

	Version 3.0.0, 5 Sep 2019

	Version 2.2.6, 7 Aug 2019

	Version 2.2.5, 16 July 2019

	Version 2.2.4, 23 May 2019

	Version 2.2.3, 15 May 2019

	Version 2.2.2, 22 Apr 2019

	Version 2.2.1, 12 Apr 2019

	Version 2.2.0, 5 Apr 2019

	Version 2.1.2, 4 Mar 2019

	Version 2.1.1, 20 Feb 2019

	Version 2.1.0, 11 Feb 2019

	Version 2.0.7, 6 Feb 2019

	Version 2.0.6, 1 Feb 2019

	Version 2.0.5, 30 Jan 2019

	Version 2.0.4, 24 Jan 2019

	Version 2.0.3, 23 Jan 2019

	Version 2.0.2, 7 Jan 2019

	Version 2.0.1, 2 Jan 2019

	Version 2.0.0, 19 Dec 2018

	Version 1.18.4, 23 Oct 2018

	Version 1.18.3, 9 Oct 2018

	Version 1.18.2, 27 Sep 2018

	Version 1.18.1, 11 Sep 2018

	Version 1.18.0, 31 Aug 2018

	Version 1.17.3, 31 Aug 2018

	Version 1.17.2, 28 Aug 2018

	Version 1.17.1, 10 Aug 2018

	Version 1.17.0, 9 Aug 2018

	Version 1.16.1, 2 Aug 2018

	Version 1.16.0, 24 July 2018

	Version 1.15.4, 6 July 2018

	Version 1.15.3, 27 June 2018

	Version 1.15.2, 6 June 2018

	Version 1.15.1, 18 May 2018

	Version 1.15.0, 6 April 2018

	Version 1.14.5, 6 June 2018

	Version 1.14.4, 3 May 2018

	Version 1.14.3, 26 March 2018

	Version 1.14.2, 15 March 2018

	Version 1.14.1, 9 March 2018

	Version 1.14.0, 1 March 2018

	Version 1.13.1, 9 February 2018

	Version 1.13.0, 7 February 2018

	Version 1.12.1, 26 January 2018

	Version 1.12.0, 23 January 2018

	Version 1.11.0, 3 January 2018

	Version 1.10.2, 20 December 2017

	Version 1.10.1, 12 December 2017

	Version 1.10.0, 6 December 2017

	Version 1.9.1, 30 November 2017

	Version 1.9.0, 16 November 2017

	Version 1.8.0, 9 November 2017

	Version 1.7.0, 3 November 2017

	Version 1.6.1, 18 October 2017

	Version 1.6.0, 13 October 2017

	Version 1.5.3, 26 September 2017

	Version 1.5.2, 20 September 2017

	Version 1.5.1, 14 September 2017

	Version 1.5.0, 5 September 2017

	Version 1.4.1, 29 August 2017

	Version 1.4.0, 23 August 2017

	Version 1.3.1 update, 15 August 2017

	Version 1.3.1, 9 August 2017

	Version 1.3.0, 7 August 2017

	Version 1.2.3, 31 July 2017

	Version 1.2.2, 28 July 2017

	Version 1.2.1, 27 July 2017

	Version 1.2.0, 26 July 2017

	Version 1.1.3, 21 July 2017

	Version 1.1.2, 18 July 2017

	Version 1.1.1, 5 July 2017

	Version 1.1.0, 30 June 2017

	Version 1.0.0, 15 June 2017

	Search Page

 Common Data Service Overview

Common Data Service Overview

The Acumos Common Data Service provides a storage and query layer between Acumos system
components and a relational database.
The server component is a Java Spring-Boot application that provides REST service to callers
and uses Hibernate to manage the persistent store.
The client component is a Java library that provides business objects (models) and
methods to simplify the use of the REST service.

Architecture

The following picture shows how the service components are used by other Acumos components.
The client uses HTTP/REST to communicate with the server. The server uses JDBC to communicate
with the database.

[image: Common Data Service Architecture]

Developer Resources

The source is available from the Linux Foundation Gerrit server:

https://gerrit.acumos.org/r/gitweb?p=common-dataservice.git;a=summary

The build (CI) jobs are in the Linux Foundation Jenkins server:

https://jenkins.acumos.org/view/common-dataservice/

Issues are tracked in the Linux Foundation Jira server:

https://jira.acumos.org/secure/Dashboard.jspa

Project information is available in the Linux Foundation Wiki:

https://wiki.acumos.org/

 Common Data Service Release Notes

Common Data Service Release Notes

The client and server are released together. The client is available
as a jar file in the Acumos/LF Nexus repository. The server is
available as a Docker image in the Acumos/LF Docker registry.

Version 3.1.1, 29 Apr 2020

	Revise database scripts to add license admin role (ACUMOS-4081 [https://jira.acumos.org/browse/ACUMOS-4081])

Version 3.1.1, 31 Dec 2019

	Add artifact-type code CO (ACUMOS-3778 [https://jira.acumos.org/browse/ACUMOS-3778])

	Revise methods to get user-accessible catalogs (ACUMOS-3878 [https://jira.acumos.org/browse/ACUMOS-3878])

	Requires database schema version 3.1

Version 3.1.0, 3 Dec 2019

	Drop Right To Use entities and controller (ACUMOS-3460 [https://jira.acumos.org/browse/ACUMOS-3460])

	Add C++ and Spark toolkit types (ACUMOS-3726 [https://jira.acumos.org/browse/ACUMOS-3726])

	Add catalog-role mappings (ACUMOS-3681 [https://jira.acumos.org/browse/ACUMOS-3681])

	Upgrade to Spring-Boot version 2.1.10.RELEASE

	Requires database schema version 3.1

Version 3.0.1, 29 Oct 2019

	Add database script to set password expiration date (ACUMOS-3605 [https://jira.acumos.org/browse/ACUMOS-3605])

Version 3.0.1, 10 Oct 2019

	Extend 2.1-to-2.2 migration script discover-Acumos entries (ACUMOS-3392 [https://jira.acumos.org/browse/ACUMOS-3392])

Version 3.0.1, 4 Oct 2019

	Add task type “DP” - Deployment (ACUMOS-3467 [https://jira.acumos.org/browse/ACUMOS-3467])

	Requires database schema version 3.0

Version 3.0.0, 2 Oct 2019

	Update license profile templates to include $schema & rtuRequired in database scripts (ACUMOS-3510 [https://jira.acumos.org/browse/ACUMOS-3510])

Version 3.0.0, 13 Sep 2019

	Add license profile templates to database scripts (ACUMOS-3435 [https://jira.acumos.org/browse/ACUMOS-3435])

Version 3.0.0, 5 Sep 2019

	Add support for license profiles (ACUMOS-3160 [https://jira.acumos.org/browse/ACUMOS-3160])

	Split DDL/DML scripts for image size (ACUMOS-3321 [https://jira.acumos.org/browse/ACUMOS-3321])

	Define new DDL/DML scripts for creating a new, or upgrading to, version 3.0 database

	Compile and run with Java 11, but keep client library compliance level at Java 8.

	Add “acumos/” prefix to container image name

	Requires database schema version 3.0

Version 2.2.6, 7 Aug 2019

	Add query method to get peers for a restricted catalog (ACUMOS-3298 [https://jira.acumos.org/browse/ACUMOS-3298])

	Requires database schema version 2.2

Version 2.2.5, 16 July 2019

	Add headers to discover texts (ACUMOS-2992 [https://jira.acumos.org/browse/ACUMOS-2992])

	Add kernel type CC (ACUMOS-3147 [https://jira.acumos.org/browse/ACUMOS-3147])

	Add kernel type JS (ACUMOS-3148 [https://jira.acumos.org/browse/ACUMOS-3148])

	Update default catalog names (ACUMOS-3209 [https://jira.acumos.org/browse/ACUMOS-3209])

	Requires database schema version 2.2

Version 2.2.4, 23 May 2019

	Restore automatic modified-date updates (ACUMOS-2949 [https://jira.acumos.org/browse/ACUMOS-2949])

	Extend migration script for solutions with mixed access types (ACUMOS-3110 [https://jira.acumos.org/browse/ACUMOS-3110])

	Requires database schema version 2.2

Version 2.2.3, 15 May 2019

	Adjust logging for server FQDN (ACUMOS-2456 [https://jira.acumos.org/browse/ACUMOS-2456])

	Drop site content in database creation scripts (ACUMOS-2723 [https://jira.acumos.org/browse/ACUMOS-2723])

	Repair DML script for C_ROLE insert (ACUMOS-2891 [https://jira.acumos.org/browse/ACUMOS-2891])

	Repair federation subscription selector example (ACUMOS-2899 [https://jira.acumos.org/browse/ACUMOS-2899])

	Check for null key or value in query parameter map in search methods

	Requires database schema version 2.2

Version 2.2.2, 22 Apr 2019

	Add site content to database creation scripts (ACUMOS-2420 [https://jira.acumos.org/browse/ACUMOS-2420])

	Add portal home page discover-marketplace content (ACUMOS-2738 [https://jira.acumos.org/browse/ACUMOS-2738])

	Add method to fetch unique catalog publisher names (ACUMOS-2758 [https://jira.acumos.org/browse/ACUMOS-2758])

	Remove validation box from database creation script (ACUMOS-2764 [https://jira.acumos.org/browse/ACUMOS-2764])

	Restore method to get solutions by modified date (ACUMOS-2783 [https://jira.acumos.org/browse/ACUMOS-2783])

	Record DDL/DML script history (ACUMOS-2843 [https://jira.acumos.org/browse/ACUMOS-2843])

	Requires database schema version 2.2

Version 2.2.1, 12 Apr 2019

	Add method to fetch right-to-use objects by ref ID (ACUMOS-2722 [https://jira.acumos.org/browse/ACUMOS-2722])

	Add methods to check peer and user solution access (ACUMOS-2735 [https://jira.acumos.org/browse/ACUMOS-2735])

	Rename and repair findPublishedSolutions method (ACUMOS-2736 [https://jira.acumos.org/browse/ACUMOS-2736])

	Requires database schema version 2.2

Version 2.2.0, 5 Apr 2019

	Add APIs for workbench data access (ACUMOS-2509 [https://jira.acumos.org/browse/ACUMOS-2509])

	Add project for workbench (ACUMOS-2516 [https://jira.acumos.org/browse/ACUMOS-2516])

	Define service-status values (ACUMOS-2520 [https://jira.acumos.org/browse/ACUMOS-2520])

	Add pipeline for workbench (ACUMOS-2534 [https://jira.acumos.org/browse/ACUMOS-2534])

	Add notebook for workbench (ACUMOS-2535 [https://jira.acumos.org/browse/ACUMOS-2535])

	Define notebook-type values (ACUMOS-2560 [https://jira.acumos.org/browse/ACUMOS-2560])

	Define kernel-type values (ACUMOS-2561 [https://jira.acumos.org/browse/ACUMOS-2561])

	Extend data and APIs for catalog features (ACUMOS-2569 [https://jira.acumos.org/browse/ACUMOS-2569])

	Remove access type code from solution revision (ACUMOS-2569 [https://jira.acumos.org/browse/ACUMOS-2569])

	Remove access and scope type from peer subscription (ACUMOS-2569 [https://jira.acumos.org/browse/ACUMOS-2569])

	Add self-publish flag to catalog (ACUMOS-2569 [https://jira.acumos.org/browse/ACUMOS-2569])

	Map descriptions and documents to catalogs (ACUMOS-2569 [https://jira.acumos.org/browse/ACUMOS-2569])

	Drop peer and solution groups (ACUMOS-2590 [https://jira.acumos.org/browse/ACUMOS-2590])

	Query project, notebook and pipeline (ACUMOS-2595 [https://jira.acumos.org/browse/ACUMOS-2595])

	Revise access type codes (ACUMOS-2610 [https://jira.acumos.org/browse/ACUMOS-2610])

	Add method to get RTU users (ACUMOS-2666 [https://jira.acumos.org/browse/ACUMOS-2666])

	Add Swagger library to display size constraints from JPA annotations in generated UI

	Upgrade to Spring-Boot version 2.1.4.RELEASE

	Requires database schema version 2.2

Version 2.1.2, 4 Mar 2019

	Add task type MS for micro service generation (ACUMOS-2600 [https://jira.acumos.org/browse/ACUMOS-2600])

	Requires database schema version 2.1

Version 2.1.1, 20 Feb 2019

	Add controller methods to get pages of configs and contents (ACUMOS-2423 [https://jira.acumos.org/browse/ACUMOS-2423])

	Add peer-status code UK (ACUMOS-2513 [https://jira.acumos.org/browse/ACUMOS-2513])

	Allow server to run as unprivileged user (ACUMOS-2533 [https://jira.acumos.org/browse/ACUMOS-2533])

	Requires database schema version 2.1

Version 2.1.0, 11 Feb 2019

	Add on-boarded timestamp to solution revision (ACUMOS-1827 [https://jira.acumos.org/browse/ACUMOS-1827])

	Add MLPRightToUse for License Management (ACUMOS-2355 [https://jira.acumos.org/browse/ACUMOS-2355])

	Add MLPTask and revise MLPTaskStepResult for on-boarding status (ACUMOS-2387 [https://jira.acumos.org/browse/ACUMOS-2387])

	Requires database schema version 2.1

Version 2.0.7, 6 Feb 2019

	Restore self as peer search parameter (ACUMOS-2470 [https://jira.acumos.org/browse/ACUMOS-2470])

	Requires database schema version 2.0

Version 2.0.6, 1 Feb 2019

	Revise client domain model setUri methods (ACUMOS-2443 [https://jira.acumos.org/browse/ACUMOS-2443])

	Requires database schema version 2.0

Version 2.0.5, 30 Jan 2019

	Extend delete methods to cascade (ACUMOS-2417 [https://jira.acumos.org/browse/ACUMOS-2417])

	Revise annotations on web stats for concurrency safety (ACUMOS-2432 [https://jira.acumos.org/browse/ACUMOS-2432])

	Requires database schema version 2.0

Version 2.0.4, 24 Jan 2019

	Repair createUser method behavior on apiToken field (ACUMOS-2413 [https://jira.acumos.org/browse/ACUMOS-2413])

	Add JSR310 library to deserialize Instant values (ACUMOS-2416 [https://jira.acumos.org/browse/ACUMOS-2416])

	Requires database schema version 2.0

Version 2.0.3, 23 Jan 2019

	Revise base docker image to OpenJDK (ACUMOS-2409 [https://jira.acumos.org/browse/ACUMOS-2409])

	Requires database schema version 2.0

Version 2.0.2, 7 Jan 2019

	Use header X-ACUMOS-Request-Id (ACUMOS-1801 [https://jira.acumos.org/browse/ACUMOS-1801])

	Use Acumos logging standard (ACUMOS-2328 [https://jira.acumos.org/browse/ACUMOS-2328])

	Add artifact-type code ‘SR’ (ACUMOS-2362 [https://jira.acumos.org/browse/ACUMOS-2362])

	Requires database schema version 2.0

Version 2.0.1, 2 Jan 2019

	
	Upgrade to Spring-Boot version 2.1 (ACUMOS-1926 [https://jira.acumos.org/browse/ACUMOS-1926]) which requires runtime configuration changes:

	
	Drop property ‘spring.database.driver.classname’

	Change property key ‘spring.datasource.url’ to ‘spring.datasource.jdbc-url’

	Extend property ‘spring.datasource.jdbc-url’ with connection parameter ‘useLegacyDatetimeCode=false’

	Change property ‘spring.jpa.database-platform’ to value ‘org.hibernate.dialect.MariaDB102Dialect’

	Add prefix ‘spring’ to property keys ‘security.user.name’ and ‘security.user.password’

	Add catalog support for solutions (ACUMOS-2284 [https://jira.acumos.org/browse/ACUMOS-2284])

	Silence warnings from Springfox dependencies (ACUMOS-2316 [https://jira.acumos.org/browse/ACUMOS-2316])

	Use constants etc. to silence Sonar warnings

	Requires database schema version 2.0

Version 2.0.0, 19 Dec 2018

	Extend table c_solution_rev with columns for security verification (ACUMOS-1376 [https://jira.acumos.org/browse/ACUMOS-1376])

	Move download, rating and view fields to MLPSolution entity (ACUMOS-1675 [https://jira.acumos.org/browse/ACUMOS-1675])

	Change column types to TIMESTAMP and modify Mariadb connection configuration (ACUMOS-1691 [https://jira.acumos.org/browse/ACUMOS-1691])

	Revise controllers to reduce query time and log warnings on bad requests (ACUMOS-1697 [https://jira.acumos.org/browse/ACUMOS-1697])

	Use tab-separated MDC-style log output format (ACUMOS-1752 [https://jira.acumos.org/browse/ACUMOS-1752])

	Add method to get user unread notification count (ACUMOS-1883 [https://jira.acumos.org/browse/ACUMOS-1883])

	Validate URI parameters in Artifact and Document (ACUMOS-1927 [https://jira.acumos.org/browse/ACUMOS-1927])

	Drop unused validation entities and features (ACUMOS-1931 [https://jira.acumos.org/browse/ACUMOS-1931])

	Support site content key-value pairs (ACUMOS-1936 [https://jira.acumos.org/browse/ACUMOS-1936])

	Add method to get peer subscription count (ACUMOS-2006 [https://jira.acumos.org/browse/ACUMOS-2006])

	Remove picture from MLPSolution, add get and save methods (ACUMOS-2088 [https://jira.acumos.org/browse/ACUMOS-2088])

	Add artifact-type code and toolkit-type codes (ACUMOS-2248 [https://jira.acumos.org/browse/ACUMOS-2248])

	Drop deprecated get-enum methods (ACUMOS-2252 [https://jira.acumos.org/browse/ACUMOS-2252])

	Remove description from MLPSolution and MLPSolutionRevision (ACUMOS-2261 [https://jira.acumos.org/browse/ACUMOS-2261])

	Add artifact-type code LI for license (ACUMOS-2307 [https://jira.acumos.org/browse/ACUMOS-2307])

	Revise restricted-federation query method to use page parameter

	Requires database schema version 2.0

Versions 2.* require configuration data in an environment variable SPRING_APPLICATION_JSON
with the following structure. All values in upper case must be replaced:

SPRING_APPLICATION_JSON: '{
 "server" : {
 "port" : 8000
 },
 "spring" : {
 "datasource" : {
 "jdbc-url" : "jdbc:mariadb://HOST-NAME:3306/DB-NAME?useLegacyDatetimeCode=false&useSSL=false",
 "username" : "DB_USERNAME",
 "password" : "DB_PASSWORD"
 },
 "jpa" : {
 "database-platform" : "org.hibernate.dialect.MariaDB102Dialect",
 "hibernate" : {
 "ddl-auto" : "validate"
 },
 "show-sql" : false
 },
 "security" : {
 "user" : {
 "name" : "CLIENT_USERNAME",
 "password" : "CLIENT_PASSWORD"
 }
 }
 }
}'

Version 1.18.4, 23 Oct 2018

	Detect description and document modifications (ACUMOS-1902 [https://jira.acumos.org/browse/ACUMOS-1902])

	Add SQL script to create default first author in revisions (ACUMOS-2109 [https://jira.acumos.org/browse/ACUMOS-2109])

	Add missing API model annotations to benefit Swagger

	Add test case for find-by-modified-date feature

	Requires database schema version 1.18

Version 1.18.3, 9 Oct 2018

	Add site-config data in 1.18 SQL script to silence 400 errors (ACUMOS-857 [https://jira.acumos.org/browse/ACUMOS-857])

	Restore exception logging in ONAP/Athena logging output pattern (ACUMOS-1752 [https://jira.acumos.org/browse/ACUMOS-1752])

	Add configuration to stop dropping file suffixes in path variables (ACUMOS-1836 [https://jira.acumos.org/browse/ACUMOS-1836])

	Requires database schema version 1.18

Version 1.18.2, 27 Sep 2018

	Add peer status code RM=Removed (ACUMOS-1596 [https://jira.acumos.org/browse/ACUMOS-1596])

	Use ONAP/Athena logging output pattern (ACUMOS-1752 [https://jira.acumos.org/browse/ACUMOS-1752])

	Upgrade Spring-Boot to 1.15.16.RELEASE (ACUMOS-1754 [https://jira.acumos.org/browse/ACUMOS-1754])

	New client method to search solutions with all/any tags (ACUMOS-1763 [https://jira.acumos.org/browse/ACUMOS-1763])

	Use N/Y instead of 0/1 in table C_ROLE column ACTIVE_YN (ACUMOS-1788 [https://jira.acumos.org/browse/ACUMOS-1788])

	Disable Build-for-ONAP/DCAE by default (ACUMOS-1812 [https://jira.acumos.org/browse/ACUMOS-1812])

	Limit console log output to level WARN and above

	Refactor additional search controller annotations for Swagger web UI

	Requires database schema version 1.18

Version 1.18.1, 11 Sep 2018

	New client method to find restricted solutions (ACUMOS-1611 [https://jira.acumos.org/browse/ACUMOS-1611])

	Add role “Publisher” to base 1.18 DML/DDL script (ACUMOS-1642 [https://jira.acumos.org/browse/ACUMOS-1642])

	Defend against null arguments (ACUMOS-1696 [https://jira.acumos.org/browse/ACUMOS-1696])

	Add default value in database scripts for timestamp-type columns (ACUMOS-1703 [https://jira.acumos.org/browse/ACUMOS-1703])

	Fix bug in method that builds criteria for querying on value list (ACUMOS-1707 [https://jira.acumos.org/browse/ACUMOS-1707])

	Extend migration tool for special characters in file names (ACUMOS-1733 [https://jira.acumos.org/browse/ACUMOS-1733])

	Refactor artifact-search controller annotations for Swagger web UI

	Add example federation selector to Swagger annotation

	Move some methods from user to notification controller

	Increase default memory limit to 1GB

	Upgrade Spring-Boot from 1.15.14.RELEASE to 1.15.15.RELEASE.

	Requires database schema version 1.18

Version 1.18.0, 31 Aug 2018

	Add publish request entity with supporting methods (ACUMOS-1642 [https://jira.acumos.org/browse/ACUMOS-1642])

	Add tags to User entity (ACUMOS-1643 [https://jira.acumos.org/browse/ACUMOS-1643])

	Refactor find-solution methods to enable Swagger UI

	Requires database schema version 1.18

Version 1.17.3, 31 Aug 2018

	Added new API endpoint to get Dataset info, right now it is just prototype (ACUMOS-1182 [https://jira.acumos.org/browse/ACUMOS-1182])

Version 1.17.2, 28 Aug 2018

	Revise logging for ONAP recommended output pattern (ACUMOS-625 [https://jira.acumos.org/browse/ACUMOS-625])

	Include solution and revision ID fields in search (ACUMOS-1576 [https://jira.acumos.org/browse/ACUMOS-1576])

	Revise message sent when user is locked out temporarily (ACUMOS-1597 [https://jira.acumos.org/browse/ACUMOS-1597])

	Filter search results using all tags not any tag (ACUMOS-1601 [https://jira.acumos.org/browse/ACUMOS-1601])

	Document Pageable request parameters in Swagger (ACUMOS-1608 [https://jira.acumos.org/browse/ACUMOS-1608])

	Enhance search for revision description (ACUMOS-1614 [https://jira.acumos.org/browse/ACUMOS-1614])

	Add API to count top-level comments on a revision (ACUMOS-1644 [https://jira.acumos.org/browse/ACUMOS-1644])

	Requires database schema version 1.17

Version 1.17.1, 10 Aug 2018

	Create tags automatically when creating or updating a solution (ACUMOS-1546 [https://jira.acumos.org/browse/ACUMOS-1546])

	Change data type of picture fields from Byte[] to byte [] (ACUMOS-1557 [https://jira.acumos.org/browse/ACUMOS-1557])

	Requires database schema version 1.17

Version 1.17.0, 9 Aug 2018

	Store metadata for user documents in Nexus (ACUMOS-1235 [https://jira.acumos.org/browse/ACUMOS-1235])

	Load capitalized role name “Admin” not “admin” (ACUMOS-1526 [https://jira.acumos.org/browse/ACUMOS-1526])

	Requires database schema version 1.17

Version 1.16.1, 2 Aug 2018

	Store API token encrypted, not hashed (ACUMOS-1487 [https://jira.acumos.org/browse/ACUMOS-1487])

	Requires database schema version 1.16

Version 1.16.0, 24 July 2018

	Add column for solution picture; add table for revision description (ACUMOS-1235 [https://jira.acumos.org/browse/ACUMOS-1235])

	Rename ownerId to userId in solution, revision, artifact, peer subscription (ACUMOS-1359 [https://jira.acumos.org/browse/ACUMOS-1359])

	Add authors; move provider in solution to publisher in revision (ACUMOS-1359 [https://jira.acumos.org/browse/ACUMOS-1359])

	Extend findPortalSolutions to search authors and publisher (ACUMOS-1359 [https://jira.acumos.org/browse/ACUMOS-1359])

	Add verification token and expiration date (ACUMOS-1386 [https://jira.acumos.org/browse/ACUMOS-1386])

	Add API token attribute to user entity, add loginApi method (ACUMOS-1424 [https://jira.acumos.org/browse/ACUMOS-1424])

	Add attributes to track failed login attempts (ACUMOS-1442 [https://jira.acumos.org/browse/ACUMOS-1442])

	Enable the admin role in newly created database (ACUMOS-1446 [https://jira.acumos.org/browse/ACUMOS-1446])

	Add support for proxy when getting a CDS client instance

	Requires database schema version 1.16

Version 1.15.4, 6 July 2018

	Add method to get solution revision comment count (ACUMOS-1270 [https://jira.acumos.org/browse/ACUMOS-1270])

	Show exception details in log files (ACUMOS-1328 [https://jira.acumos.org/browse/ACUMOS-1328])

	Requires database schema version 1.15

Version 1.15.3, 27 June 2018

	Add search method to find user’s co-owned solutions (ACUMOS-1257 [https://jira.acumos.org/browse/ACUMOS-1257])

	Add methods to manage composite solution parent-child membership

	Update Spring library versions to address vulnerabilities flagged by CLM

	Requires database schema version 1.15

Version 1.15.2, 6 June 2018

	Add toolkit type codes CO, SP (ACUMOS-1013 [https://jira.acumos.org/browse/ACUMOS-1013])

	Repair findPortalSolutions API behavior on untagged solutions (ACUMOS-1045 [https://jira.acumos.org/browse/ACUMOS-1045])

	Requires database schema version 1.15

Version 1.15.1, 18 May 2018

	Call audit logger in controller methods (ACUMOS-625 [https://jira.acumos.org/browse/ACUMOS-625])

	Add artifact type code LG - Log File (ACUMOS-765 [https://jira.acumos.org/browse/ACUMOS-765])

	Define C_USER table PICTURE column as type LONGBLOB (ACUMOS-888 [https://jira.acumos.org/browse/ACUMOS-888])

	Requires database schema version 1.15

Version 1.15.0, 6 April 2018

	Move the acccess-type and validation-status attributes from Solution to Solution Revision entity (ACUMOS-196 [https://jira.acumos.org/browse/ACUMOS-196])

	Revise field labels in site_config table entry (ACUMOS-346 [https://jira.acumos.org/browse/ACUMOS-346])

	Add unique constraints for name columns; e.g., role name (ACUMOS-435 [https://jira.acumos.org/browse/ACUMOS-435])

	Add fields to site_config table entry (ACUMOS-486 [https://jira.acumos.org/browse/ACUMOS-486])

	Search solutions returns unexpectedly few results (ACUMOS-529 [https://jira.acumos.org/browse/ACUMOS-529])

	User email attribute should not accept null (ACUMOS-603 [https://jira.acumos.org/browse/ACUMOS-603])

	Write details about security-related events to the audit log (ACUMOS-618 [https://jira.acumos.org/browse/ACUMOS-618])

	Check user (in)active status in login and change password methods (ACUMOS-639 [https://jira.acumos.org/browse/ACUMOS-639])

	Define admin user with well-known username and password for all-in-one install (ACUMOS-388 [https://jira.acumos.org/browse/ACUMOS-388])

	Requires database schema version 1.15

Version 1.14.5, 6 June 2018

	Add toolkit type codes CO, SP (ACUMOS-1013 [https://jira.acumos.org/browse/ACUMOS-1013])

	Requires database schema version 1.14

Version 1.14.4, 3 May 2018

	Add artifact type code LG - Log File (ACUMOS-765 [https://jira.acumos.org/browse/ACUMOS-765])

	Requires database schema version 1.14

Version 1.14.3, 26 March 2018

	Search solutions returns unexpectedly few results (ACUMOS-529 [https://jira.acumos.org/browse/ACUMOS-529])

	Requires database schema version 1.14

Version 1.14.2, 15 March 2018

	Refactor code-name value sets to use properties (ACUMOS-376 [https://jira.acumos.org/browse/ACUMOS-376])

	Add Swagger annotations to required fields in domain models (ACUMOS-399 [https://jira.acumos.org/browse/ACUMOS-399])

	Requires database schema version 1.14

Version 1.14.1, 9 March 2018

	Define created-date columns as “DEFAULT 0” to stop Mariadb from setting to now() on update (ACUMOS-243 [https://jira.acumos.org/browse/ACUMOS-243])

	Cascade solution delete to associated step results (ACUMOS-328 [https://jira.acumos.org/browse/ACUMOS-328])

	Drop unneeded queries in server-side repository methods (ACUMOS-344 [https://jira.acumos.org/browse/ACUMOS-344])

	Add copy constructors to all domain POJO classes (ACUMOS-345 [https://jira.acumos.org/browse/ACUMOS-345])

	Requires database schema version 1.14

Version 1.14.0, 1 March 2018

	Add search-by-date method for federation subscription update (ACUMOS-61 [https://jira.acumos.org/browse/ACUMOS-61])

	Add peer group, solution group and mapping features for federation access control (ACUMOS-62 [https://jira.acumos.org/browse/ACUMOS-62])

	Refactor to drop code-name database tables (ACUMOS-144 [https://jira.acumos.org/browse/ACUMOS-144])

	Add feature for user notification preference and user notification (ACUMOS-166 [https://jira.acumos.org/browse/ACUMOS-166])

	Assert unique constraint on peer subjectName attribute (ACUMOS-214 [https://jira.acumos.org/browse/ACUMOS-214])

	Revise peer status code/name value set (ACUMOS-215 [https://jira.acumos.org/browse/ACUMOS-215])

	Add new toolkit type code for ONAP (ACUMOS-232 [https://jira.acumos.org/browse/ACUMOS-232])

	Add license headers to sql files (ACUMOS-275 [https://jira.acumos.org/browse/ACUMOS-275])

	Apply distinct transformer to avoid duplicate search results (ACUMOS-298 [https://jira.acumos.org/browse/ACUMOS-298])

	Report consistent error message when an item is not found

	Requires database schema version 1.14

Version 1.13.1, 9 February 2018

	Limit memory use in server JVM to max 512MB

	Correct search method usage of response page wrapper class

	Requires database schema version 1.13

Version 1.13.0, 7 February 2018

	Add workflow step feature for onboarding and validation result persistence (ACUMOS-56 [https://jira.acumos.org/browse/ACUMOS-56])

	Add origin attribute to solution and revision entities (ACUMOS-59 [https://jira.acumos.org/browse/ACUMOS-59])

	Revise search methods to return a page of results

	Revise peer and peer subscription attributes (ACUMOS-60 [https://jira.acumos.org/browse/ACUMOS-60], ACUMOS-167 [https://jira.acumos.org/browse/ACUMOS-167])

	Add toolkit type PB - Probe (ACUMOS-168 [https://jira.acumos.org/browse/ACUMOS-168])

	Requires database schema version 1.13

Version 1.12.1, 26 January 2018

	Repair findPortalSolutions endpoint to process multiple values correctly

	Requires database schema version 1.12

Version 1.12.0, 23 January 2018

	Extend MLPPeerSubscription with required ownerId attribute with user ID

	Extend MLPSolution with optional sourceId attribute with peer ID

	Add alternate client constructor that accepts RestTemplate

	Extend search methods to accept value arrays

	Add two toolkit-type codes, BR and TC

	Add client mock implementation

	Extend enums to have names, not just codes

	Address code-quality issues identified by LF Sonar

	Requires database schema version 1.12

Version 1.11.0, 3 January 2018

	Revise MLPSiteConfig to make userId optional

	Revise MLPThread to add solutionId and revisionId; drop url

	Revise MLPComment to drop url

	Revise MLPPeer to add trustLevel

	Add methods to query for threads and comments using solution and revision IDs

	Requires database schema version 1.11

Version 1.10.2, 20 December 2017

	Extend MLPSolution with tags and solution web statistics via unidirectional annotations

	Extend the find-solutions method for Portal/Marketplace dynamic search

	Requires database schema version 1.10

Version 1.10.1, 12 December 2017

	Revert search-solutions method to version of 1.9.0

	New find-solutions method for Portal/Marketplace dynamic search

	Requires database schema version 1.10

Version 1.10.0, 6 December 2017

	Increase size of details column for solution validation

	Support threads and comments

	Requires database schema version 1.10

Version 1.9.1, 30 November 2017

	Add method to get rating by key fields solution ID and user ID

	Revise searchSolutions method to accept complex query criteria

	Requires database schema version 1.9

Version 1.9.0, 16 November 2017

	Add methods to get role count, users-in-role count

	Add methods for bulk update of users in roles

	Add “options” attribute to Peer Subscription

	Requires database schema version 1.9

Version 1.8.0, 9 November 2017

	Add artifact ID to the solution download record

	Add last-download date to the solution web record

	Requires database schema version 1.8

Version 1.7.0, 3 November 2017

	Add support to fetch, create and delete solution deployments

	Add support to fetch, create and delete site configurations

	Add solution web metadata such as featured status

	Change all classes to use package prefix org.acumos

	Revise get-count methods to return long (not CountTransport)

	Revise “RCloud” name to just “R”

	Revise database schema to drop Mysql-specific column types like TINYINT

	Move tests that depend on a deployed instance to the test subproject

	Change default properties to a Derby in-memory database

	Add unit tests for client and server

	Address code-quality issues identified by Sonar

	Requires database schema version 1.7

Version 1.6.1, 18 October 2017

	Repair defect in updateSolutionRating feature

	Revise get-user-notification feature to include viewed status

	Requires database schema version 1.6

Version 1.6.0, 13 October 2017

	Add support for fetching, creating and deleting solution favorites

	Add support for fetching, creating, updating and deleting solution validations

	Add support for fetching, creating and deleting validation sequences

	Store hashes of user passwords using BCrypt algorithm

	Add artifact type codes “BP” and “DS”

	Add model type code “DS”

	Requires database schema version 1.6

Version 1.5.3, 26 September 2017

	Revise signature of update-password client method

	Add method to get all solutions accessible to specified user

	Rename method to getSolutionAccessUsers (was getSolutionUserAccess)

	Implement server method to fetch role function

	Extend get-user-notification client method to accept page parameter

	Drop unused parameter peerId from several peer-subscription methods

	Use MariaDB client library as JDBC connector

	Requires database schema version 1.5

Version 1.5.2, 20 September 2017

	Add protobuf as an artifact type with code “PJ”

	Requires database schema version 1.5

Version 1.5.1, 14 September 2017

	Add update password end point and method

	Add methods to get page of notifications and notification count

	Requires database schema version 1.5

Version 1.5.0, 5 September 2017

	Change peer entity to have unstructured contact information

	Requires database schema version 1.5

Version 1.4.1, 29 August 2017

	Add methods to add, drop roles for a user

	Extend user controller to cascade delete to login providers, notifications, roles

	Validate schema on startup

	Requires database schema version 1.4

Version 1.4.0, 23 August 2017

	Add picture attribute to user entity

	Add statistics for solutions: view count

	Add simple user access control list for solutions

	Fix CD-765, count methods always return zero

	Cache solution download and rating statistics

	Requires database schema version 1.4

Version 1.3.1 update, 15 August 2017

	Accept valid UUID as ID when creating artifact, solution and other entities

	Requires database schema version 1.3

Version 1.3.1, 9 August 2017

	Add org name attribute to user entity

	Add methods to find solutions by tag, toolkit type

	Extend search methods to select AND/OR conditions

	Use HQL for all queries, no native SQL

	Requires database schema version 1.3

Version 1.3.0, 7 August 2017

	Add solution download feature: get/create/delete items to track downloads and get count

	Add solution rating feature: get/create/update/delete reviews and get average rating

	Add solution tag feature: get/create/delete individual tags, get/add/drop tags on solutions

	Add notification feature: get/create/delete notifications; add/update/drop users as recipients

	Add password-expiration field to user entity

	Match email address when checking login credentials

	Requires database schema version 1.3

Version 1.2.3, 31 July 2017

	Repair client bug in RestPageResponse implementation so iterator returns content

	Repair server-side bug in getSolutionRevisions feature

	Add client methods getHealth(), getVersion(), getRevisionsForArtifact()

	Requires database schema version 1.2

Version 1.2.2, 28 July 2017

	Extend partial-match methods to accept page requests and return paged results

	Stop requiring HTTP authentication on swagger documentation pages

	Requires database schema version 1.2

Version 1.2.1, 27 July 2017

	Add find methods that perform partial matches (like queries)

	Add user web token and social login provider support

	Drop C(r)UD support for artifact type, model type values

	Requires database schema version 1.2

Version 1.2.0, 26 July 2017

	Add entity Peer Subscription and methods for CRUD operations

	Remove collections within models to stop eager fetching of data; e.g., the revisions for a solution

	Revise get-all methods to support pagination: accept max, page and sort parameters

	Add new methods so clients can fetch data lazily; e.g., the revisions for a solution

	Refactor to use Spring repositories instead of custom database query methods

	Requires database schema version 1.2

Version 1.1.3, 21 July 2017

	Repair bugs in client update methods not passing along IDs

	Add methods for CRUD operations on model type; user login.

Version 1.1.2, 18 July 2017

	Extend with Peer and new attributes on Solution.

Version 1.1.1, 5 July 2017

	Extend for solution revisions, which are collections of artifacts.

Version 1.1.0, 30 June 2017

	Adds solution revisions, UUID values as IDs and more.

Version 1.0.0, 15 June 2017

	Supports solutions, artifacts and users.

Versions 1.* require configuration data in an environment variable SPRING_APPLICATION_JSON
with the following structure. All values in upper case must be replaced:

SPRING_APPLICATION_JSON: '{
 "server" : {
 "port" : 8000
 },
 "security" : {
 "user" : {
 "name" : "CLIENT_USERNAME",
 "password" : "CLIENT_PASSWORD"
 }
 },
 "spring" : {
 "database" : {
 "driver" : {
 "classname" : "org.mariadb.jdbc.Driver"
 }
 },
 "datasource" : {
 "url" : "jdbc:mysql://HOST-NAME.DOMAIN-NAME:3306/DATABASE-NAME?useSSL=false",
 "username" : "DATABASE_USERNAME",
 "password" : "DATABASE_PASSWORD"
 },
 "jpa" : {
 "database-platform" : "org.hibernate.dialect.MySQLDialect",
 "hibernate" : {
 "ddl-auto" : "validate"
 },
 "show-sql" : false
 }
 }
}'

 Common Data Service Requirements

Common Data Service Requirements

This document presents the abstract data model implemented by the Acumos Common Data Service.
The data model is explained in terms of entities in the system, attributes of the entities,
and relationships among the entities. These requirements are implemented in a relational
database, but this page does not define table names, column names, data types, lengths, etc.

Implications of Federation

The Acumos system is intended to be federated, meaning multiple systems share information
with each other:

	Multiple systems will be running in different organizations

	Information will be shared selectively across the systems

	A public “root” instance will be used to publish some information

	Users can publish their solutions for use by others.

This has implications for identifiers used in the system, because some must be usable globally.

Entity and Relationship Overview

Entities in the system are the main items that users create and manipulate, including solutions,
solution revisions, solution artifacts. For the purpose of CDS a user is also an entity, to track
name, credentials and so on. To name another example, federation peers are also entities.

Solutions and revisions are in a one-to-many relationship; a solution may be considered just a
collection of revisions. Similarly a revision is just a collection of artifacts. Users are in a
many-to-many relationship with most of the other entities in the system.

Entity and Attribute Details

All entities and attributes are listed below, grouped into three sections:

	Simple code-name entities (readonly pairs of values)

	Complex entities

	Relationship (mapping) entities

Enumerated Code-Name Sets

The code-name value sets listed below are the minimum that shall be provided as configuration.
These may be configured differently in a specific installation. The value sets cannot be changed by clients.

Access Type

PB “Public”

RS “Restricted”

Artifact Type

BP “Blueprint File”

CD “CDUMP File”

DI “Docker Image”

DP “Docker Image Pre-dockerized”

DS “Data Source”

LG “Log File”

LI “License”

MD “Metadata”

MH “Model H2O”

MI “Model Image”

MR “Model R”

MS “Model Scikit”

MT “Model Tensorflow”

PJ “Protobuf File”

TE “TOSCA Template”

TG “TOSCA Generator Input File”

TS “TOSCA Schema”

TT “TOSCA Translate”

Deployment Status

DP “Deployed”

FA “Failed”

IP “In Progress”

ST “Started”

Kernel Type

Applies to workbench notebooks.

PY “Python”

RR “R”

JA “Java”

SC “Scala”

Login Provider

FB “Facebook”

GH “GitHub”

GP “Google Plus”

LI “LinkedIn”

Message Severity

HI “High”

ME “Medium”

LO “Low”

Model Type

CL “Classification”

DS “Data Sources”

DT “Data Transformer”

PR “Prediction”

RG “Regression”

Notebook Type

Applies to workbench notebooks.

JP “Jupyter”

ZP “Zeppelin”

Peer Status

AC “Active”

DC “Declined”

IN “Inactive”

RN “Renounced”

RQ “Requested”

UK “Unknown”

Publish Request Status

AP “Approved”

DC “Declined”

PE “Pending”

WD “Withdrawn”

Service Status

Applies to projects, notebooks and pipelines in the workbench.

AC “Active”

CO “Completed”

ER “Error”

EX “Exception”

FA “Failed”

IN “Inactive”

IP “In progress”

Task Step Status

ST “Started”

SU “Succeeded”

FA “Failed”

Task Type

OB “Onboarding”

SV “Security-Verification”

Toolkit Type

This attribute was intended to characterize the technology used in a model.
Over time this has been used for other purposes, for example to identify special
features of the Design Studio. With experience it also became clear that a single
attribute value is not sufficient to characterize some models. For these reasons,
the toolit-type code may be removed entirely.

BR “Data Broker”

CP “Composite Solution”

DS “Design Studio”

H2 “H2O”

ON “ONAP”

PB “Probe”

RC “R”

SK “Scikit-Learn”

TF “TensorFlow”

TC “Training Client”

Verified License

SU “Success”

FA “Failed”

IP “In progress”

UR “Unrequested”

Verified Vulnerability

SU “Success”

FA “Failed”

IP “In progress”

UR “Unrequested”

Entities

The system entities are presented below in alphabetical order.

Catalog

A catalog is a collection of solutions to assist with federation.

Attributes:

	Catalog ID

	Access type code (see list above)

	Self publish flag

	Name (intended to be globally unique)

	Description

	Origin (the peer that provided it, in case of a mirror)

	Publisher (name)

	URL (the peer that publishes the catalog)

Comment

This stores a user comment within a thread of comments.

Attributes:

	Comment ID

	Thread ID

	Parent ID (identifies the comment ID for which this comment is a reply; optional)

	User ID

	Text (the comment content)

Composite Solution

A composite solution is composed by a user in the Design Studio and consists of other
simple and composite solutions.

Attributes:

	Child solutions

Document

This stores a supplementary document for a revision as provided by a user.

Attributes:

	Document ID

	Name

	Size

	User ID

Notebook

A notebook, part of the workbench, is a virtual computing environment used for literate programming.

Attributes:

	Notebook ID (UUID)

	Notebook type (value from restricted value set Notebook Type)

	Kernel type (value from restricted value set Kernel Type)

	Service status (value from restricted value set Service Status)

	Active status (true/false)

	Name (string)

	Version (string)

	Description (long string)

	Repository URL

	Service URL

	User (ID of creator)

Notebooks are mapped to several other entities in many:many relationships, as documented below.

Notification

A notification is a message for a user about an event, for example that a solution previously downloaded has been updated.

Attributes:

	Notification ID

	Title (like an email subject)

	Message (like an email body)

	URL (a link)

	Start (earliest date/time when the notification is active)

	End (latest date/time when the notification is active)

Notifications are mapped to users in a many:many relationship. That relationship must track which notifications have been viewed by the user.

Peer

Registered and authorized external instances of the platform that communicate with this instance.
The registration is intended to be controlled by any user with admin roles.
This model is used to support the federated architecture.

Attributes:

	Unique ID for peer

	Site name

	Subject name

	For an X.509 certificate. Must be unique among all peers.

	Site URL(s)

	How many interfaces will be required by federation?

	For now we are considering 2 types of urls: API url and web url.

	Description

	IsActive

	IsSelf

	Contacts (a pair, one as primary and another as backup)

	Created timestamp

	Modified timestamp

Pipeline

A pipeline, part of the workbench, is an assembly of runnable components.

Attributes:

	Pipeline ID (UUID)

	Active status (true/false)

	Service status (value from restricted value set Service Status)

	Name (string)

	Version (string)

	Description (long string)

	Repository URL

	Service URL

	User (ID of creator)

Pipelines are mapped to several other entities in many:many relationships, as documented below.

Project

A project, part of the workbench, groups notebooks and pipelines.

Attributes:

	Project ID (UUID)

	Active status (true/false)

	Service status (value from restricted value set Service Status)

	Name (string)

	Version (string)

	Description (long string)

	Repository URL

	User (ID of creator)

Projects are mapped to several other entities in many:many relationships, as documented below.

Right to Use

Grants permissions to use a solution. Only seen locally, not federated.

Attributes:

	Row ID

	Solution ID

	Boolean indicator whether the RTU applies to the site; i.e., to all users in the Acumos instance.

	List of right-to-use reference IDs. Each is a GUID that is generated by an external system.

Role for Users

Roles are named like “designer” or “administrator” and are used to assign privilege levels to users,
in terms of the functions those users may perform; i.e., the system features they are authorized to use.

Attributes:

	Unique ID

	Name (must be unique among all roles)

	Active (yes/no)

Role Function

A role function is a name for an action that may be performed by a user within a specific role, such as createModel.
The software system may grant access to specific features based on whether the user role function is assigned to the
user making a request. Role functions are related to roles in a many:mnany relationship.
So for example, a “designer” role may have many functions such as “read”, “create”, “update” and “delete” while
an “operator” role may have only the function “read”.

Attributes:

	Unique ID

	Role ID

	Function name (must be unique among all role functions)

Site Configuration

This stores administrative details for management of the system.

Attributes:

	Config key

	Config value, which is required to be a JSON block

	User ID, the last person who updated the entry; optional to allow creation of initial row without a user ID

	Created timestamp

	Modified timestamp

Site Content

This stores data such as plain text, HTML or images to show on the web site.
Provided to store content that was previously held in a content management system (CMS) database.

Attributes:

	Content key

	Content value, which is a binary long object (BLOB)

	Mime type, a description of the content

	Created timestamp

	Modified timestamp

Solution

	A solution is on-boarded by a client library or via the web

	A solution consists of a collection of solution revisions; which in turn consist of artifacts.

	May be generated by the system from an on-boarded trained statistical model.

	The primary element of the Catalog that is displayed to users

	Supports versioning - a solution may have many solution revisions

The metadata listed here describes the solution as a whole.

Attributes:

	Unique ID for system use

	Name (as chosen by user. This name is not required to be unique)

	Description (free-text description of what the solution does)

	User ID (creator of the solution, automatically assigned to the person who uploaded the machine-learning model artifact)

	List of authorized users (to facilitate review and collaborative work with a team)

	Provider (name of organization that sponsored and/or supports the solution)

	Peer (ID of Acumos peer where the solution was first on-boarded)

	Toolkit aka implementation technology code (underlying ML technology; e.g., Scikit, RCloud, Composite solution)

	Model type code (underlying ML category; valid values include CLASSIFICATION and PREDICTION)

	Proposed attribute: System ID where created (supports federation, exchange of solutions among peer systems)

	Create time (time when the solution was created; i.e., upload time)

	Modification time (the time when the solution was updated)

	Usage statistics: number of views, number of downloads, number of ratings, average rating (may be derived from other entities)

Solution Artifact

	An artifact is a component of a solution revision.

	Example: a Docker image with one micro service that exposes one trained statistical model

	Example: a TOSCA model for deploying a solution revision

	Example: a trained statistical model

	The output of a machine-learning algorithm created by a data scientist using training data and on-boarded to the system; e.g., Python pickle or R binary object

Attributes:

	The file image, treated as an opaque byte stream

	Very likely to be stored as a binary file in a Nexus repository, so the URL to the file can be stored as an attribute.

	Unique ID for system use, a generated UUID to be globally unique

	Type

	An artifact type can be either a statistical model, metadata, docker image or TOSCA file.

	Descriptive name

	Chosen by user. This name may not be unique.

	URL

	Using this, the artifact image can be retrieved from a Nexus repository

	Owner ID

	The person’s ID who created the artifact and is the owner of it.

	Created timestamp

	Date and time when this row was created

	Modified timestamp

	Date and time when this row was last modified

	Description

	Describes what the artifact does

	Size

	Represents the size of the artifact in KB

Below are detailed descriptions of some artifact types:

Trained statistical model

A trained statistical model is the output of a machine-learning algorithm. The model is an opaque byte array, probably stored as a binary file in a Nexus repository.

Docker Image

A docker image is generated by the system, containing a microservice which in turn makes the trained statistical model usable.
TOSCA Model

A TOSCA model is used to deploy a solution to a specific hosted environment; e.g., Rackspace. Multiple TOSCA models can be defined for each solution. TOSCA models may be shared with other users.

Solution Deployment

This captures information about deployment of a specific revision of a solution to a target environment.

Attributes:

	Deployment ID - generated

	Solution ID - required

	Revision ID - required

	User ID - required

	Target deployment environment

	Deployment status. This uses the Deployment Status Code defined above.

Solution Revision

	A revision is a particular version of a solution

	Represents a collection of artifacts that implement the solution in that version

	E.g., revision “1.0-alpha” is a consistent set of artifacts

A solution revision consists of a collection of solution artifacts. The metadata listed here describes the collection.

Attributes:

	Unique Revision ID

	A globally unique ID for this specific revision

	Solution ID

	Represents the solution, allows multiple revisions per solution

	Validation status code

	This refers to the validation result for the revision. It uses values defined by Validation Status Code (above).

	Version

	Chosen by the user. This serves as the solution’s child revision entry identifier. This needs to be unique for any solution revision within the same solution.

	Onboarded timestamp

	Date and time when this revision of the solution was on-boarded

	Created timestamp

	Date and time when this row was created

	Modified timestamp

	Date and time when this row was last modified

	Creator

	The person who created the revision of the solution (reference to the user table)

Task

This tracks the status of processing a request made by some actor or process on an Acumos instance.
For example, a user requests on-boarding of a model. A task carries some identification details
and carries 0..n step-result records that carry details of individual steps. A task does not have
a free-text result attribute; that is in the step result record.

Attributes:

	Task ID - generated

	A unique record identifier

	Name - required

	A descriptive name to benefit the user

	Status Code - required

	Represents the state of the task. Available values include “started”, “succeeded” and “failed”.

	Task type code - required

	Represents the type of action being tracked, for example on-boarding a ML model or verifying a ML model.

	Tracking ID - optional

	This represents a workflow execution instance. For example it may represent on-boarding of a ML model.

	Solution ID - optional

	Revision ID - optional

	User ID - required

	The user who made the request

Task Step Result

This tracks the status of a single step within a task. For example, the on-boarding feature can store information
about the status and outcome of every step during the task of on-boarding a model.

Attributes:

	Step Result ID - generated

	Name - required

	Represents the specific step involved in the workflow. For example in an on-boarding workflow, the step name could be “Solution ID creation”.

	Status Code - required

	Represents the state of the step. Available values include “started”, “succeeded” and “failed”.

	Result - optional

	Text information for a workflow step progress, for debugging purposes.

	Start Date - required

	Date/time when a step starts

	End Date - optional

	Date/time when a step ends

Tag for Solution

Keywords applied to solutions. Attributes:

	Tag name

Mapped many:many to solutions.

Thread

This stores the general topic of discussion to which a comment is associated.

Attributes:

	Thread ID

	Thread Title (optional)

	Solution ID

	Revision ID

User

	Authorized users of the system must be recognized and authenticated.

	May be authenticated using a social identity provider; e.g., LinkedIn

Attributes:

	Unique ID for system use

	User’s organization name

	Login name (must be unique among all users)

	Login password

	Password expiration date/time

	First, middle, last names

	Email address (must be unique among all users)

	Phone number(s)

	Profile picture (subject to some size limit)

	Authentication mechanism (possibly Facebook, Github, Linked-in)

	Authentication token

	For example, JSON Web Token, which should be short (hundreds of bytes) but may be large (thousand of bytes). This will be used to Secure APIs after logging in.

	Levels of access

	For example, users might be modelers (data scientists) who upload models; integrators who build solutions in the design studio; or consumers who download and run solutions only.

	As one possible implementation, the EP-SDK represents privileges using roles and role functions. A user is assigned one or more roles. Each role is associated with one or more functions. A function is a specific feature in the system. Still TBD if an external authentication system will deliver privileges like roles, or if all must be stored locally.

Users are related to user roles in a 1:many relationship; in other words, multiple roles may be assigned to a single user.

User Notification Preference

This stores the delivery mechanism and message priority preferences by the user for receiving notifications

Attributes:

	User ID (notification recipient)

	Notification type (email/text/web)

	Message Severity code. This uses the Message Severity Code value set defined above.

User Social Login Provider Account

Describes the details of a user’s account at a social identity provider. One user may use multiple login providers; e.g., Facebook, Google, LinkedIn, Github; further a user may use multiple accounts with a single provider.

Attributes:

	User ID

	Login provider code

	User’s login name at the provider

	Rank (which provider to prefer)

	Display name

	Profile URL

	Image URL

	Secret

	Access token

	Refresh token

	Expiration time

Entity Mapping Relationships

This section documents the relationships among entities that are managed in separate mapping tables.
The extra tables allow many-many relationships using entity ID values.
These standalone relationship tables do not define new entities, but may store information about the
relationship, such as the time when it was created.

Please note this section does not document simple relationships managed within entities, which includes
one-to-one and many-to-one relationships. For example, every comment has the ID of the containing thread,
so a separate table is not required to manage that relationship.

Relationship Catalog - Solution

This captures solution membership in a catalog.

Attributes:

	Catalog ID

	Solution ID

Relationship Catalog - Revision - Description

This captures the description published for a revision in a catalog.

Attributes:

	Catalog ID

	Revision ID

	Description text

Relationship Catalog - Revision - Document

This captures the document IDs published for a revision in a catalog.

Attributes:

	Catalog ID

	Revision ID

	Document ID

Relationship Revision - Artifact

This captures the many:many relationship of an artifact to a revision.
A separate mapping entity is required here.

Attributes:

	Revision ID

	Artifact ID

Relationship Right To Use - Reference ID

This maps a right-to-use record to an ID generated by an external system. The remote system tracks right-to-use details.

Attributes:

	Right to Use ID

	Reference ID (a GUID)

Relationship Right To Use - User

This represents a right-to-use grant on a solution for a specific user. For example, two users may be entitled to deploy a solution.

Attributes:

	Right to Use ID

	User ID (a GUID)

Relationship Solution - Solution for Composite Solutions

This captures a parent-child relationship of a composite solution; i.e., a solution that reuses other solutions.

Attributes:

	Parent solution ID

	Child solution ID

Relationship Solution - Revision - Task for Validation

This relationship stores details of validating a solution revision against specific criteria such as a license check.

Attributes:

	Solution ID

	Revision ID

	Task ID (validation job identifier)

	Validation type

	Validation status (pass, fail, ..)

	Details of validation results

Relationship Solution - Tag

This captures the assignment of tags to solutions.

Attributes:

	Solution ID

	Tag value

Relationship Solution - User for Access

This represents an access grant on a solution for a specific user. For example, a solution may be shared by a solution creator with a reviewer.

Attributes:

	Solution ID

	User ID

Relationship Solution - Artifact - User for Download

This captures a download of a solution artifact by a user.

Attributes:

	Solution ID

	Artifact ID

	User ID

	Download date and time

Descriptive statistics are derived from individual records; for example total number of downloads and last download time. The statistics must be cached and updated on changes to reduce the time needed to fetch information. For example, update the cached number of downloads and last-download time each time an artifact is downloaded.

Relationship Solution - User for Favorite

This captures an action by a user to specify that a solution is a favorite

Attributes:

	Solution ID

	User ID

Relationship Solution - User for Rating

This captures a rating, text review and other feedback contributed by users about a solution. In keeping with other application stores, the rating is modeled at the solution level (not revision).

Attributes:

	Solution ID

	User ID

	Identifier of the user who rated that solution through the web user interface.

	Rating

	A numerical rating scale, for example 1-5

	Text of review

	Created timestamp

	The date and time when the solution rating was created by the user

	Modified timestamp

	The date and time when the rating gets updated

Descriptive statistics are derived from individual solution ratings; for example average rating. The statistics may be cached and updated on change to reduce the time needed to fetch information about a solution. For example, update the cached number of reviews and average rating each time a solution is reviewed.

Relationship User - Role

This captures the assignment of a role to a user.

Attributes:

	User ID

	Role ID

Relationship Peer - Subscription

Describes which solution(s) available on a remote peer should be tracked and/or replicated.

Attributes:

	Subscription ID

	Peer ID

	Selector

	What solutions should be selected

	Refresh interval

	How often to poll the remote system

	Create timestamp

	Modified timestamp

Relationship Notification - User

This captures the relationship between a notification and a user; i.e., specifies which users should see which notifications.

Attributes:

	Notification ID

	User ID

	Viewed date and time

Relationship Project - Notebook

The workbench Project entity is in a many-to-many relationship with notebooks.

Attributes:

	Project ID

	Notebook ID

Relationship Project - Pipeline

The workbench Project entity is in a many-to-many relationship with pipelines.

Attributes:

	Project ID

	Pipeline ID

Relationship Project - User

The workbench Project entity is in a many-to-many relationship with users.

Attributes:

	Project ID

	User ID

Relationship Notebook - User

The workbench Notebook entity is in a many-to-many relationship with users.

Attributes:

	Notebook ID

	User ID

Relationship Pipeline - User

The workbench Pipeline entity is in a many-to-many relationship with users.

Attributes:

	Pipeline ID

	User ID

Required Operations

This section lists the required operations that shall be supported by the Common Data Micro Service. The list serves as a requirements document for both the client and server, in support of the entities and attributes identified above.

Metadata operations

These read-only actions provide access to value sets that may change over time:

	Get access types

	Get artifact types

	Get login providers

	Get model types

	Get toolkit types

	Get validation status values

CRUD operations

To keep the rest of this document brief, the standard “CRUD” operation definitions are repeated here:

	(C)reate an entity; a REST POST operation that requires new content. If the entity ID field is not supplied, this operation generates a unique ID; otherwise the supplied ID is used.

	(R)etrieve an enity; a REST GET operation that requires the entity ID

	(U)pdate an entity; a REST PUT operation that requires the entity ID and the new content

	(D)elete an entity; a REST DELETE operation that requires the entity ID

Operations on artifacts

Standard CRUD operations plus the following:

	Get a page of artifacts from the complete set, optionally sorted on one or more attributes

	Get a page of artifacts using partial (“like”) value match on the name and description attributes, optionally sorted on one or more attributes

	Search for artifacts using exact value match on one or more attributes, either all (conjunction-and) or one (disjunction-or)

	Get all the artifacts for a particular solution revision

	Add an artifact to a solution revision

	Delete an artifact from a solution revision.

Operations on catalogs

Standard CRUD operations apply plus the following:

	Get the collection of catalogs

	Get a page of solutions in the catalog, optionally sorted on one or more attributes

Operations on solutions

Standard CRUD operations plus the following:

	Get a page of solutions from the complete set, optionally sorted on one or more attributes

	Get a page of solutions using partial (“like”) value match on the name and description attributes, optionally sorted on one or more attributes

	Search for solutions using exact value match on one or more attributes, either all (conjunction-and) or one (disjunction-or)

	Get a page of solutions that use a specified toolkit type

	Tags

	Get all tags assigned to a solution

	Add a tag to a solution

	Drop a tag from a solution

	Get a page of solutions that have a specified tag

	Authorized users

	Get all authorized users assigned to a solution

	Add a user to a solution

	Drop a user from a solution

Operations on solution revisions

Standard CRUD operations plus the following:

	Get all revisions for a specific solution

	Get all revisions for multiple solutions

	Get a solution revision for a particular solution id and revision id.

	Get all the solution revisions for a particular artifact.

(Also see operations on artifacts, which are associated with solution revisions)

Operations on solution downloads

	Standard CRUD operations plus the following:

	Get all downloads for a specific solution

	Get the count of downloads for a specific solution

Operations on solution ratings

Standard CRUD operations plus the following:

	Get all ratings for a specific solution

	Get the average rating for a specific solution

Operations on tags

Standard CRUD operations apply.

Operations on users

Standard CRUD operations plus the following:

	Get a page of users from the complete set, optionally sorted on one or more attributes

	Get a page of users using partial (“like”) value match on the first, middle, last or login name attributes, optionally sorted on one or more attributes

	Search for users using exact value match on one or more attributes, either all (conjunction-and) or one (disjunction-or)

	Check user credentials - the login operation. Match login name/email address as user, password as password. Returns user object if found and active; signals bad request if user is not found, user is not active or password does not match.

	Change user password - find user by ID and update password if user is active and old password matches. Signals bad request if user is not found, user is not active or old password does not match.

Operations on user login providers

Standard CRUD operations plus the following:

	Get all login providers for the specified user

Operations on roles

Standard CRUD operations plus the following:

	Get all roles for the specified user

	Search for roles using exact value match on one or more attributes

Operations on role functions

Standard CRUD operations plus the following:

	Get all role functions for the specified role

Operations on peers

Standard CRUD operations plus the following:

	Get a page of peers from the complete set, optionally sorted on one or more attributes

	Search for peers using exact value match on one or more attributes

Operations on peer subscriptions

Standard CRUD operations plus the following:

	Get a page of peer subscriptions from the complete set, optionally sorted on one or more attributes

Operations on notifications

Standard CRUD operations plus the following:

	Add a user as a notification recipient

	Update that a user has viewed a notification

	Drop a user as a notification recipient

	Get all notifications for a user

Operations on workflow step result

Standard CRUD operations apply.

 Common Data Service Server API

Common Data Service Server API

This page provides a static view of the methods in the CDS server. Please note that a
running CDS server provides a more useful version of this information. View the details
at a URL like the following, but check the server configuration for the exact port number
(e.g., “8000”) and context root (e.g., “ccds”) to use:

http://localhost:8000/ccds/swagger-ui.html

CDS APIs in Clio Release

This section lists the methods in version 3.0.1, which is the last version in the Clio release.

code-table-controller

GET /code/pair/{name}

Gets the list of code-name pairs for the specified value set. Returns bad request if the value set is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	name

	path

	name

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /code/pair

Gets the list of value set names that can be used to fetch code-name pairs.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

catalog-controller

GET /catalog/solution/{solutionId}

Gets the catalogs where the specified solution is published; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /catalog/{catalogId}

Updates an existing catalog with the supplied data. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalog

	body

	catalog

	

	catalogId

	path

	catalogId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /catalog/{catalogId}

Deletes the catalog with the specified ID. Cascades delete to related tables. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /catalog/{catalogId}

Gets the catalog for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /catalog/{catalogId}/solution/{solutionId}

Publishes the specified solution to the specified catalog. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	map

	body

	map

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /catalog/{catalogId}/solution/{solutionId}

Removes the specified solution from the specified solution.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /catalog/{catalogId}/solution/count

Gets the count of solutions in the specified catalog.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /catalog/solution

Gets a page of solutions in the specified catalogs, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ctlg

	query

	Catalog IDs

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /catalog/user/{userId}/favorite

Gets the list of catalog IDs that are favorites of the specified user; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /catalog

Creates a new catalog and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalog

	body

	catalog

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /catalog

Gets a page of catalogs, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /catalog/pubs

Gets the set of distinct catalog publishers. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /catalog/{catalogId}/user/{userId}/favorite

Marks the specified catalog as a favorite of the specified user. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /catalog/{catalogId}/user/{userId}/favorite

Removes the specified catalog as a favorite of the specified user.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /catalog/search

Searches for catalogs with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	accessTypeCode

	query

	accessTypeCode

	string

	description

	query

	description

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	origin

	query

	origin

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	publisher

	query

	publisher

	string

	selfPublish

	query

	selfPublish

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	url

	query

	url

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

access-controller

POST /access/solution/{solutionId}/user/{userId}

Grants write permission for the specified user to the specified solution. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /access/solution/{solutionId}/user/{userId}

Removes write permission for the specified user from the specified solution. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /access/peer/{peerId}/solution/{solutionId}

Checks if the specified peer can read the specified solution. Returns non-zero if yes, zero if no.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /access/peer/{peerId}/catalog/{catalogId}

Add read access to the specified restricted catalog for the specified peer. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	peerId

	path

	peerId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /access/peer/{peerId}/catalog/{catalogId}

Removes read access to the specified restricted catalog for the specified peer.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /access/peer/{peerId}/catalog/{catalogId}

Checks if the specified peer can read the specified catalog. Returns non-zero if yes, zero if no.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/user/{userId}/solution

Gets a page of solutions for which the user has write permission but is not the owner, optionally sorted on fields. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/peer/{peerId}/catalog

Gets the list of catalog IDs accessible to the specified peer; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/user/{userId}/solution/{solutionId}

Checks if the specified user can read the specified solution. Returns non-zero if yes, zero if no.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/solution/{solutionId}/user

Gets the list of users who were granted write access to the specified solution.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/catalog/{catalogId}/peer

Gets the list of peers with access to the specified restricted catalog; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

revision-controller

GET /revision/{revisionId}/artifact

Gets the artifacts for the specified solution revision. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /revision/{revisionId}/catalog/{catalogId}/descr

Updates an existing description with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	description

	body

	description

	

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /revision/{revisionId}/catalog/{catalogId}/descr

Creates a new description for the specified revision and catalog. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	description

	body

	description

	

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /revision/{revisionId}/catalog/{catalogId}/descr

Deletes the description with the specified IDs. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /revision/{revisionId}/catalog/{catalogId}/descr

Gets the description for the specified revision and catalog. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /revision/{revisionId}/catalog/{catalogId}/document/{documentId}

Adds a user document to the specified revision and catalog.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	documentId

	path

	documentId

	string

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /revision/{revisionId}/catalog/{catalogId}/document/{documentId}

Removes a document from the specified revision and catalog.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	documentId

	path

	documentId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /revision/{revisionId}/catalog/{catalogId}/document

Gets the documents for the specified revision and catalog.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /revision/{revisionId}/artifact/{artifactId}

Adds the specified artifact to the specified solution revision. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /revision/{revisionId}/artifact/{artifactId}

Removes the specified artifact from the specified solution revision.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

workbench-controller

GET /wkbn/proj/{projectId}/ppl

Gets the workbench pipelines mapped to the specified project ID. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/ntbk

Creates a new notebook and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebook

	body

	notebook

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/ntbk

Gets a page of notebooks, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/proj/{projectId}/ppl/{pipelineId}

Maps the specified pipeline to the specified project.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

	projectId

	path

	projectId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /wkbn/proj/{projectId}/ppl/{pipelineId}

Umaps the specified pipeline from the specified project.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

	projectId

	path

	projectId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/ppl/{pipelineId}/proj

Gets the workbench projects to which the specified pipeline is mapped. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/ntbk/{notebookId}/proj

Gets the workbench projects to which the specified notebook is mapped. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/proj/{projectId}/ntbk

Gets the workbench notebooks mapped to the specified project ID. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/ppl/search

Searches for pipelines with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	repositoryUrl

	query

	repositoryUrl

	string

	serviceStatusCode

	query

	serviceStatusCode

	string

	serviceUrl

	query

	serviceUrl

	string

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/ntbk/search

Searches for notebooks with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	repositoryUrl

	query

	repositoryUrl

	string

	serviceStatusCode

	query

	serviceStatusCode

	string

	serviceUrl

	query

	serviceUrl

	string

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /wkbn/proj

Creates a new project and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	project

	body

	project

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/proj

Gets a page of projects, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/proj/{projectId}/ntbk/{notebookId}

Maps the specified notebook to the specified project.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

	projectId

	path

	projectId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /wkbn/proj/{projectId}/ntbk/{notebookId}

Unmaps the specified notebook from the specified project.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

	projectId

	path

	projectId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /wkbn/proj/{projectId}

Updates an existing project with the supplied data. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	project

	body

	project

	

	projectId

	path

	projectId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /wkbn/proj/{projectId}

Deletes the project with the specified ID. Cascades delete to related mapping records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/proj/{projectId}

Gets the project for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/ppl

Creates a new pipeline and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipeline

	body

	pipeline

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/ppl

Gets a page of pipelines, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /wkbn/ntbk/{notebookId}

Updates an existing notebook with the supplied data. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebook

	body

	notebook

	

	notebookId

	path

	notebookId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /wkbn/ntbk/{notebookId}

Deletes the notebook with the specified ID. Cascades delete to related mapping records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/ntbk/{notebookId}

Gets the notebook for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/proj/search

Searches for projects with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	repositoryUrl

	query

	repositoryUrl

	string

	serviceStatusCode

	query

	serviceStatusCode

	string

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /wkbn/ppl/{pipelineId}

Updates an existing pipeline with the supplied data. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipeline

	body

	pipeline

	

	pipelineId

	path

	pipelineId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /wkbn/ppl/{pipelineId}

Deletes the pipeline with the specified ID. Cascades delete to related mapping records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/ppl/{pipelineId}

Gets the pipeline for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

notification-controller

GET /notif/notifpref/user/{userId}

Gets notification preferences for the specified user ID. Returns empty if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/count

Gets the count of notifications.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/user/{userId}

Gets a page of active notifications for the specified user; returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /notif

Creates a new notification and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notif

	body

	notif

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /notif

Gets a page of notifications, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /notif/notifpref

Creates a new user notification preference. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /notif/{notificationId}

Updates an existing notification with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notif

	body

	notif

	

	notificationId

	path

	notificationId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/{notificationId}

Deletes the notification with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /notif/user/{userId}/unread/count

Gets the count of unread active notifications for the specified user.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/notifpref/{userNotifPrefId}

Updates an existing user notification preference with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/notifpref/{userNotifPrefId}

Deletes the user notification preference with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /notif/notifpref/{userNotifPrefId}

Gets the user notification preference for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/{notificationId}/user/{userId}

Records that the user viewed the notification by storing the current date and time. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notifUserMap

	body

	notifUserMap

	

	notificationId

	path

	notificationId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /notif/{notificationId}/user/{userId}

Adds the specified user as a recipient of the notification. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notifUserMap

	body

	notifUserMap

	

	notificationId

	path

	notificationId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/{notificationId}/user/{userId}

Drops the specified user as a recipient of the notification.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

healthcheck-controller

GET /healthcheck

Checks the health of the application by querying the database.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /version

Gets the server version, which is the value of the MANIFEST.MF property Implementation-Version as written by maven.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

publish-request-controller

POST /pubreq

Creates a new publish request with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pubReq

	body

	pubReq

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /pubreq

Gets a page of publish requests, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /pubreq/{requestId}

Updates an existing publish request with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pubReq

	body

	pubReq

	

	requestId

	path

	requestId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /pubreq/{requestId}

Deletes the publish request with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /pubreq/{requestId}

Gets the publish request for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /pubreq/search

Searches for publish requests with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	requestUserId

	query

	requestUserId

	string

	reviewUserId

	query

	reviewUserId

	string

	revisionId

	query

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	query

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

tag-controller

DELETE /tag/{tag}

Deletes the specified solution tag. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /tag

Creates a new solution tag. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	body

	tag

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /tag

Gets a page of solution tags, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

peer-controller

POST /peer/sub

Creates a new entity with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerSub

	body

	peerSub

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /peer/{peerId}/sub/count

Gets count of subscriptions for the specified peer.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/{peerId}

Updates an existing peer with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peer

	body

	peer

	

	peerId

	path

	peerId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /peer/{peerId}

Deletes the peer with the specified ID. Cascades delete to peer subscriptions. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /peer/{peerId}

Gets the peer with the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/{peerId}/sub

Gets all subscriptions for the specified peer. Returns empty if none are found
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /peer

Creates a new peer and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peer

	body

	peer

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /peer

Gets a page of peers, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/sub/{subId}

Updates an existing peer subscription with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerSub

	body

	peerSub

	

	subId

	path

	subId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /peer/sub/{subId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /peer/sub/{subId}

Gets the peer subscription for the specified ID. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/search

Searches for peers with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	apiUrl

	query

	apiUrl

	string

	contact1

	query

	contact1

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	self

	query

	self

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	subjectName

	query

	subjectName

	string

	unpaged

	query

	

	boolean

	webUrl

	query

	webUrl

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

task-controller

GET /task/stepresult/search

Searches for step results with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	taskId

	query

	taskId

	integer

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /task

Creates a new task with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	task

	body

	task

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /task

Gets a page of tasks, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /task/{taskId}

Updates an existing task with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	task

	body

	task

	

	taskId

	path

	taskId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /task/{taskId}

Deletes the task with the specified ID. Cascades the delete to associated step results. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	taskId

	path

	taskId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /task/{taskId}

Gets the task for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	taskId

	path

	taskId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /task/stepresult/{stepResultId}

Updates an existing task step result with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResult

	body

	stepResult

	

	stepResultId

	path

	stepResultId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /task/stepresult/{stepResultId}

Deletes the task step result with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /task/stepresult/{stepResultId}

Gets the task step result with the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /task/{taskId}/stepresult

Gets all step results associated with the specified task ID. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	taskId

	path

	taskId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /task/stepresult

Creates a new task step result with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResult

	body

	stepResult

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /task/search

Searches for tasks with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	query

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	query

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	taskCode

	query

	taskCode

	string

	taskId

	query

	taskId

	integer

	trackingId

	query

	trackingId

	string

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

artifact-controller

GET /artifact/like

Searches for artifacts with names or descriptions that contain the search term using the like operator; empty if no matches are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	term

	query

	term

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /artifact/{artifactId}

Updates an existing artifact with the supplied data. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifact

	body

	artifact

	

	artifactId

	path

	artifactId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /artifact/{artifactId}

Deletes the artifact with the specified ID. Cascades delete to related records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /artifact/{artifactId}

Gets the artifact with the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/count

Gets the count of artifacts.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/{artifactId}/revision

Gets the solution revisions that use the specified artifact.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /artifact

Creates a new artifact and generates an ID if needed. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifact

	body

	artifact

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /artifact

Gets a page of artifacts, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/search

Searches for artifacts with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	artifactTypeCode

	query

	artifactTypeCode

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	uri

	query

	uri

	string

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

site-controller

POST /site/config

Creates a new site configuration object. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /site/config

Gets a page of site configurations, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /site/content

Creates a new site content object. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	siteContent

	body

	siteContent

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /site/content

Gets a page of site content objects, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /site/content/{contentKey}

Updates an existing site content object with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	contentKey

	path

	contentKey

	string

	siteContent

	body

	siteContent

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /site/content/{contentKey}

Deletes the site content object with the specified key. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	contentKey

	path

	contentKey

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /site/content/{contentKey}

Gets the site content object for the specified key. Answers null if the key is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	contentKey

	path

	contentKey

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /site/config/{configKey}

Updates an existing site configuration with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /site/config/{configKey}

Deletes the site configuration with the specified key. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /site/config/{configKey}

Gets the site configuration for the specified key. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

license-controller

POST /lic/templ

Creates a new license profile template. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	template

	body

	template

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /lic/templ

Gets a page of license profile templates, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /lic/templ/{licenseId}

Updates an existing license profile template with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	licenseId

	path

	licenseId

	integer

	licenseTemplate

	body

	licenseTemplate

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /lic/templ/{licenseId}

Deletes the license profile template with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	licenseId

	path

	licenseId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /lic/templ/{licenseId}

Gets the license profile template for the specified ID. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	licenseId

	path

	licenseId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

role-controller

POST /role/{roleId}/function

Creates a new role function and generates an ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleFunction

	body

	roleFunction

	

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/{roleId}/function

Gets the functions for the specified role. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}/function/{functionId}

Updates an existing role function with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	functionId

	path

	functionId

	string

	roleFunction

	body

	roleFunction

	

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /role/{roleId}/function/{functionId}

Deletes the role function with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	functionId

	path

	functionId

	string

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /role/{roleId}/function/{functionId}

Gets the role function with the specified ID. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	functionId

	path

	functionId

	string

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /role/search

Searches for roles with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/count

Gets the count of roles.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}

Updates an existing role with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	role

	body

	role

	

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /role/{roleId}

Deletes the role with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /role/{roleId}

Gets the role for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /role

Creates a new role and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	role

	body

	role

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role

Gets a page of roles, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

document-controller

POST /document

Creates a new document object and generates an ID if needed. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	document

	body

	document

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /document/{documentId}

Updates an existing document with the supplied data. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	document

	body

	document

	

	documentId

	path

	documentId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /document/{documentId}

Deletes the document with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /document/{documentId}

Gets the document object for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

thread-controller

GET /thread/solution/{solutionId}/revision/{revisionId}/count

Gets the count of threads for the solution and revision IDs.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread

Creates a new thread and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	thread

	body

	thread

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread

Gets a page of threads, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/count

Gets the count of threads.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment/count

Gets the count of comments in all threads for the specified solution and revision IDs.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread/{threadId}/comment

Creates a new comment and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	comment

	body

	comment

	

	threadId

	path

	threadId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}/comment

Gets a page of comments in the thread. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	threadId

	path

	threadId

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}

Updates an existing thread with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	thread

	body

	thread

	

	threadId

	path

	threadId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /thread/{threadId}

Deletes the thread with the specified ID. Cascades to comments in the thread. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}

Gets the thread for the specified ID. Returns null if an ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}

Gets a page of threads for the solution and revision IDs, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/{threadId}/comment/count

Gets the count of comments in the specified thread.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment

Gets a page of comments for the specified solution and revision IDs, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}/comment/{commentId}

Updates an existing comment with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	comment

	body

	comment

	

	commentId

	path

	commentId

	string

	threadId

	path

	threadId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /thread/{threadId}/comment/{commentId}

Deletes the comment with the specified ID. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	commentId

	path

	commentId

	string

	threadId

	path

	threadId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}/comment/{commentId}

Gets the comment for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	commentId

	path

	commentId

	string

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

right-to-use-controller

PUT /rtu/{rtuId}

Updates an existing RTU object with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtu

	body

	rtu

	

	rtuId

	path

	rtuId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /rtu/{rtuId}

Deletes the RTU object with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtuId

	path

	rtuId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /rtu/{rtuId}

Gets the right-to-use object for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtuId

	path

	rtuId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /rtu/{rtuId}/user

Gets all users mapped to the specified RTU. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	rtuId

	path

	rtuId

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /rtu/ref

Creates a new RTU reference. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ref

	body

	ref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /rtu/ref

Gets a page of RTU references, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /rtu/{rtuId}/ref/{refId}

Adds the specified reference to the specified RTU. Answers bad request if the RTU ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	map

	body

	map

	

	refId

	path

	refId

	string

	rtuId

	path

	rtuId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /rtu/{rtuId}/ref/{refId}

Removes the specified reference from the specified RTU.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	refId

	path

	refId

	string

	rtuId

	path

	rtuId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /rtu/solution/{solutionId}/user/{userId}

Gets a list of right-to-use objects for the specified solution and user. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /rtu/{rtuId}/user/{userId}

Adds the specified user to the specified RTU. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	map

	body

	map

	

	rtuId

	path

	rtuId

	integer

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /rtu/{rtuId}/user/{userId}

Removes the specified user from the specified RTU.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtuId

	path

	rtuId

	integer

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /rtu/ref/{referenceId}

Gets the right-to-use objects to which the specified reference is mapped. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	referenceId

	path

	referenceId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /rtu/search

Searches for right-to-use objects with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	site

	query

	site

	boolean

	size

	query

	Number of records per page.

	integer

	solutionId

	query

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /rtu

Creates a new RTU object and generates an ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtu

	body

	rtu

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /rtu

Gets a page of right-to-use objects, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /rtu/ref/{ref}

Deletes the specified RTU reference. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ref

	path

	ref

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

user-controller

PUT /user/role/{roleId}

Adds or removes the specified role for every specified user. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	usersRoleRequest

	body

	usersRoleRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/role/{roleId}

Adds the specified role to the specified user’s roles. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/role/{roleId}

Removes the specified role from the specified user’s roles.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/count

Gets the count of users.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/like

Returns a page of users with names that contain the search term matched using a like operator on the first, middle, last and login-name fields. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	term

	query

	term

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}

Updates an existing user with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	user

	body

	user

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}

Deletes the user with the specified ID. Cascades to related entities: roles, logins, notifications. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}

Gets the user for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/role/{roleId}/count

Gets the count of users with the specified role.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/{userId}/favorite/solution

Gets a page of solutions that the specified user has marked as favorite. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Updates an existing user login provider with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Creates a new user login provider. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Deletes the specified user login provider. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Gets the login provider for the specified user, provider code and provider login. Returns null if an ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/login

Checks the specified credentials for full access. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/verify

Checks the specified credentials for verification. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /user/{userId}/chgpw

Changes the user’s password to the new value if the user exists, is active, and the old password matches. Returns bad request if not found or not matched.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	changeRequest

	body

	changeRequest

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/logprov

Gets all login providers for the specified user. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user

Creates a new user and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	user

	body

	user

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user

Gets a page of users, optionally sorted on fields. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/role

Assigns the specified roles to the specified user after dropping any existing assignments. Returns bad request if an Id is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleIds

	body

	roleIds

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/role

Gets all roles assigned to the specified user ID. Answers empty if noe are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/search

Searches for users with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	email

	query

	email

	string

	firstName

	query

	firstName

	string

	lastName

	query

	lastName

	string

	loginName

	query

	loginName

	string

	middleName

	query

	middleName

	string

	offset

	query

	

	integer

	orgName

	query

	orgName

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/tag/{tag}

Adds a tag to the user. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/tag/{tag}

Drops a tag from the user. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}/deploy

Gets a page of solution deployments for the specified user ID. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/{userId}/favorite/solution/{solutionId}

Creates a new solution favorite record. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	sfv

	body

	sfv

	

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/favorite/solution/{solutionId}

Deletes the solution favorite with the specified IDs. Returns bad request if the entity is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /user/loginapi

Checks the specified credentials for API access. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

solution-controller

DELETE /solution/{solutionId}/dnld/{downloadId}

Deletes the solution download object with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	downloadId

	path

	downloadId

	integer

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/count

Gets the count of solutions.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{parentId}/comp

Gets the member solution IDs in the specified composite solution. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision/{revisionId}/deploy

Creates a new deployment record for the specified solution and revision. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	sd

	body

	sd

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}/deploy

Gets a page of deployments for the specified solution and revision IDs. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/user

Gets a page of solutions editable by the specified user and matching all query parameters. Keywords are processed using LIKE-operator search. Does not search any child entities.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	desc

	query

	Description key words

	array

	mtc

	query

	Model type codes

	array

	name

	query

	Name key words

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	publ

	query

	Published Y/N

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	tag

	query

	Tags

	array

	unpaged

	query

	

	boolean

	user

	query

	User ID

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/user/{userId}/deploy

Gets a page of deployments for the specified solution, revision and user IDs. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Updates an existing deployment record with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	deploymentId

	path

	deploymentId

	string

	revisionId

	path

	revisionId

	string

	sd

	body

	sd

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Deletes the deployment record with the specified IDs. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	deploymentId

	path

	deploymentId

	string

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/view

Increments the view count of the specified solution (special case of update). Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/rating

Gets a page of user ratings for the specified solution. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	solutionId

	path

	solutionId

	string

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution

Creates a new solution and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solution

	body

	solution

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution

Gets a page of solutions, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/date

Finds published solutions based on specified catalog and date query parameters. Limits result to solutions, revisions, artifacts etc. modified after the specified time, expressed in milliseconds since the Epoch.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ctlg

	query

	Catalog IDs

	array

	inst

	query

	Milliseconds since the Epoch

	integer

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{parentId}/comp/{childId}

Adds the specified member (child) to the specified composite solution (parent). Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	childId

	path

	childId

	string

	parentId

	path

	parentId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{parentId}/comp/{childId}

Removes the specified member (child) from the specified composite solution (parent).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	childId

	path

	childId

	string

	parentId

	path

	parentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/tag

Gets all tags assigned to the specified solution ID. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/like

Searches for solutions with names or descriptions that contain the search term using the like operator. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	term

	query

	term

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision

Creates a new revision and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revision

	body

	revision

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision

Gets all revisions for the specified solution IDs. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal

Finds solutions with attribute values and/or child attribute values matching the field name - field value pairs specified as query parameters. Supports faceted search; i.e., check for kw1 in name, kw2 in description and so on.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	auth

	query

	Author key words

	array

	desc

	query

	Description key words

	array

	mtc

	query

	Model type codes

	array

	name

	query

	Name key words

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	pub

	query

	Publisher key words

	array

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	tag

	query

	Tags

	array

	unpaged

	query

	

	boolean

	user

	query

	User IDs

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal/kwtag

Finds published solutions matching the specified attribute values and/or child attribute values with flexible handling of tags to allow all/any matches. Checks multiple fields for the supplied keywords, including ID, name, description etc.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	alltag

	query

	All tags, solution must have every one

	array

	anytag

	query

	Any tags, solution must have at least one

	array

	ctlg

	query

	Catalog IDs

	array

	kw

	query

	Key words

	array

	mtc

	query

	Model type codes

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	user

	query

	User IDs

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}

Updates an existing solution with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solution

	body

	solution

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}

Deletes the solution with the specified ID. Cascades the delete to related entities. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}

Gets the solution for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/rating/user/{userId}

Updates an existing solution rating with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	sr

	body

	sr

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /solution/{solutionId}/rating/user/{userId}

Creates a new solution rating. Returns bad request on constrain violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	sr

	body

	sr

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/rating/user/{userId}

Deletes the solution rating for the specified IDs. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/rating/user/{userId}

Gets the rating for the specified solution and user. Returns null if not found
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/pic

Saves or updates a solution image. Returns bad request if the ID is not found or the image is too large.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	picture

	body

	picture

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/pic

Gets the image for the specified solution ID. Returns null if the ID is not found.
	Produces:
[u’application/octet-stream’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/dnld

Gets a page of download details for the specified solution’s artifacts. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/tag/{tag}

Adds the specified tag to the specified solution. Creates the tag if necessary. Returns bad request if the solution ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/tag/{tag}

Removes the specified tag from the specified solution. Returns bad request if either is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /solution/{solutionId}/dnld/artifact/{artifactId}/user/{userId}

Creates a new solution download object with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	sd

	body

	sd

	

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/search/tag

Gets a page of solutions tagged with the specified tag. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	tag

	query

	tag

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/revision/{revisionId}

Updates an existing revision with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revision

	body

	revision

	

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}

Deletes the revision with the specified ID. Cascades delete to related records. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}

Gets the solution revision for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search

Searches for solutions with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	modelTypeCode

	query

	modelTypeCode

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	origin

	query

	origin

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	sourceId

	query

	sourceId

	string

	toolkitTypeCode

	query

	toolkitTypeCode

	string

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

CDS APIs in Boreas Release

This section lists the methods in version 2.2.2, which is the last version in the Boreas release.

code-table-controller

GET /code/pair/{name}

Gets the list of code-name pairs for the specified value set. Returns bad request if the value set is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	name

	path

	name

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /code/pair

Gets the list of value set names that can be used to fetch code-name pairs.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

catalog-controller

GET /catalog/solution/{solutionId}

Gets the catalogs where the specified solution is published; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /catalog/{catalogId}

Updates an existing catalog with the supplied data. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalog

	body

	catalog

	

	catalogId

	path

	catalogId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /catalog/{catalogId}

Deletes the catalog with the specified ID. Cascades delete to related tables. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /catalog/{catalogId}

Gets the catalog for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /catalog/{catalogId}/solution/{solutionId}

Publishes the specified solution to the specified catalog. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	map

	body

	map

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /catalog/{catalogId}/solution/{solutionId}

Removes the specified solution from the specified solution.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /catalog/{catalogId}/solution/count

Gets the count of solutions in the specified catalog.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /catalog/solution

Gets a page of solutions in the specified catalogs, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ctlg

	query

	Catalog IDs

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /catalog/user/{userId}/favorite

Gets the list of catalog IDs that are favorites of the specified user; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /catalog

Creates a new catalog and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalog

	body

	catalog

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /catalog

Gets a page of catalogs, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /catalog/pubs

Gets the set of distinct catalog publishers. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /catalog/{catalogId}/user/{userId}/favorite

Marks the specified catalog as a favorite of the specified user. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /catalog/{catalogId}/user/{userId}/favorite

Removes the specified catalog as a favorite of the specified user.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /catalog/search

Searches for catalogs with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	accessTypeCode

	query

	accessTypeCode

	string

	description

	query

	description

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	origin

	query

	origin

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	publisher

	query

	publisher

	string

	selfPublish

	query

	selfPublish

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	url

	query

	url

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

access-controller

POST /access/solution/{solutionId}/user/{userId}

Grants write permission for the specified user to the specified solution. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /access/solution/{solutionId}/user/{userId}

Removes write permission for the specified user from the specified solution. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /access/peer/{peerId}/solution/{solutionId}

Checks if the specified peer can read the specified solution. Returns non-zero if yes, zero if no.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /access/peer/{peerId}/catalog/{catalogId}

Add read access to the specified restricted catalog for the specified peer. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	peerId

	path

	peerId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /access/peer/{peerId}/catalog/{catalogId}

Removes read access to the specified restricted catalog for the specified peer.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /access/peer/{peerId}/catalog/{catalogId}

Checks if the specified peer can read the specified catalog. Returns non-zero if yes, zero if no.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/user/{userId}/solution

Gets a page of solutions for which the user has write permission but is not the owner, optionally sorted on fields. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/peer/{peerId}/catalog

Gets the list of catalog IDs accessible to the specified peer; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/user/{userId}/solution/{solutionId}

Checks if the specified user can read the specified solution. Returns non-zero if yes, zero if no.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /access/solution/{solutionId}/user

Gets the list of users who were granted write access to the specified solution.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

revision-controller

GET /revision/{revisionId}/artifact

Gets the artifacts for the specified solution revision. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /revision/{revisionId}/catalog/{catalogId}/descr

Updates an existing description with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	description

	body

	description

	

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /revision/{revisionId}/catalog/{catalogId}/descr

Creates a new description for the specified revision and catalog. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	description

	body

	description

	

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /revision/{revisionId}/catalog/{catalogId}/descr

Deletes the description with the specified IDs. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /revision/{revisionId}/catalog/{catalogId}/descr

Gets the description for the specified revision and catalog. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /revision/{revisionId}/catalog/{catalogId}/document/{documentId}

Adds a user document to the specified revision and catalog.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	documentId

	path

	documentId

	string

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /revision/{revisionId}/catalog/{catalogId}/document/{documentId}

Removes a document from the specified revision and catalog.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	documentId

	path

	documentId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /revision/{revisionId}/catalog/{catalogId}/document

Gets the documents for the specified revision and catalog.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	catalogId

	path

	catalogId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /revision/{revisionId}/artifact/{artifactId}

Adds the specified artifact to the specified solution revision. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	revisionId

	path

	revisionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /revision/{revisionId}/artifact/{artifactId}

Removes the specified artifact from the specified solution revision.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

workbench-controller

GET /wkbn/proj/{projectId}/ppl

Gets the workbench pipelines mapped to the specified project ID. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/ntbk

Creates a new notebook and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebook

	body

	notebook

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/ntbk

Gets a page of notebooks, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/proj/{projectId}/ppl/{pipelineId}

Maps the specified pipeline to the specified project.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

	projectId

	path

	projectId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /wkbn/proj/{projectId}/ppl/{pipelineId}

Umaps the specified pipeline from the specified project.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

	projectId

	path

	projectId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/ppl/{pipelineId}/proj

Gets the workbench projects to which the specified pipeline is mapped. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/ntbk/{notebookId}/proj

Gets the workbench projects to which the specified notebook is mapped. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/proj/{projectId}/ntbk

Gets the workbench notebooks mapped to the specified project ID. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/ppl/search

Searches for pipelines with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	repositoryUrl

	query

	repositoryUrl

	string

	serviceStatusCode

	query

	serviceStatusCode

	string

	serviceUrl

	query

	serviceUrl

	string

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/ntbk/search

Searches for notebooks with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	repositoryUrl

	query

	repositoryUrl

	string

	serviceStatusCode

	query

	serviceStatusCode

	string

	serviceUrl

	query

	serviceUrl

	string

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /wkbn/proj

Creates a new project and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	project

	body

	project

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/proj

Gets a page of projects, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/proj/{projectId}/ntbk/{notebookId}

Maps the specified notebook to the specified project.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

	projectId

	path

	projectId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /wkbn/proj/{projectId}/ntbk/{notebookId}

Unmaps the specified notebook from the specified project.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

	projectId

	path

	projectId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /wkbn/proj/{projectId}

Updates an existing project with the supplied data. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	project

	body

	project

	

	projectId

	path

	projectId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /wkbn/proj/{projectId}

Deletes the project with the specified ID. Cascades delete to related mapping records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/proj/{projectId}

Gets the project for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	projectId

	path

	projectId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /wkbn/ppl

Creates a new pipeline and generates an ID if needed. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipeline

	body

	pipeline

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /wkbn/ppl

Gets a page of pipelines, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /wkbn/ntbk/{notebookId}

Updates an existing notebook with the supplied data. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebook

	body

	notebook

	

	notebookId

	path

	notebookId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /wkbn/ntbk/{notebookId}

Deletes the notebook with the specified ID. Cascades delete to related mapping records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/ntbk/{notebookId}

Gets the notebook for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notebookId

	path

	notebookId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /wkbn/proj/search

Searches for projects with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	repositoryUrl

	query

	repositoryUrl

	string

	serviceStatusCode

	query

	serviceStatusCode

	string

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /wkbn/ppl/{pipelineId}

Updates an existing pipeline with the supplied data. Returns bad request on bad URL, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipeline

	body

	pipeline

	

	pipelineId

	path

	pipelineId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /wkbn/ppl/{pipelineId}

Deletes the pipeline with the specified ID. Cascades delete to related mapping records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /wkbn/ppl/{pipelineId}

Gets the pipeline for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pipelineId

	path

	pipelineId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

notification-controller

GET /notif/notifpref/user/{userId}

Gets notification preferences for the specified user ID. Returns empty if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/count

Gets the count of notifications.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/user/{userId}

Gets a page of active notifications for the specified user; returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /notif

Creates a new notification and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notif

	body

	notif

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /notif

Gets a page of notifications, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/{notificationId}

Updates an existing notification with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notif

	body

	notif

	

	notificationId

	path

	notificationId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/{notificationId}

Deletes the notification with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

POST /notif/notifpref

Creates a new user notification preference. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /notif/user/{userId}/unread/count

Gets the count of unread active notifications for the specified user.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/notifpref/{userNotifPrefId}

Updates an existing user notification preference with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/notifpref/{userNotifPrefId}

Deletes the user notification preference with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /notif/notifpref/{userNotifPrefId}

Gets the user notification preference for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/{notificationId}/user/{userId}

Records that the user viewed the notification by storing the current date and time. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notifUserMap

	body

	notifUserMap

	

	notificationId

	path

	notificationId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /notif/{notificationId}/user/{userId}

Adds the specified user as a recipient of the notification. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notifUserMap

	body

	notifUserMap

	

	notificationId

	path

	notificationId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/{notificationId}/user/{userId}

Drops the specified user as a recipient of the notification.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

healthcheck-controller

GET /healthcheck

Checks the health of the application by querying the database.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /version

Gets the server version, which is the value of the MANIFEST.MF property Implementation-Version as written by maven.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

publish-request-controller

POST /pubreq

Creates a new publish request with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pubReq

	body

	pubReq

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /pubreq

Gets a page of publish requests, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /pubreq/{requestId}

Updates an existing publish request with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	pubReq

	body

	pubReq

	

	requestId

	path

	requestId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /pubreq/{requestId}

Deletes the publish request with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /pubreq/{requestId}

Gets the publish request for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /pubreq/search

Searches for publish requests with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	requestUserId

	query

	requestUserId

	string

	reviewUserId

	query

	reviewUserId

	string

	revisionId

	query

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	query

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

tag-controller

DELETE /tag/{tag}

Deletes the specified solution tag. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /tag

Creates a new solution tag. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	body

	tag

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /tag

Gets a page of solution tags, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

peer-controller

POST /peer/sub

Creates a new entity with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerSub

	body

	peerSub

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /peer/{peerId}/sub/count

Gets count of subscriptions for the specified peer.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/{peerId}

Updates an existing peer with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peer

	body

	peer

	

	peerId

	path

	peerId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /peer/{peerId}

Deletes the peer with the specified ID. Cascades delete to peer subscriptions. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /peer/{peerId}

Gets the peer with the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/{peerId}/sub

Gets all subscriptions for the specified peer. Returns empty if none are found
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /peer

Creates a new peer and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peer

	body

	peer

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /peer

Gets a page of peers, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/sub/{subId}

Updates an existing peer subscription with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerSub

	body

	peerSub

	

	subId

	path

	subId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /peer/sub/{subId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /peer/sub/{subId}

Gets the peer subscription for the specified ID. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/search

Searches for peers with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	apiUrl

	query

	apiUrl

	string

	contact1

	query

	contact1

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	self

	query

	self

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	subjectName

	query

	subjectName

	string

	unpaged

	query

	

	boolean

	webUrl

	query

	webUrl

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

task-controller

GET /task/stepresult/search

Searches for step results with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	taskId

	query

	taskId

	integer

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /task

Creates a new task with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	task

	body

	task

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /task

Gets a page of tasks, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /task/{taskId}

Updates an existing task with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	task

	body

	task

	

	taskId

	path

	taskId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /task/{taskId}

Deletes the task with the specified ID. Cascades the delete to associated step results. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	taskId

	path

	taskId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /task/{taskId}

Gets the task for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	taskId

	path

	taskId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /task/stepresult/{stepResultId}

Updates an existing task step result with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResult

	body

	stepResult

	

	stepResultId

	path

	stepResultId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /task/stepresult/{stepResultId}

Deletes the task step result with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /task/stepresult/{stepResultId}

Gets the task step result with the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /task/{taskId}/stepresult

Gets all step results associated with the specified task ID. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	taskId

	path

	taskId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /task/stepresult

Creates a new task step result with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResult

	body

	stepResult

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /task/search

Searches for tasks with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	query

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	query

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	statusCode

	query

	statusCode

	string

	taskCode

	query

	taskCode

	string

	taskId

	query

	taskId

	integer

	trackingId

	query

	trackingId

	string

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

artifact-controller

GET /artifact/like

Searches for artifacts with names or descriptions that contain the search term using the like operator; empty if no matches are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	term

	query

	term

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /artifact/{artifactId}

Updates an existing artifact with the supplied data. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifact

	body

	artifact

	

	artifactId

	path

	artifactId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /artifact/{artifactId}

Deletes the artifact with the specified ID. Cascades delete to related records.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /artifact/{artifactId}

Gets the artifact with the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/count

Gets the count of artifacts.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/{artifactId}/revision

Gets the solution revisions that use the specified artifact.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /artifact

Creates a new artifact and generates an ID if needed. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifact

	body

	artifact

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /artifact

Gets a page of artifacts, optionally sorted; empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/search

Searches for artifacts with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	artifactTypeCode

	query

	artifactTypeCode

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	uri

	query

	uri

	string

	userId

	query

	userId

	string

	version

	query

	version

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

site-controller

POST /site/config

Creates a new site configuration object. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /site/config

Gets a page of site configurations, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /site/content

Creates a new site content object. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	siteContent

	body

	siteContent

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /site/content

Gets a page of site content objects, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /site/content/{contentKey}

Updates an existing site content object with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	contentKey

	path

	contentKey

	string

	siteContent

	body

	siteContent

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /site/content/{contentKey}

Deletes the site content object with the specified key. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	contentKey

	path

	contentKey

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /site/content/{contentKey}

Gets the site content object for the specified key. Answers null if the key is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	contentKey

	path

	contentKey

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /site/config/{configKey}

Updates an existing site configuration with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /site/config/{configKey}

Deletes the site configuration with the specified key. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /site/config/{configKey}

Gets the site configuration for the specified key. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

right-to-use-controller

PUT /rtu/{rtuId}

Updates an existing RTU object with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtu

	body

	rtu

	

	rtuId

	path

	rtuId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /rtu/{rtuId}

Deletes the RTU object with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtuId

	path

	rtuId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /rtu/{rtuId}

Gets the right-to-use object for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtuId

	path

	rtuId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /rtu/{rtuId}/user

Gets all users mapped to the specified RTU. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	rtuId

	path

	rtuId

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /rtu/ref

Creates a new RTU reference. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ref

	body

	ref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /rtu/ref

Gets a page of RTU references, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /rtu/{rtuId}/ref/{refId}

Adds the specified reference to the specified RTU. Answers bad request if the RTU ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	map

	body

	map

	

	refId

	path

	refId

	string

	rtuId

	path

	rtuId

	integer

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /rtu/{rtuId}/ref/{refId}

Removes the specified reference from the specified RTU.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	refId

	path

	refId

	string

	rtuId

	path

	rtuId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /rtu/solution/{solutionId}/user/{userId}

Gets a list of right-to-use objects for the specified solution and user. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /rtu/{rtuId}/user/{userId}

Adds the specified user to the specified RTU. Answers bad request if an ID is invalid.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	map

	body

	map

	

	rtuId

	path

	rtuId

	integer

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /rtu/{rtuId}/user/{userId}

Removes the specified user from the specified RTU.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtuId

	path

	rtuId

	integer

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /rtu/ref/{referenceId}

Gets the right-to-use objects to which the specified reference is mapped. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	referenceId

	path

	referenceId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /rtu/search

Searches for right-to-use objects with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	site

	query

	site

	boolean

	size

	query

	Number of records per page.

	integer

	solutionId

	query

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /rtu

Creates a new RTU object and generates an ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	rtu

	body

	rtu

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /rtu

Gets a page of right-to-use objects, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /rtu/ref/{ref}

Deletes the specified RTU reference. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ref

	path

	ref

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

role-controller

POST /role/{roleId}/function

Creates a new role function and generates an ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleFunction

	body

	roleFunction

	

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/{roleId}/function

Gets the functions for the specified role. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}/function/{functionId}

Updates an existing role function with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	functionId

	path

	functionId

	string

	roleFunction

	body

	roleFunction

	

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /role/{roleId}/function/{functionId}

Deletes the role function with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	functionId

	path

	functionId

	string

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /role/{roleId}/function/{functionId}

Gets the role function with the specified ID. Returns null if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	functionId

	path

	functionId

	string

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /role/search

Searches for roles with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	name

	query

	name

	string

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/count

Gets the count of roles.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}

Updates an existing role with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	role

	body

	role

	

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /role/{roleId}

Deletes the role with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /role/{roleId}

Gets the role for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /role

Creates a new role and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	role

	body

	role

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role

Gets a page of roles, optionally sorted on fields. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

document-controller

POST /document

Creates a new document object and generates an ID if needed. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	document

	body

	document

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /document/{documentId}

Updates an existing document with the supplied data. Returns bad request on bad URI, constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	document

	body

	document

	

	documentId

	path

	documentId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /document/{documentId}

Deletes the document with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /document/{documentId}

Gets the document object for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

thread-controller

GET /thread/solution/{solutionId}/revision/{revisionId}/count

Gets the count of threads for the solution and revision IDs.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread

Creates a new thread and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	thread

	body

	thread

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread

Gets a page of threads, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/count

Gets the count of threads.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment/count

Gets the count of comments in all threads for the specified solution and revision IDs.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread/{threadId}/comment

Creates a new comment and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	comment

	body

	comment

	

	threadId

	path

	threadId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}/comment

Gets a page of comments in the thread. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	threadId

	path

	threadId

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}

Updates an existing thread with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	thread

	body

	thread

	

	threadId

	path

	threadId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /thread/{threadId}

Deletes the thread with the specified ID. Cascades to comments in the thread. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}

Gets the thread for the specified ID. Returns null if an ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}

Gets a page of threads for the solution and revision IDs, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/{threadId}/comment/count

Gets the count of comments in the specified thread.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment

Gets a page of comments for the specified solution and revision IDs, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}/comment/{commentId}

Updates an existing comment with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	comment

	body

	comment

	

	commentId

	path

	commentId

	string

	threadId

	path

	threadId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /thread/{threadId}/comment/{commentId}

Deletes the comment with the specified ID. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	commentId

	path

	commentId

	string

	threadId

	path

	threadId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}/comment/{commentId}

Gets the comment for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	commentId

	path

	commentId

	string

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

user-controller

PUT /user/role/{roleId}

Adds or removes the specified role for every specified user. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	usersRoleRequest

	body

	usersRoleRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/role/{roleId}

Adds the specified role to the specified user’s roles. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/role/{roleId}

Removes the specified role from the specified user’s roles.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/count

Gets the count of users.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/like

Returns a page of users with names that contain the search term matched using a like operator on the first, middle, last and login-name fields. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	term

	query

	term

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}

Updates an existing user with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	user

	body

	user

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}

Deletes the user with the specified ID. Cascades to related entities: roles, logins, notifications. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}

Gets the user for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/role/{roleId}/count

Gets the count of users with the specified role.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/{userId}/favorite/solution

Gets a page of solutions that the specified user has marked as favorite. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Updates an existing user login provider with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Creates a new user login provider. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Deletes the specified user login provider. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Gets the login provider for the specified user, provider code and provider login. Returns null if an ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/login

Checks the specified credentials for full access. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/verify

Checks the specified credentials for verification. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /user/{userId}/chgpw

Changes the user’s password to the new value if the user exists, is active, and the old password matches. Returns bad request if not found or not matched.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	changeRequest

	body

	changeRequest

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/logprov

Gets all login providers for the specified user. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user

Creates a new user and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	user

	body

	user

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user

Gets a page of users, optionally sorted on fields. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/role

Assigns the specified roles to the specified user after dropping any existing assignments. Returns bad request if an Id is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleIds

	body

	roleIds

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/role

Gets all roles assigned to the specified user ID. Answers empty if noe are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/search

Searches for users with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	email

	query

	email

	string

	firstName

	query

	firstName

	string

	lastName

	query

	lastName

	string

	loginName

	query

	loginName

	string

	middleName

	query

	middleName

	string

	offset

	query

	

	integer

	orgName

	query

	orgName

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/tag/{tag}

Adds a tag to the user. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/tag/{tag}

Drops a tag from the user. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}/deploy

Gets a page of solution deployments for the specified user ID. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/{userId}/favorite/solution/{solutionId}

Creates a new solution favorite record. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	sfv

	body

	sfv

	

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/favorite/solution/{solutionId}

Deletes the solution favorite with the specified IDs. Returns bad request if the entity is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /user/loginapi

Checks the specified credentials for API access. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

solution-controller

DELETE /solution/{solutionId}/dnld/{downloadId}

Deletes the solution download object with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	downloadId

	path

	downloadId

	integer

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/count

Gets the count of solutions.
	Produces:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{parentId}/comp

Gets the member solution IDs in the specified composite solution. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision/{revisionId}/deploy

Creates a new deployment record for the specified solution and revision. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	sd

	body

	sd

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}/deploy

Gets a page of deployments for the specified solution and revision IDs. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/user

Gets a page of solutions editable by the specified user and matching all query parameters. Keywords are processed using LIKE-operator search. Does not search any child entities.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	desc

	query

	Description key words

	array

	mtc

	query

	Model type codes

	array

	name

	query

	Name key words

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	publ

	query

	Published Y/N

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	tag

	query

	Tags

	array

	unpaged

	query

	

	boolean

	user

	query

	User ID

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/user/{userId}/deploy

Gets a page of deployments for the specified solution, revision and user IDs. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	revisionId

	path

	revisionId

	string

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Updates an existing deployment record with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	deploymentId

	path

	deploymentId

	string

	revisionId

	path

	revisionId

	string

	sd

	body

	sd

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Deletes the deployment record with the specified IDs. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	deploymentId

	path

	deploymentId

	string

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/view

Increments the view count of the specified solution (special case of update). Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/rating

Gets a page of user ratings for the specified solution. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	solutionId

	path

	solutionId

	string

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution

Creates a new solution and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solution

	body

	solution

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution

Gets a page of solutions, optionally sorted. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/date

Finds published solutions based on specified catalog and date query parameters. Limits result to solutions, revisions, artifacts etc. modified after the specified time, expressed in milliseconds since the Epoch.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	ctlg

	query

	Catalog IDs

	array

	inst

	query

	Milliseconds since the Epoch

	integer

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{parentId}/comp/{childId}

Adds the specified member (child) to the specified composite solution (parent). Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	childId

	path

	childId

	string

	parentId

	path

	parentId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{parentId}/comp/{childId}

Removes the specified member (child) from the specified composite solution (parent).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	childId

	path

	childId

	string

	parentId

	path

	parentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/tag

Gets all tags assigned to the specified solution ID. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/dnld/artifact/{artifactId}/user/{userId}

Creates a new solution download object with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	sd

	body

	sd

	

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/search/like

Searches for solutions with names or descriptions that contain the search term using the like operator. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	term

	query

	term

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision

Creates a new revision and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revision

	body

	revision

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision

Gets all revisions for the specified solution IDs. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal

Finds solutions with attribute values and/or child attribute values matching the field name - field value pairs specified as query parameters. Supports faceted search; i.e., check for kw1 in name, kw2 in description and so on.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	auth

	query

	Author key words

	array

	desc

	query

	Description key words

	array

	mtc

	query

	Model type codes

	array

	name

	query

	Name key words

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	pub

	query

	Publisher key words

	array

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	tag

	query

	Tags

	array

	unpaged

	query

	

	boolean

	user

	query

	User IDs

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal/kwtag

Finds published solutions matching the specified attribute values and/or child attribute values with flexible handling of tags to allow all/any matches. Checks multiple fields for the supplied keywords, including ID, name, description etc.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	alltag

	query

	All tags, solution must have every one

	array

	anytag

	query

	Any tags, solution must have at least one

	array

	ctlg

	query

	Catalog IDs

	array

	kw

	query

	Key words

	array

	mtc

	query

	Model type codes

	array

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

	user

	query

	User IDs

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}

Updates an existing solution with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solution

	body

	solution

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}

Deletes the solution with the specified ID. Cascades the delete to related entities. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}

Gets the solution for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/rating/user/{userId}

Updates an existing solution rating with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	sr

	body

	sr

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /solution/{solutionId}/rating/user/{userId}

Creates a new solution rating. Returns bad request on constrain violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	sr

	body

	sr

	

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/rating/user/{userId}

Deletes the solution rating for the specified IDs. Returns bad request if not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/rating/user/{userId}

Gets the rating for the specified solution and user. Returns null if not found
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/pic

Saves or updates a solution image. Returns bad request if the ID is not found or the image is too large.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	picture

	body

	picture

	

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/pic

Gets the image for the specified solution ID. Returns null if the ID is not found.
	Produces:
[u’application/octet-stream’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/dnld

Gets a page of download details for the specified solution’s artifacts. Returns empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	solutionId

	path

	solutionId

	string

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/tag/{tag}

Adds the specified tag to the specified solution. Creates the tag if necessary. Returns bad request if the solution ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/tag/{tag}

Removes the specified tag from the specified solution. Returns bad request if either is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/search/tag

Gets a page of solutions tagged with the specified tag. Answers empty if none are found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	offset

	query

	

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	tag

	query

	tag

	string

	unpaged

	query

	

	boolean

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/revision/{revisionId}

Updates an existing revision with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revision

	body

	revision

	

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}

Deletes the revision with the specified ID. Cascades delete to related records. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}

Gets the solution revision for the specified ID. Returns null if the ID is not found.
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search

Searches for solutions with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	active

	query

	active

	boolean

	modelTypeCode

	query

	modelTypeCode

	string

	name

	query

	name

	string

	offset

	query

	

	integer

	origin

	query

	origin

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	pageNumber

	query

	

	integer

	pageSize

	query

	

	integer

	paged

	query

	

	boolean

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

	sort.sorted

	query

	

	boolean

	sort.unsorted

	query

	

	boolean

	sourceId

	query

	sourceId

	string

	toolkitTypeCode

	query

	toolkitTypeCode

	string

	unpaged

	query

	

	boolean

	userId

	query

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

CDS API in Athena Release

This section lists the methods in version 1.18.4, which is the last version in the Athena release.

code-table-controller

GET /code/artifact/type

Gets the list of artifact type codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/notifmech

Gets the list of notification delivery mechanism codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/msgsev

Gets the list of message severity codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/deploy/status

Gets the list of deployment status codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/pair/{name}

Gets the list of code-name pairs for the specified value set. Returns bad request if the value set is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	name

	path

	name

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /code/model/type

Gets the list of model type codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/toolkit/type

Gets the list of toolkit type codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/access/type

Gets the list of access type codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/peer/status

Gets the list of peer status codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/step/status

Gets the list of step status codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/logprov

Gets the list of login provider codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/val/type

Gets the list of validation type codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/step/type

Gets the list of step type codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/sub/type

Gets the list of subscription scope codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/val/status

Gets the list of validation status codes. This is DEPRECATED, use getCodeNamePairs with the appropriate value-set name.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/pair

Gets the list of value set names that can be used to fetch code-name pairs.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

healthcheck-controller

GET /healthcheck

Assesses the health of the application by querying the database.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /version

Gets the value of the MANIFEST.MF property Implementation-Version as written by maven.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

peer-controller

POST /peer/sub

Creates a new entity with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerSub

	body

	peerSub

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /peer/{peerId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	peer

	body

	peer

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /peer/{peerId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /peer/{peerId}

Gets the entity for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /peer/{peerId}/sub

Gets all subscriptions for the specified peer.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /peer

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peer

	body

	peer

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /peer

Gets a page of peers, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/sub/{subId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

	peerSub

	body

	peerSub

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /peer/sub/{subId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /peer/sub/{subId}

Gets the peer subscription for the specified ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/search

Searches for peers with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	Name

	string

	subjectName

	query

	Subject name

	string

	apiUrl

	query

	API URL

	string

	webUrl

	query

	Web URL

	string

	isSelf

	query

	isSelf

	boolean

	isLocal

	query

	isLocal

	boolean

	contact1

	query

	Contact 1

	string

	statusCode

	query

	Status code

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

step-result-controller

PUT /stepresult/{stepResultId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

	stepResult

	body

	stepResult

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /stepresult/{stepResultId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /stepresult/{stepResultId}

Gets the step result for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /stepresult/search

Searches for requests with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	trackingId

	query

	Tracking ID

	string

	stepCode

	query

	Step code

	string

	solutionId

	query

	Solution ID

	string

	revisionId

	query

	Revision ID

	string

	artifiactId

	query

	Artifact ID

	string

	userId

	query

	User ID

	string

	name

	query

	Name

	string

	statusCode

	query

	Status code

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /stepresult

Creates a new entity with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResult

	body

	stepResult

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /stepresult

Gets a page of step results, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

notification-controller

GET /notif/notifpref/user/{userId}

Gets notification preferences for the specified user ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/user/{userId}

Gets active notifications for the specified user ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /notif

Creates a new notification and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notif

	body

	notif

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /notif

Gets a page of notifications, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/count

Gets the count of notifications.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/{notificationId}

Updates an existing notification with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

	notif

	body

	notif

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/{notificationId}

Deletes the notification with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

PUT /notif/notifpref/{userNotifPrefId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/notifpref/{userNotifPrefId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /notif/notifpref/{userNotifPrefId}

Gets the user notification preference for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /notif/{notificationId}/user/{userId}

Records the date when the user viewed the notification in the notification-user mapping table. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	notificationId

	path

	notificationId

	string

	notifUserMap

	body

	notifUserMap

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /notif/{notificationId}/user/{userId}

Adds a user as a recipient of the notification. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	notificationId

	path

	notificationId

	string

	notifUserMap

	body

	notifUserMap

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /notif/{notificationId}/user/{userId}

Drops a user as a recipient of the notification.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	notificationId

	path

	notificationId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /notif/notifpref

Creates a new user notification preference. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

solution-controller

DELETE /solution/{solutionId}/dnld/{downloadId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	downloadId

	path

	downloadId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/count

Gets the count of solutions.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{parentId}/comp

Gets a list of child solution IDs used in the specified composite solution.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision/{revisionId}/deploy

Creates a new deployment record for the specified solution and revision. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	sd

	body

	sd

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}/deploy

Gets the deployments for the specified solution and revision IDs. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/search/user

Finds user-accessible solutions matching the specified attribute values. Keywords are processed using LIKE-operator search. Does not search any child entities.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	user

	query

	User ID

	string

	atc

	query

	Access type codes

	array

	mtc

	query

	Model type codes

	array

	vsc

	query

	Validation status codes (deprecated)

	array

	name

	query

	Name key words

	array

	desc

	query

	Description key words

	array

	tag

	query

	Tags

	array

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal/kw

Finds solutions matching the specified attribute values and/or child attribute values. Checks multiple fields for the supplied keywords, including ID, name, description etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	atc

	query

	Access type codes

	array

	mtc

	query

	Model type codes

	array

	kw

	query

	Key words

	array

	user

	query

	User IDs

	array

	tag

	query

	Tags

	array

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/web

Gets web metadata for the specified solution including average rating and total download count. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}/user/{userId}/deploy

Gets the deployments for the specified solution, revision and user IDs. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	userId

	path

	userId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/view

Increments the view count of the specified solution (special case of update). Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	deploymentId

	path

	deploymentId

	string

	sd

	body

	sd

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	deploymentId

	path

	deploymentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /solution

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solution

	body

	solution

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution

Gets a page of solutions, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/date

Finds solutions based on specified date, active status and access type query parameters. Limits result to solutions modified after the specified time, expressed in milliseconds since the Epoch.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	datems

	query

	Milliseconds since the Epoch

	integer

	active

	query

	Active Y/N

	boolean

	atc

	query

	Access type codes

	array

	vsc

	query

	Validation status codes (deprecated)

	array

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{parentId}/comp/{childId}

Adds a child to the parent composite solution. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

	childId

	path

	childId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{parentId}/comp/{childId}

Drops a child from the parent composite solution. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

	childId

	path

	childId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/revision/{revisionId}/validation/{taskId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	taskId

	path

	taskId

	string

	sv

	body

	sv

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /solution/{solutionId}/revision/{revisionId}/validation/{taskId}

Creates a new solution validation record. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	taskId

	path

	taskId

	string

	sv

	body

	sv

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}/validation/{taskId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	taskId

	path

	taskId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/user/{userId}/access

Gets a page of solutions with the specified user in the ACL, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/tag

Gets a list of tags for the specified solution.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/dnld/artifact/{artifactId}/user/{userId}

Creates a new solution download record. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	artifactId

	path

	artifactId

	string

	sd

	body

	sd

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/search/like

Searches for entities with names or descriptions that contain the search term using the like operator.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	term

	query

	term

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision

Creates a new solution revision and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revision

	body

	revision

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision

Gets a list of revisions for the specified solution IDs.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/validation

Gets validation results for the specified solution and revision. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/rating

Gets all user ratings for the specified solution. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/search/portal

Finds solutions with attribute values and/or child attribute values matching the field name - field value pairs specified as query parameters. Supports faceted search; i.e., check for kw1 in name, kw2 in description and so on.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	atc

	query

	Access type codes

	array

	mtc

	query

	Model type codes

	array

	vsc

	query

	Validation status codes (deprecated)

	array

	user

	query

	User IDs

	array

	tag

	query

	Tags

	array

	name

	query

	Name key words

	array

	desc

	query

	Description key words

	array

	auth

	query

	Author key words

	array

	pub

	query

	Publisher key words

	array

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal/kwtag

Finds solutions matching the specified attribute values and/or child attribute values with flexible handling of tags to allow all/any matches. Checks multiple fields for the supplied keywords, including ID, name, description etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	active

	query

	Active Y/N

	boolean

	atc

	query

	Access type codes

	array

	mtc

	query

	Model type codes

	array

	kw

	query

	Key words

	array

	user

	query

	User IDs

	array

	alltag

	query

	All tags, solution must have every one

	array

	anytag

	query

	Any tags, solution must have at least one

	array

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	solution

	body

	solution

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}

Deletes the solution with the specified ID. Cascades the delete to related entities. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}

Gets the solution for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/rating/user/{userId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	sr

	body

	sr

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /solution/{solutionId}/rating/user/{userId}

Creates a new solution rating. Returns bad request on constrain violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	sr

	body

	sr

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/rating/user/{userId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/rating/user/{userId}

Gets an existing solution rating. Returns bad request if the ID is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/dnld

Gets a page of download records for the specified solution ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /solution/{solutionId}/tag/{tag}

Adds a tag to the solution. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/tag/{tag}

Drops a tag from the solution. Returns bad request if not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/user/access

Gets access-control list of users for the specified solution.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/tag

Gets a page of solutions matching the specified tag.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	query

	tag

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/user/{userId}/access

Adds a user to the ACL for the specified solution. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/user/{userId}/access

Drops a user from the ACL for the specified solution. Returns bad request if an ID is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /solution/{solutionId}/revision/{revisionId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	revision

	body

	revision

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /solution/{solutionId}/revision/{revisionId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /solution/{solutionId}/revision/{revisionId}

Gets the revision for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /solution/search

Searches for peers with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	Name

	string

	active

	query

	Active

	boolean

	userId

	query

	User ID

	string

	sourceId

	query

	Source ID

	string

	modelTypeCode

	query

	Model type code

	string

	toolkitTypeCode

	query

	Toolkit type code

	string

	origin

	query

	Origin URI

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

publish-request-controller

PUT /pubreq/{requestId}

Updates an existing request with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

	publishRequest

	body

	publishRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /pubreq/{requestId}

Deletes the request with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /pubreq/{requestId}

Gets the request for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	requestId

	path

	requestId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /pubreq

Creates a new request with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	publishRequest

	body

	publishRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /pubreq

Gets a page of publish requests, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /pubreq/search

Searches for requests with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	solutionId

	query

	Solution ID

	string

	revisionId

	query

	Revision ID

	string

	requestUserId

	query

	Request user ID

	string

	reviewUserId

	query

	Review user ID

	string

	statusCode

	query

	Status code

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

group-peer-solution-controller

GET /group/peer/{peerId}/solution/{solutionId}/access

Checks access for the specified peer to the specified solution.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /group/peer/{principalGroupId}/peer/{resourceGroupId}

Grants access for the specified principal peer group to the specified resource peer group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	principalGroupId

	path

	principalGroupId

	integer

	resourceGroupId

	path

	resourceGroupId

	integer

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /group/peer/{principalGroupId}/peer/{resourceGroupId}

Removes access for the specified principal peer group to the specified resource peer group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	principalGroupId

	path

	principalGroupId

	integer

	resourceGroupId

	path

	resourceGroupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /group/peer/solution

Gets a page of peer-solution membership mappings, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/{groupId}/peer/{peerId}

Adds the specified peer as a member of the specified peer group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	peerId

	path

	peerId

	string

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/{groupId}/peer/{peerId}

Drops the specified peer as a member of the specified peer group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

PUT /group/{groupId}/solution

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /group/{groupId}/solution

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /group/{groupId}/solution

Gets a page of solution members in the specified solution group, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /group/{groupId}/peer

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /group/{groupId}/peer

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /group/{groupId}/peer

Gets a page of peer members of the specified peer group, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /group/peer/{peerGroupId}/solution/{solutionGroupId}

Grants access for the specified peer group to the specified solution group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerGroupId

	path

	peerGroupId

	integer

	solutionGroupId

	path

	solutionGroupId

	integer

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /group/peer/{peerGroupId}/solution/{solutionGroupId}

Removes access for the specified peer group to the specified solution group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerGroupId

	path

	peerGroupId

	integer

	solutionGroupId

	path

	solutionGroupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /group/peer/{peerId}/access

Gets peers accessible to the specified peer.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /group/peer

Creates a new entity with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /group/peer

Gets a page of peer groups, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/{groupId}/solution/{solutionId}

Adds the specified solution as a member of the specified solution group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	solutionId

	path

	solutionId

	string

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/{groupId}/solution/{solutionId}

Drops the specified solution as a member of the specified solution group.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /group/solution

Creates a new entity with a generated ID. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /group/solution

Gets a page of solution groups, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /group/peer/{peerId}/solution

Gets a page of non-public solutions accessible to specified peer
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

document-controller

PUT /document/{documentId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

	document

	body

	document

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /document/{documentId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /document/{documentId}

Gets the entity for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	documentId

	path

	documentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /document

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	document

	body

	document

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

artifact-controller

GET /artifact/like

Searches for entities with names or descriptions that contain the search term using the like operator.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	term

	query

	term

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /artifact/{artifactId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	artifact

	body

	artifact

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /artifact/{artifactId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /artifact/{artifactId}

Gets the entity for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /artifact/count

Gets the count of artifacts.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/{artifactId}/revision

Gets the solution revisions that use the specified artifact ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /artifact

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifact

	body

	artifact

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /artifact

Gets a page of artifacts, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/search

Searches for artifacts with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	artifactTypeCode

	query

	Artifact type code

	string

	name

	query

	Name

	string

	uri

	query

	URI

	string

	version

	query

	Version

	string

	userId

	query

	User ID

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

thread-controller

GET /thread/solution/{solutionId}/revision/{revisionId}/count

Gets the count of threads for the solution and revision IDs.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	thread

	body

	thread

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread

Gets a page of threads, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/count

Gets the count of threads.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment/count

Gets comment count for the solution revision.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread/{threadId}/comment

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	comment

	body

	comment

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}/comment

Gets a page of comments in the thread.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	thread

	body

	thread

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /thread/{threadId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}

Gets the thread for the specified ID. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /thread/solution/{solutionId}/revision/{revisionId}

Gets a page of threads for the solution and revision IDs, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/{threadId}/comment/count

Gets the number of comments in the thread.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment

Gets a page of comments for the solution revision, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}/comment/{commentId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	commentId

	path

	commentId

	string

	comment

	body

	comment

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /thread/{threadId}/comment/{commentId}

Deletes the entity with the specified ID. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	commentId

	path

	commentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /thread/{threadId}/comment/{commentId}

Gets the comment for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	commentId

	path

	commentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

dataset-controller

GET /dataset/{datasetId}

Gets the dataset for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	datasetId

	path

	datasetId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

role-controller

POST /role/{roleId}/function

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	roleFunction

	body

	roleFunction

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/{roleId}/function

Gets the functions for the specified role. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}/function/{functionId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	functionId

	path

	functionId

	string

	roleFunction

	body

	roleFunction

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /role/{roleId}/function/{functionId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	functionId

	path

	functionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /role/{roleId}/function/{functionId}

Gets the role function for the specified role and function IDs. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	functionId

	path

	functionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/search

Searches for roles with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	name

	query

	Name

	string

	active

	query

	Active

	boolean

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role/count

Gets the count of roles.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	role

	body

	role

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /role/{roleId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /role/{roleId}

Gets the entity for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /role

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	role

	body

	role

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /role

Gets a page of roles, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

tag-controller

DELETE /tag/{tag}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /tag

Creates a new tag. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	body

	tag

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /tag

Gets a page of tags, optionally sorted.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

validation-sequence-controller

POST /valseq/{sequence}/valtype/{valTypeCode}

Creates a new validation sequence record.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	sequence

	path

	sequence

	integer

	valTypeCode

	path

	valTypeCode

	string

	valSeq

	body

	valSeq

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /valseq/{sequence}/valtype/{valTypeCode}

Deletes the specified validation sequence record.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	sequence

	path

	sequence

	integer

	valTypeCode

	path

	valTypeCode

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /valseq

Gets the list of validation sequence records.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

user-controller

PUT /user/role/{roleId}

Adds or removes the specified role for multiple users. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	usersRoleRequest

	body

	usersRoleRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/count

Gets the count of users.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/login

Checks the specified credentials for full access. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user

Creates a new entity and generates an ID if needed. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	user

	body

	user

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user

Gets a page of users, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/like

Searches for users with names that contain the search term using a like operator.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	term

	query

	term

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	user

	body

	user

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}

Deletes the entity with the specified ID. Cascades to related entities. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}

Gets the user for the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/favorite/solution

Gets a page of solutions which are favorites for the specified user ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Creates a new entity. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Gets the login provider for the specified user, provider code and provider login. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/verify

Checks the specified credentials for verification. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/role/{roleId}

Adds a role to the user. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/role/{roleId}

Drops a role from the user. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/role/{roleId}/count

Gets the count of users in a role.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/chgpw

Changes the user’s password to the new value if the user exists, is active, and the old password matches. Returns bad request if not found or not matched.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	changeRequest

	body

	changeRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/logprov

Gets all login providers for the specified user.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/role

Assigns the specified roles to the user after dropping any existing assignments. Returns bad request if an Id is not found
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	roleIds

	body

	roleIds

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /user/{userId}/role

Gets all roles assigned to the specified user ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/search

Searches for users with attributes matching the values specified as query parameters. Defaults to match all (conjunction); send junction query parameter ‘_j=o’ to match any (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	_j

	query

	Junction

	string

	firstName

	query

	First name

	string

	middleName

	query

	Middle name

	string

	lastName

	query

	Last name

	string

	orgName

	query

	Org name

	string

	email

	query

	Email

	string

	loginName

	query

	Login name

	string

	active

	query

	Active

	boolean

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/tag/{tag}

Adds a tag to the user. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	tag

	path

	tag

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/tag/{tag}

Drops a tag from the user. Returns bad request if not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /user/{userId}/deploy

Gets the deployments for the specified user ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	page

	query

	Results page you want to retrieve (0..N)

	integer

	size

	query

	Number of records per page.

	integer

	sort

	query

	Sorting criteria in the format: property(,asc|desc). Default sort order is ascending. Multiple sort criteria are supported.

	array

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /user/{userId}/favorite/solution/{solutionId}

Creates a new solution favorite record. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	sfv

	body

	sfv

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /user/{userId}/favorite/solution/{solutionId}

Deletes the entity with the specified IDs. Returns bad request if the entity is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /user/loginapi

Checks the specified credentials for API access. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; returns bad request if no match is found. Imposes a delay on repeated failures.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

site-config-controller

POST /config

Creates a new site configuration record. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

PUT /config/{configKey}

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /config/{configKey}

Deletes the entity with the specified key. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /config/{configKey}

Gets the site configuration value for the specified key.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

revision-controller

GET /revision/{revisionId}/artifact

Gets the artifacts for the revision.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /revision/{revisionId}/access/{accessTypeCode}/descr

Updates an existing entity with the supplied data. Returns bad request on constraint violation etc.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

	description

	body

	description

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

POST /revision/{revisionId}/access/{accessTypeCode}/descr

Creates a new description for the specified revision and access type. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

	description

	body

	description

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /revision/{revisionId}/access/{accessTypeCode}/descr

Deletes the entity with the specified ID. Returns bad request if the ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

GET /revision/{revisionId}/access/{accessTypeCode}/descr

Gets the revision description for the specified access type. Returns bad request if an ID is not found.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

GET /revision/{revisionId}/access/{accessTypeCode}/document

Gets the documents for the specified revision and access type.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /revision/{revisionId}/artifact/{artifactId}

Adds an artifact to the revision.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	artifactId

	path

	artifactId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

400 - Bad request

DELETE /revision/{revisionId}/artifact/{artifactId}

Removes an artifact from the revision.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	artifactId

	path

	artifactId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

400 - Bad request

POST /revision/{revisionId}/access/{accessTypeCode}/document/{documentId}

Adds a user document to the specified revision and access type.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

	documentId

	path

	documentId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /revision/{revisionId}/access/{accessTypeCode}/document/{documentId}

Removes a user document from the specified revision and access type.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	revisionId

	path

	revisionId

	string

	accessTypeCode

	path

	accessTypeCode

	string

	documentId

	path

	documentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

 Developer Guide for the Common Data Service Server

Developer Guide for the Common Data Service Server

This microservice provides common data services to components in the Acumos machine-learning platform.
It is built using the Spring-Boot platform. This document primarily offers guidance for server developers.

Supported Methods and Objects

The microservice endpoints and objects are documented using Swagger. A running server documents itself at a URL like the following, but
consult the server’s configuration for the exact port number (e.g., “8000”) and context root (e.g., “ccds”) to use:

http://localhost:8000/ccds/swagger-ui.html

Building and Packaging

As of this writing the build (continuous integration) process is fully automated in the Linux Foundation system
using Gerrit and Jenkins. This section describes how to perform local builds for development and testing.

Prerequisites

The build machine needs the following:

	Java version 1.8

	Maven version 3

	Connectivity to Maven Central to download required jars

Use maven to build and package the service into a single “fat” jar using this command:

mvn package

Development and Local Testing

This section provides information for developing and testing the server locally.

Testing with an in-memory database

The default test configuration for the server uses an in-memory Derby database, which is created at launch time.

Testing with an external database

A properties file “config/application-mariadb.properties” is provided that configures the server to
use an external MariaDB database running on the local host at port 3306. Direct Spring-Boot to use
that properties file during a test with this invocation:

mvn -Dspring.config.name=application-mariadb test

The server can be configured to use a different external database as follows:

	Copy the config/application.properties file to a new file “application-mydb.properties”

	Revise the new “mydb” properties file to have suitable server coordinates and credentials

	Ensure the newly configured database server is reachable at the expected port

	Check that the database tables have been created and populated

	Launch the test as usual, adding an extra argument to use the alternate properties file.

This is a sample invocation:

mvn -Dspring.config.name=application-mydb test

Launching

Launch the server for development and testing like this:

mvn clean spring-boot:run

Alternately, launch the microservice from Eclipse by starting this class:

org.acumos.cds.CdsApplication.

Production Deployment

This section provides information for running the server in a production environment,
assuming that the application is packaged into a docker container for deployment.

Prerequisites

	Java version 1.8 in the runtime environment; i.e., installed in the docker container

	A Mariadb or Mysql database with the required tables; instructions are shown below

	The username/password combination to access the database

	A valid configuration with database coordinates.

Configuring the system

First the database must be created or upgraded, depending on the situation,
using scripts in the “db-scripts” directory. Please note version numbers are
mostly written here as “M.N” because actual version numbers change regularly.

	cmn-data-svc-base-mysql.sql: This file is a TEMPLATE can be used to
create a Mysql/MariaDB database, to create a user, and to grant the
user permission on the database. The values in CAPITALS shown in
the file must be adjusted for each use.

	cmn-data-svc-ddl-dml-M-N-revX.sql: This file has the data-definition
and data-modeling language statements that create new tables and
populate them.

	cmn-data-svc-dml-opt-M-N-revX.sql: This file has some optional images
that can be loaded into the site configuration.

	cmn-data-svc-upgrade-M.N-to-M.N+1.sql: If an existing system needs to be
upgraded, these files have the required SQL statements for that.

Next, configuration parameters must be specified. A template with
default values can be found in the top level of this project named
application.properties.template, and can be copied a file named
application.properties (but see below for the preferred method).

Details about the database configuration must be supplied in the following
required entries:

spring.database.driver.classname=org.apache.derby.jdbc.EmbeddedDriver
spring.datasource.url=jdbc:derby:memory:cdsdb;create=true
spring.datasource.username = ccds_user
spring.datasource.password = some-password
spring.jpa.database-platform=org.hibernate.dialect.DerbyTenSevenDialect

The HTTP server’s username and password are configured in the properties file.
Only one username/password is used to secure the REST endpoint.
The default entries for the server are shown here:

security.user.name=ccds_client
security.user.password=(encrypted)

At runtime in production deployments, in addition to using a configuration file,
environment-specific configuration properties should be supplied using a block of
JSON in an environment variable called SPRING_APPLICATION_JSON. This can easily
be done in a docker-compose configuration file. For example:

 SPRING_APPLICATION_JSON: '{
 "server" : {
 "port" : 8000
 },
 "security" : {
 "user" : {
 "name" : "ccds_client",
 "password" : "ENC(encrypted-string-here)"
 }
 },
 "spring" : {
 "database" : {
 "driver" : {
 "classname" : "org.mariadb.jdbc.Driver"
 }
 },
 "datasource" : {
 "url" : "jdbc:mariadb://hostname-db:3306/cds?useSSL=false",
 "username" : "cds",
 "password" : "ENC(encrypted-string-here)"
 },
 "jpa" : {
 "database-platform" : "org.hibernate.dialect.MySQLDialect",
 "hibernate" : {
 "ddl-auto" : "validate"
 }
 }
 }
}'

Defining Code-Name Value Sets

The application properties file defines all restricted value sets, which are code-name pairs.
For example, the access type for a catalog may take on the value “PB” (public).

These value sets can be changed by modifying the properties file. Each entry has a code and
an associated name. Continuing with the same example, the complete access type value set
is defined by the following configuration entries:

code-name.access-type.PB=Public
code-name.access-type.RS=Restricted

Perform these steps to define a new value set:

	Extend the Java class CodeNameType in the client project

	Extend the Java class CodeNameProperties in the server project

	Add appropriate entries to the default properties file.

Generating Encrypted Passwords

Clear-text passwords are prohibited in many deployment environments.
Use the following commands to generate an encrypted password for the database and the service.

	Download the jar, for example using wget:

wget http://central.maven.org/maven2/org/jasypt/jasypt/1.9.2/jasypt-1.9.2.jar

	Use the Jasypt jar to generate the password. Note that the input ‘YourPasswordHere’ is the actual database password. The confusingly named password parameter is used to encrypt the input:

java -cp jasypt-1.9.2.jar org.jasypt.intf.cli.JasyptPBEStringEncryptionCLI algorithm=PBEWithMD5AndDES input='YourPasswordHere' password='EncryptionKey'

Using Encrypted Passwords

The same “password” parameter used to encrypt the passwords must be supplied at run time, in any of the following ways:

	In the application.properties file using the key jasypt.encryptor.password. For example:

jasypt.encryptor.password=EncryptionKey

	Alternately, the password can be supplied on the command line with a JVM argument “-Djasypt.encryptor.password”:

java -jar cmn-data-svc-server-N.N.jar -Djasypt.encryptor.password=EncryptionKey

Launch Instructions

Once the configuration is provided either in an application.properties file or in an environment variable,
start the application with the following command:

java -Xms128m -Xmx1024m -Djava.security.egd=file:/dev/./urandom -jar common-dataservice-N.N.N.jar

Quickstart Version Upgrade

This documents the steps required to upgrade an installation to a new(er) version.

	Create a new database. If needed, create a new user and grant access to the database for the new user. Example commands to do this are in script “cmn-data-svc-basemysql.sql” and are something like this:

% sudo mysql
> create database cds22;
> create user 'CDS_USER'@'%' identified by 'CDS_PASS';
> grant all on cds22.* to 'CDS_USER'@'%';

	Migrate the old database to the new database. For example, if working on the Mysql/Mariadb database server the command is something like the following, depending on system configuration and user privileges:

sudo mysqldump cds21 | sudo mysql cds22

	Upgrade the new database to the latest structure by running the appropriate upgrade script. For example, the command sequence may be something like this:

% sudo mysql
> use cds21
> source cds-mysql-upgrade-2-21-to-2-22.sql;

	Configure the docker image for the new version. Assuming that the docker compose is being used, revise the appropriate docker-compose file to have an entry for the new version, using an available network port.

	Use an appropriate docker-compose start script (varies by environment) to start the new image, for example:

docker-compose up -d common-dataservice-22

Troubleshooting

Spring-Boot throws a confusing exception if the database connection fails, something like this:

Caused by: org.springframework.beans.factory.UnsatisfiedDependencyException:
Error creating bean with name 'artifactController': Unsatisfied dependency expressed through field 'artifactService'; nested exception is
org.springframework.beans.factory.UnsatisfiedDependencyException:
Error creating bean with name 'artifactService': Unsatisfied dependency expressed through field 'sessionFactory'; nested exception is
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'sessionFactory' defined in class path resource [.../ccds/hibernate/HibernateConfiguration.class : Invocation of init method failed;
nested exception is org.hibernate.service.spi.ServiceException:
Unable to create requested service [org.hibernate.engine.jdbc.env.spi.JdbcEnvironment]

If you see this exception, first check the database configuration carefully.

A database connection may fail due to the following error:

java.sql.SQLException: The server time_zone 'CDT' cannot be parsed

If this happens, modify the jdbc-url configuration to have this parameter:

&serverTimezone=GMT-05:00

This tells the client which timezone to use for the server. Adjust the “-05:00” appropriately for your server’s locale.

 CDS Database Upgrade Scripts and Migration Tools

CDS Database Upgrade Scripts and Migration Tools

This section explains upgrade scripts and a data-migration tool for
managing databases used by the Common Data Service (CDS).

Database Upgrade Scripts

Upgrade scripts are provided for every CDS version that requires a
schema change. The database schema changes at major and minor version
changes but not at patch version changes. For example, the schema
changed when moving from version 1.18 to 2.0 and also when moving from
version 2.0 to 2.1, but the schema did not change when moving from
version 2.1.0 to 2.1.1. All SQL scripts are published in the CDS
gerrit repository at this URL:

https://gerrit.acumos.org/r/gitweb?p=common-dataservice.git;a=tree;f=cmn-data-svc-server/db-scripts

Run Instructions

A database administrator can run an upgrade script on any affected
database using any appropriate administration tool, including the
command line. The DBA is strongly advised to check the header of the
upgrade script for instructions specific to that script.

User and Author Data Adjustment for CDS 1.18.x

Unlike the upgrade scripts mentioned above, this script is used to
modify an existing database to improve system behavior. This script
populates authorship details in models so that they appear as expected
in Portal-Markeplace verison 1.16.5 and later. The script copies user
first name, last name and email from the user table to any solution
revision that has no author details. This script requires a Acumos
Common Data Service database at version 1.18.x. The SQL script is
available from the CDS gerrit repository at this URL:

https://gerrit.acumos.org/r/gitweb?p=common-dataservice.git;a=blob;f=cmn-data-svc-server/db-scripts/cds-mysql-copy-user-author-1.18.sql

CMS Admin and User Data Migration Tool for CDS 2.0.x

This tool migrates all administrator and user data from the Hippo-CMS
system to the Common Data Service (version 2.0.x or later) and a Nexus
repository. An early feature of Acumos stored admin and user data in
CMS, but later versions use CDS. The following data items are
affected:

	Solution picture: a user can add a picture to a solution.

	Revision descriptions: a user can add a description appropriate for
the COMPANY access level and another description appropriate for the
PUBLIC access level of a single revision. In other words, every
revision can have zero, one or two descriptions.

	Revision supporting documents: a user can upload many supporting
documents for a revision, one set visible at the COMPANY access
level and another set of documents visible at the PUBLIC access
level. In other words, every revision can have an arbitrary number
of supporting documents, divided into two sets.

	Co-brand logo: a small image at the top left of the main landing page,
which is chosen by the administrator.

	Carousel images and infographics: the rotating pictures at the top
of the main landing page, which are configured by the administrator.

	Text that decorates the “Discover Acumos” graphic on the Marketplace,
which can be changed by an administrator.

	Footer contact details: contact details shown at the bottom right,
which can be changed by an administrator.

	Footer terms and conditions: shown in the page footer,
which can be changed by an administrator.

Prerequisites

Using this migration tool requires the following prerequisites:

	A running docker daemon

	Network connectivity to the public Acumos docker registry, nexus3.acumos.org

	Network access to the local Acumos Common Data Service instance, version 1.17.0 or later

	Network access to the local Acumos Hippo-CMS instance

	Network access to the local Acumos Nexus repository

	Credentials to read from the local CMS instance

	Credentials to write to the local CDS instance

	Credentials to write to the local Nexus repository.

Migration Preparation

Choose whether to migrate user data or admin data. The user data
migration is required when upgrading from CDS version 1.17 to 1.18.
The admin data migration is required when upgrading from CDS version
2.0 to 2.1. Set the type in the configuration file as described next.

After obtaining valid URLs, user names and passwords for all three
systems, enter them in a file named “migrate.properties” using the
following structure:

one of: admin, user
migrate.data.type = admin

cds.url = http://cdshost.myproject.org:8001/ccds
cds.user =
cds.pass =

cms.url = http://cmshost.myproject.org:8085/site
cms.user =
cms.pass =

nexus.url = http://nexushost.myproject.org:8081/repository/repo_name
nexus.user =
nexus.pass =
this is the group prefix; a UUID compnent will be added
nexus.prefix = org.acumos

Migration Instructions

For user data, the migration tool discovers the list of solutions by
querying CDS, checks the content of each solution by querying CMS, and
migrates content to CDS and Nexus as needed. For admin data, the
migration tool discovers the data by querying CMS, and migrates
content to CDS as needed.

The tool expects to be invoked with a file named “migration.properties”
in the current working directory. The tool logs details of actions and
results on the standard output.

Run the migration tool using the released Docker image as shown below:

docker run --rm -v ${PWD}/migrate.properties:/maven/migrate.properties \
 nexus3.acumos.org:10002/migrate-cms-to-cds:2.0.0

Note that port 10002 in the registry URL refers to the docker
“releases” registry. If the migration-tool image is not found there,
it may be necessary to pull a staged-for-release Docker image from the
staging registry by using the following URL instead:

nexus3.acumos.org:10004

When the tool is finished it reports statistics in this format:

2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Migration statistics:
2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Solutions checked: 474
2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Revisions checked: 0
2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Pictures migrated: 0 success, 0 fail
2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Descriptions migrated: 0 success, 0 fail
2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Documents migrated: 0 success, 0 fail
2019-05-02T18:49:26.101Z [main] INFO o.a.cds.migrate.MigrateCmsToCdsApp - Global items migrated: 2 success, 0 fail

Troubleshooting

In case of error, the tool can be run repeatedly on the same source
and target. It will not re-migrate data to CDS nor Nexus for any
item.

The migration tool requires every document to have a file suffix that
indicates the type of document; e.g., “.doc” or “.xlsx”. A document
without any suffix cannot be migrated. Add a suffix to the document
name to fix this problem, then re-run the migration process.

 Acumos R Client

Acumos R Client

[image: docs/images/Acumos_logo_white.png]Acumoslogo

This repository holds the Acumos R Client(https://gerrit.acumos.org/r/acumos-R-client) which helps provide a way to use R in the Acumos Platform.
It has to be used in conjunction with the Model Runner (https://gerrit.acumos.org/r/generic-model-runner).

Please see the documentation in the “docs” folder.

Acumos R Interface

Install

Under Debian/Ubuntu, please install remotes and acumos dependencies first:

apt-get update
apt install -y libssl-dev libcurl4-openssl-dev make protobuf-compiler libprotoc-dev libprotobuf-dev

Install acumos:

install.packages("acumos")

To install this development version, please use remotes or devtools:

remotes::install_github("acumos/acumos-r-client", subdir="acumos-package")

or

devtools::install_github("acumos/acumos-r-client", subdir="acumos-package")

Usage

Create a component

To create a deployment component, use acumos::compose() with the functions to expose. If type specs are not defined, they default to c(x="character").

The component consists of a bundle component.amc which is a ZIP file with meta.json defining the component and its metadata, component.bin the binary payload, component.proto with the protobuf specs
and component.swagger.yaml with the Swagger API definition.

Please consult R documentation page for details, i.e., use ?compose in R.

Example:

if(!require("randomForest")) install.packages("randomForest")
library(randomForest)
library(acumos)
compose(predict=function(..., inputs=lapply(iris[-5], class)) as.character(predict(rf, as.data.frame(list(...)))),
 aux = list(rf = randomForest(Species ~ ., data=iris)),
 name="Random Forest",
 file="component.amc"
)

Create a component by writing a component R source code

You can also compose your model bundle directly from the R source code you used to build your model.

A regular component source code file is an R script in which at least one of the three following functions are defined:
acumos_predict, acumos_transform or acumos_fit. They respectively correspond to the functions predict, transform
and fit of compose(). In that script, if the functions acumos_generate, acumos_service or acumos_initialize are defined,
they will also correspond to the other function type arguments of compose(), namely generate, service and initialize.

acumos::composeFromSource(file = "path/to/your/R/script/acumos.R",
 name = "MyComponentName",
 outputfile = "component.amc",
 addSource = TRUE)

The addSource parameter is a boolean that allows you to add the R source code (component.R) in your model bundle.

The path to an example component source code file can be found by executing the following R command:

print(system.file("examples", "example_0", "acumos.R", package = "acumos"))

Deploy a component

To run the component you have to create a runtime.json file with at least {"input_port":8100} or similar to define which port the component should listen to. If there are output components there should also be a "output_url" entry to specify where to send the result to. It can be either a single entry or a list if the results are to be sent to multiple components. Example:

{"input_port":8100, "output_url":"http://127.0.0.1:8101/predict"}

With the component bundle component.amc plus runtime.json in place the component can be run using

R -e 'acumos:::run()'

The run() function can be configured to set the component directory and/or location of the component bundle. If you don’t want to create a file, the runtime parameter also accepts the runtime structure, so you can also use

R -e 'acumos:::run(runtime=list(input_port=8100, data_response=TRUE))'

See also ?run in R.

Onboard a component on Acumos platform

CLI on-boarding with push() function

Once the model bundle is created, you can use the push() API client to on-board it on Acumos. This is CLI
(Command Line Interface) on-boarding. An example R command is the following:

acumos::push(url = "https://<hostname>/onboarding-app/v2/models",
 file = "component.amc",
 token = "<username>:<token>",
 create = FALSE,
 license = "path/to/your/license.json")

url: can be found in the ON-BOARDING MODEL page of your Acumos portal and looks like :
<hostname>/onboarding-app/v2/models

file: component.amc (your model bundle)

username : your Acumos username

token: API token available in the Acumos portal in your profile section

create : logical parameter (Boolean) to trigger the creation of microservice at the end of
on-boarding process. By default create=TRUE, if you don’t want to create the microservice modify the
value to FALSE (create =FALSE)

license: path to the license profile file : The license profile file name must be “license.json”.

CLI on-boarding with pushFromSource() function

Rather than creating the model bundle with compose() and then on-boarding it with push(), you can use the
pushFromSource() function that allow you to on-board your model directly from your R source code and put this R
source code inside the model bundle.

acumos::pushFromSource(url = "https://<hostname>/onboarding-app/v2/models",
	file = "path/to/your/R/script/acumos.R",
	name = "MyComponentName", addSource = FALSE,
	token = "<username>:<token>", create = FALSE,
	license = "path/to/your/license.json")

The path to an example component source code file can be found by executing the following R command:

print(system.file("examples", "example_0", "acumos.R", package = "acumos"))

Authentication

The use of API token is recommended to avoid typing your password in command line, but you can also authenticate yourself by using the auth() API:

acumos::auth("https://<hostname>", "username", "password")

url: can be found in the ON-BOARDING MODEL page of your Acumos portal and looks like “https:///onboarding-app/v2/auth”

 Acumos R Client Developer Guide

Acumos R Client Developer Guide

Issues

The issues are to be reported to: https://jira.acumos.org/projects/ACUMOS/issues

To create an issue, you need to log in with a Linux Foundation account: https://identity.linuxfoundation.org/

Repository

The official Git repoository of the Acumos R Client can be browsed using: https://gerrit.acumos.org/r/gitweb?p=acumos-r-client.git;a=tree

There is a mirror of this git repository in Github: https://github.com/acumos/acumos-r-client.

Contribution

To contribute:

	you also need to log in with a Linux Foundation account: https://identity.linuxfoundation.org/

	and use Gerrit Code Review to clone and submit changes: https://gerrit.acumos.org/r/admin/repos/acumos-r-client

For more info about Gerrit, please visit: https://gerrit.onap.org/r/Documentation

To download the code and submit changes, please use:

git clone "https://gerrit.acumos.org/r/acumos-r-client"

License

Copyright © 2017 AT&T, Tech Mahindra & Orange. All rights reserved.

This project is licensed under the Apache License, Version 2.0 : http://www.apache.org/licenses/LICENSE-2.0

 Acumos R Client

Acumos R Client

	Acumos R Client Release Notes

	Acumos R Client Developer Guide

	Acumos R Client User Guide

	Acumos R Client Installation and Maintenance Guide

 Acumos R Client Installation and Maintenance Guide

Acumos R Client Installation and Maintenance Guide

Prerequisites

Before you begin:

	You must have an Acumos account

	You must have R installed on you system (R>3.4.4). Please refer to cran.r-project.org [https://cran.r-project.org/]

Installing the Acumos R client

Under Debian/Ubuntu, you may need to install first some packages:

apt-get update
apt-get install -y libssl-dev libcurl4-openssl-dev make protobuf-compiler libprotoc-dev libprotobuf-dev

Install the Acumos R client package in R:

install.packages("acumos")

If you want to install the version under development, please use remotes or devtools:

remotes::install_github("acumos/acumos-r-client", subdir="acumos-package")

or

devtools::install_github("acumos/acumos-r-client", subdir="acumos-package")

 Acumos R Client User Guide

Acumos R Client User Guide

Using the Acumos R Client

Please refer to the Acumos R Client Installation and Maintenance Guide prior to the following

Model bundle

	Compose a model bundle

To on-board a model on Acumos you need to create a model bundle. You can use compose() with the functions to expose to create it. Below is an example
of how create a model bundle based on the IRIS model.

acumos::compose(predict = function(..., inputs=lapply(iris[-5], class)) {as.character(predict(rf, as.data.frame(list(...))))},
 aux = list(rf = randomForest(Species ~ ., data = iris)),
 name = "IRIS_model",
 file = "path/to/store/the/model/bundle/IRIS_model.zip")

This model bundle contains:

	meta.json defining the component and their metadata,

	component.bin the binary payload,

	component.proto with the protobuf specs.

	component.swagger.yaml with the Swagger API definition

Please consult R documentation page for details, use the following commandin R

help(package="acumos")
?acumos::compose()

If you used R under windows you could meet an issue using the acumos::compose() function due to some
problems between R under windows and zip. If RTools is not installed on your windows environment,
the model bundle will not be created. So please follows the installation procedure of
Rtools [https://cran.r-project.org/bin/windows/Rtools/] then set your environmental variables
properly, add the bin folder of Rtools to the system path.

	Compose a model bundle from its source code file

You can also compose your model bundle directly from the R source code you used to build your model.

A regular component source code file is an R script in which at least one of the three following functions are defined:
acumos_predict, acumos_transform or acumos_fit. They respectively correspond to the functions predict, transform
and fit of compose. In that script, if the functions acumos_generate, acumos_service or acumos_initialize are defined,
they will also correspond to the other function type arguments of compose, namely generate, service and initialize.

acumos::composeFromSource(file = "path/to/your/R/script/acumos.R",
 name = "MyComponentName",
 outputfile = "component.zip",
 addSource = TRUE)

The “addSource” parameter is a boolean that allows you to add the R source code (component.R) in your model bundle.

The path to an example component source code file can be found by executing the following R command:

print(system.file("examples", "example_0", "acumos.R", package = "acumos"))

CLI and Web on-boarding

	CLI on-boarding with push() function

Once the model bundle is created, you can use the push() API client to on-board it on Acumos. This is CLI
(Command Line Interface) on-boarding. An example R command is the following:

acumos::push(url = "https://<hostname>/onboarding-app/v2/models",
 file = "component.zip",
 token = "<username>:<token>",
 create = FALSE,
 license = "path/to/your/license.json")

url can be found in the ON-BOARDING MODEL page of your Acumos portal and looks like :
“<hostname>/onboarding-app/v2/models”

file : component.zip (your model bundle)

username : your Acumos username

token : API token available in the Acumos portal in your profile section

create : logical parameter (Boolean) to trigger the creation of microservice at the end of
on-boarding process. By default create=TRUE, if you don’t want to create the microservice modify the
value to FALSE (create =FALSE)

license : path to the license profile file : The license profile file name must be “license.json”.

	CLI on-boarding with pushFromSource() function

Rather than creating the model bundle with compose() and then on-boarding it with push(), you can use the
pushFromSource() function that allow you to on-board your model directly from your R source code and put this R
source code inside the model bundle.

acumos::pushFromSource(url = "https://<hostname>/onboarding-app/v2/models",
 file = "path/to/your/R/script/acumos.R",
 name = "MyComponentName", addSource = FALSE,
 token = "<username>:<token>", create = FALSE,
 license = "path/to/your/license.json")

The path to an example component source code file can be found by executing the following R command:

print(system.file("examples", "example_0", "acumos.R", package = "acumos"))

	Authentication

The use of API token is recommended to avoid typing your password in command line, but you can also authenticate yourself by using the auth() API:

acumos::auth("https://<hostname>", "username", "password")

url can be found in the ON-BOARDING MODEL page of your Acumos portal and looks like “https://<hostname>/onboarding-app/v2/auth”

username : your Acumos username

password : your Acumos password

In response, you will receive an authentication token to be used in the push() or pushFromSource() function instead of “<username>:<token>”

Whatever the function you used, at the end of a successful CLI on-boarding with microservice creation, you will receive a message with the Acumos docker URI
of your model.

	Web on-boarding

You can also drag & drop your model bundle on the “ON-BOARDING BY WEB” page in your Acumos instance,
or browse you model bundle from this page. This is Web on-boarding.

You can on-board your model with a license profile, you just have to browse your license profile file or drag and drop it.

Whatever the case, CLI or WEB on-boarding, if the license profile file extension is not ‘json’ the license
on-boarding will not be possible and if the name is not ‘license’ Acumos will rename your license
file as license.json and you will see your license profile file as “license-1.json” in the artifacts table.
If you upload a new version of your license through the portal, the license number revision will be
increased by one like that “license-2.json”. To help user create the license profile file expected by Acumos
a license profile editor user guide is available here : License profile editor user guide

 Acumos R Client Release Notes

Acumos R Client Release Notes

These release notes cover the Acumos R client

Version 0.4-1, 02 October 2020

	debug pkg.deps(): (i) a less R version dependant base packages listing, (ii) continue the while loop until the good order of package dependencies is found, (iii) correctly exclude base packages (remove versions and whitespaces in the while loop). ACUMOS-4280 [https://jira.acumos.org/browse/ACUMOS-4280]

	handle component variables to run without modifying .GlobalEnv (not allowed by the CRAN policies) ACUMOS-4268 [https://jira.acumos.org/browse/ACUMOS-4268]

	use of thesthat: test that the API works after ‘run()’.

Version 0.4-0, 03 September 2020

	with compose(), generate a new file, component.swagger.yaml, that describes the component API using swagger 2.0. ACUMOS-4212 [https://jira.acumos.org/browse/ACUMOS-4212]

	serve a swagger UI at the path / and the swagger YAML description file at the path /swagger.yaml, using RestRserve. ACUMOS-4212 [https://jira.acumos.org/browse/ACUMOS-4212]

	the API can now receive and send data with “application/vnd.google.protobuf” and “application/json” content types. The content-type must be precised, and is considered as “application/json” by default.

Version 0.3-0, 13 March 2020

	add composeFromSource() and pushFromSource() functions, enabling respectively to compose and to push a bundle from an R file (considered as the component source) in which all the functions and auxiliary objects needed to compose the bundle are defined : ACUMOS-3972 [https://jira.acumos.org/browse/ACUMOS-3972]

	change push() to look up and include in the POST request a potential component.R file contained in the bundle : ACUMOS-3776 [https://jira.acumos.org/browse/ACUMOS-3776]

Version 0.2-8, 12 April 2019

	add ‘create’ and ‘headers’ parameters to push() : ACUMOS-2278 [https://jira.acumos.org/browse/ACUMOS-2268/]

	add ‘license’ file : ACUMOS-2278 [https://jira.acumos.org/browse/ACUMOS-2278/]

	change the meaning of ‘…’ in push() to supply any additional elements for body of the ‘POST’ request. This allows optional parameters to be added to the onboarding service.

Version 0.2-7

	allow the ‘file’ argument in run() to be a directory containing the unpacked component.

Version 0.2-6

	added send.msg(…, response=TRUE) to allow more easy testing of REST-style pushes (internal interface only).

	minor documentation updates such as mention of data_response run-time option.

Version 0.2-5

	updated to generate meta.json version 0.5.0

	added service rpc entry in the proto file

Version 0.2-4

	update push() to take the bundle and upload in pieces until the server supports bundles.

	include schema version in meta.json

Version 0.2-3

	improve package dependency detection by removing versions and whitespaces

Version 0.2-2

	add run(init.only=TRUE) option to setup the run-time environment without actually running the server

	new runtime parameter data_response=TRUE enables direct passing of the output data to the caller.When set the POST request to the functions (like /predict) returns the result in the same request. If not set (the default) it only retuns success/failure status.

Version 0.2-1

	add auth() function to obtain authentication token from Acumos.

	add push(token=) to use token (obtained form auth()) for authentication purposes.

Version 0.2-0

	switch to using bundle model component files (.amc) instead of individual files (.json/.bin/.proto)

	add debuging env var ACUMOS_DEBUG for verbose logging

Version 0.1-2

	add support for push()

	include non-loaded dependencies

Version 0.1-1

	add documentation

	add transform, fit, genertae and service endpoints

Version 0.1-0

	initial version

The Acumos R Client library code is maintained by Simon Urbanek at
Forge <https://r-forge.r-project.org/>`_.

See also:

	Acumos R client info on rforge.net [http://rforge.net/acumos/]

	NEWS [https://github.com/s-u/acumos/blob/master/NEWS] for info on revisions
to the Acumos R Client

	Acumos R Interface [https://github.com/s-u/acumos] guide on github

 face-privacy-filter

 [image: Build Status] [https://jenkins.acumos.org/job/face-privacy-filter-tox-verify-master/]

face-privacy-filter

A model for face detection and suppression.

	Overall Documentation

	Release Notes

	Tutorials

	Deployment and Running,

	Web Application

 Testing

Testing

This directory provides in-place testing. Please consult the
main documentation for more information.

 Face Privacy Filter Guide

 [image: Build Status] [https://jenkins.acumos.org/job/face-privacy-filter-tox-verify-master/]

Face Privacy Filter Guide

This model contains the capability to generate two submodels: one for
face detection and one for face suppression through pixelation.

A model example for face detection from images within Acumos.

[image: Sample image with detection and pixelation/blur filter]

Background

This model analyzes static images to detect frontal faces. It utilizes a
frontal face cascade from the OpenCV [https://opencv.org/] image
processing library. Model load time is optimized by creating and
maintaining the fixed cascade in memory while operating. Demonstrating
the capability of custom classes and requisite member variables, the
cascade is serialized with the model as a string asset which is
deserialized and loaded from disk upon startup.

Usage

Input to the model is an array of one or more tuples of image binary
data and a binary mime type. The position of the image within the array
is utilized in the output signature as a zero-based index. For example
if three images were sent, the output probabilities would have 0, 1, and
2 as index values. The output from this model is a repeated array of
detected regions for each face in each input image. So that image data
can be cascaded to other models, the original image and mime type are
also embedded with the special region code -1 within the output.

A web demo is included with the source code, available via the
Acumos Gerrit repository [https://gerrit.acumos.org/r/gitweb?p=face-privacy-filter.git;a=summary]
or the mirrored Acumos Github repository [https://github.com/acumos/face-privacy-filter]. It
utilizes a protobuf javascript library and processes input images to
detect all faces within an image.

Once deployed, you can quickly jump to the
default webhost page [http://htmlpreview.github.io/?https://github.com/acumos/face-privacy-filter/blob/master/web_demo/face-privacy.html]
and point to your model for a demo; see Demonstrations: Tutorial for Face Privacy for more details.

Performance

As this model wraps a preexisting cascade, no formal testing evaluation
was performed. However, experimental usage indicates the following
highlights.

	Faces that are too small can easily be missed.

	Frontal faces perform best, with some tolerance of about 5-10 degrees
off-plane rotation.

	Detection is fairly sensitive to rotation in plane, so try not to let
subject faces rotate more than 15 degrees.

	Dark or low contrast images generally do not perform well for
detection.

More Information

As this model uses a generic cascade from OpenCV, readers can easily
substituted or update those models with no change in API endpoint
required. Additionally, secondary verification methods using pixel
validation (e.g. sub-part verification, symmetry tests, or more advanced
parts-based verifications) may dramatically improve the false alarm
rate, although the current model was tuned for precision (instead of
recall) already.

Source Installation

This section is useful for source-based installations and is not
generally intended for catalog documentation.

Image Analysis for Face-based Privacy Filtering

This source code creates and pushes a model into Acumos that processes
incoming images and outputs a detected faces as well as the original
image input (if configured that way). The model uses a
python interface [https://pypi.python.org/pypi/opencv-python] to the
OpenCV library [https://opencv.org/] to detect faces and perform subsequent
image processing. This module does not support training at this time and
instead uses a pre-trained face cascade, which is included (from OpenCV)
in this module.

Package dependencies

Package dependencies for the core code and testing have been flattened
into a single file for convenience. Instead of installing this package
into your your local environment, execute the command below.

Note: If you are using an
anaconda-based environment [https://anaconda.org], you may want to try installing
with conda first and then pip.

conda install --yes --file requirements.txt # suggested first step if you're using conda

Installation of the package requirements for a new environment.

pip install -r requirements.txt

Usage

This package contains runable scripts for command-line evaluation,
packaging of a model (both dump and posting), and simple web-test uses.
All functionality is encapsulsted in the filter_image.py script and
has the following arguments.

usage: filter_image.py [-h] [-p PREDICT_PATH] [-i INPUT] [-c]
 [-f {detect,pixelate}] [-s] [-a PUSH_ADDRESS]
 [-A AUTH_ADDRESS] [-d DUMP_MODEL]

optional arguments:
 -h, --help show this help message and exit

main execution and evaluation functionality:
 -p PREDICT_PATH, --predict_path PREDICT_PATH
 save detections from model (model must be provided via
 'dump_model')
 -i INPUT, --input INPUT
 absolute path to input data (image or csv, only during
 prediction / dump)
 -c, --csv_input input as CSV format not an image
 -f {detect,pixelate}, --function {detect,pixelate}
 which type of model to generate
 -s, --suppress_image do not create an extra row for a returned image

model creation and configuration options:
 -a PUSH_ADDRESS, --push_address PUSH_ADDRESS
 server address to push the model (e.g.
 http://localhost:8887/v2/models)
 -A AUTH_ADDRESS, --auth_address AUTH_ADDRESS
 server address for login and push of the model (e.g.
 http://localhost:8887/v2/auth)
 -d DUMP_MODEL, --dump_model DUMP_MODEL
 dump model to a pickle directory for local running

Example Usages

Please consult the Tutorial dirctory for usage examples
including an in-place Demonstrations: Tutorial for Face Privacy.

Face-based Use Cases

This project includes a number of face-based use cases including raw
detection, blurring, and other image-based modifications based on
detected image regions.

	Face Detection Use-case - This source code creates and pushes a
model that processes incoming images and outputs detected faces.

Metadata Examples

	example detect catalog image - url source [https://www.pexels.com/photo/close-up-photography-of-man-wearing-sunglasses-1212984/]

	example blur catalog image - url source [https://flic.kr/p/bEgYbs]

 Face Privacy Filter

Face Privacy Filter

	Face Privacy Filter Guide
	Background

	Source Installation

	Example Usages

	Metadata Examples

	Tutorial
	Deployment: Wrapping and Executing Face Privacy Models

	Demonstrations: Tutorial for Face Privacy

	Face Privacy Filter Release Notes
	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.3

	0.2.2

	0.2.1

	0.2.0

 Face Privacy Filter Release Notes

Face Privacy Filter Release Notes

0.3.4

	Clean up tutorial documentation naming and remove deprecated swagger demo app

	Standardize demo CSS, add region drawing to demo page

0.3.3

	Clean up documentation for install and parameter descriptions

	Add documentation and functionality for environment variables in push
request

0.3.2

	Minor updates to web JS demo pages for pending recognition model

	Type Change rename input and output types to region monikers to
better reflect target

0.3.1

	Update model to use single image as input type

	Update javascript demo to run with better CORS behavior (github
htmlpreview)

	Additional documentation for environmental variables

	Simplify operation for active prediction to use created model (no
save+load required)

0.3.0

	Documentation (lesson1) updated with model runner examples.
Deprecation notice in using explicit proto- and swagger-based serves.

	Update the structure of the protobuf input and output to use
flattened (row-based) structure instead of columnar data for all i/o
channels. This should allow other inspecting applications to more
easily understand and reuse implementations for image data.

	Update the demonstration HTML pages for similar modifications.

0.2.3

	Documentation and package update to use install instructions instead
of installing this package directly into a user’s environment.

	License addition

0.2.2

	Refactor documentation into sections and tutorials.

	Create this release notes document for better version understanding.

0.2.1

	Refactor to remote the demo bin scripts and rewire for direct
call of the script filter_image.py as the primary interaction
mechanism.

0.2.0

	Refactor for compliant dataframe usage following primary client
library examples for repeated columns (e.g. dataframes) instead of
custom types that parsed rows individually.

	Refactor web, api, main model wrapper code for corresponding changes.

	Migration from previous library structure to new acumos client
library

	Refactor to not need this library as a runtime/installed
dependency

 Demonstrations: Tutorial for Face Privacy

Demonstrations: Tutorial for Face Privacy

Web Demo

This web page sample allows the user to submit an image to a face
detection and a face pixelation service in serial progression.

Browser Interaction

Most browsers should have no CORS or other cross-domain objections to
dropping the file face-privacy.html into the browser and accesing a
locally hosted server API, as configured in Deployment: Wrapping and Executing Face Privacy Models.

Open-source hosted run

Utilizing the generous htmlpreview function [https://htmlpreview.github.io/]
available on GitHub, you
can also experiment with the respository-based web resource. This
resource will proxy the repository web_demo directory into a live
resource.

Navigate to the
default webhost page [http://htmlpreview.github.io/?https://github.com/acumos/face-privacy-filter/blob/master/web_demo/face-privacy.html]
and confirm that the resource load properly. The image at the bottom of
this guide is a good reference for correct page loading and display.

After confirming correct page load, simply replace the value in the
Transform URL field to point at your deployed instance. For example,
if you’ve created a dumped model locally, it might be a localhost port.

Local webserver run

If you want to run the test locally, you can use a supplied python
webserver with the line below while working in the web_demo
directory (assuming you’re running python3).

python simple-cors-http-server-python3.py 5000

Afterwards, just point your browser at
http://localhost:5000/face-privacy.html.

Usage of protobuf binaries for testing

Binary (protobuf encoded) data can be downloaded from the web page or directly with curl.
Two demonstration binaries have been included in the source repository for testing.

	protobuf.Image.bin - a protobuf-encoded image of Ellen DeGeneres

	protobuf.RegionDetectionSet.bin - a protobuf-encoded region set from the reunion example

Within the webpage demo, simply select the correct protobuf method and then drag and
drop the binary file into the Protobuf Payload Input file uploader. It will be
immediately uploaded through javascript to your specified Transform Url.

Example face privacy demo (docker and protobuf)

To customize this demo, one should change either the included javascript
or simply update the primary classification URL on the page itself
during runtime. This demo utilizes the
javascript protobuf library [https://github.com/dcodeIO/ProtoBuf.js/] to encode
parameters into proto binaries in the browser.

NOTE One version of the face model’s protobuf schema is
included with this web page, but it may change over time. If you receive
encoding errors or unexpected results, please verify that your target
model and this web page are using the same .proto file.

	confirm that your target docker instance is configured and running

	download this directory to your local machine

	confirm the host port and classification service URL in the file
face-privacy.js

	modify the protoDefault setting to be 1

urlDefault: "http://localhost:8884/model/methods/detect",

	view the page face-privacy.html in a Crome or Firefox browser

	you can switch between a few sample images or upload your own by
clicking on the buttons below the main image window

Compatibility

If you want to run against the Boreas model runner you must set the URL to end
with /model/methods/detect. The key is that in Boreas release the model runner
api has changed. You can see the swagger for the model if you visit the source
model’s swagger.

If you have a model that was onboarded using Athena release you do not need
the /model/methods check. Use /detect instead. Another change that was made
in Boreas model runner was that you must send the http headers before the
default was protobuf. These headers will change automatically when use use
/model/methods/detect as the URL path.

	Content-type: application/vnd.google.protobuf

	Accept: application/vnd.google.protobuf

Special decoding example

In protobuf mode, you can also download a binary, encoded version of
the last image that was sent to the remote service. When available, the
Download Encoded Message button will be enabled and a binary file will
be generated in the browser.

protoc --decode=HipTviKTkIkcmyuMCIAIDkeOOQQYyJne.Image model.pixelate.proto < protobuf.bin

NOTE The specific package name may have changed since the time of
writing, so be sure to check the contents of the current .proto
file.

Example face privacy demo (HTTP parameters)

To customize this demo, one should change either the included javascript
or simply update the primary classification URL on the page itself
during runtime.

	confirm that your local instance is configured and running

	download this directory to your local machine

	confirm the host port and classification service URL in the file
face-privacy.js

	modify the protoDefault setting to be 0

urlDefault: "http://localhost:8884/transform",

	view the page face-privacy.html in a Crome or Firefox browser

	you can switch between a few sample images or upload your own by
clicking on the buttons below the main image window

Example Interface

An instance should first be built and downloaded and then launched
locally. Afterwards, the sample application found in the
web_demo directory uses a localhost service to classify and
visualize the results of image classification.

	Commercial example (youtube source [https://www.youtube.com/watch?v=34KfCNapnUg])

	Reunion face sample flickr source [https://flic.kr/p/bEgYbs])

	family face example (pexel source [https://www.pexels.com/photo/adult-affection-beautiful-beauty-265764/])

	DiCaprio celebrity face sample (wikimedia source [https://en.wikipedia.org/wiki/Celebrity#/media/File:Leonardo_DiCaprio_visited_Goddard_Saturday_to_discuss_Earth_science_with_Piers_Sellers_(26105091624)_cropped.jpg])

	Schwarzenegger celebrity (wikimedia source [https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/A._Schwarzenegger.jpg/220px-A._Schwarzenegger.jpg])

	DeGeneres celebrity face sample (wikipedia source [https://en.wikipedia.org/wiki/Ellen_DeGeneres#/media/File:Ellen_DeGeneres-2009.jpg])

[image: example web application with blurring activated]

Reuse with object detectors

This framework can be used to demonstrate other detector and manipulation models
as well. If the detect model included in this repo is used, faces can be detected
and illustrated as shown below. The example below shows use of the
relevant endpoint and .proto file (also included in this sample).

[image: example web application detecting faces]

 Deployment: Wrapping and Executing Face Privacy Models

Deployment: Wrapping and Executing Face Privacy Models

To utilize this transformer model set, it first creates a detect
transformer and then a pixelate transformer. Continue to the
Demonstrations: Tutorial for Face Privacy to see how to utilize these models with a
simple demo API server.

Model Deployment

Following similar use pattens described by the main client library,
there are two primary modes to export and deploy the generated
classifier: by dumping it to disk or by pushing it to an onboarding
server. Please consult the Usage for more specific arguments
but the examples below demonstrate basic capabilities.

This single repo has a number of different models that can be composed
together for operation.

	Dump the detect model to disk.

python face_privacy_filter/filter_image.py -f detect -d model_detect

	Dump the pixelate model to disk.

python face_privacy_filter/filter_image.py -f pixelate -d model_pix

Below is an extended for training a model, dumping it to disk, and
pushing that model. (recommended)

export ACUMOS_USERNAME="user"; \
export ACUMOS_PASSWORD="password";
or
export ACUMOS_TOKEN="a_very_long_token";

export ACUMOS_PUSH="https://acumos-challenge.org/onboarding-app/v2/models"; \
export ACUMOS_AUTH="https://acumos-challenge.org/onboarding-app/v2/auth"; \
python face_privacy_filter/filter_image.py -f detect

In-place Evaluation

In-place evaluation will utilize a serialized version of the model
and load it into memory for use in-place. This mode is handy for quick
evaluation of images or image sets for use in other classifiers.

	Evaluate the detect model from disk and a previously produced
detect object

python face_privacy_filter/filter_image.py -d model_detect -p output.csv -i web_demo/images/face_DiCaprio.jpg

	Example for evaluating the pixelate model from disk and a
previously produced detect object

python face_privacy_filter/filter_image.py -d model_pix -i detect.csv -p output.jpg --csv_input

Using the client model runner

Getting even closer to what it looks like in a deployed model, you can
also use the model runner code to run your full cascade (detection +
pixelate) transform locally. (added v0.3.0)

	First, decide the ports to run your detection and pixelate models. In
the example below, detection runs on port 8884 and pixelation
runs on port 8885. For the runner to properly forward requests
for you, provide a simple JSON file example called runtime.json
in the working directory that you run the model runner.

cat runtime.json
{downstream": ["http://127.0.0.1:8885/pixelate"]}

	Second, dump and launch the face detection model. If you modify the
ports to run the models, please change them accordingly. This command
example assumes that you have cloned the client library in a relative
path of ../acumos-python-client. The first line removes any prior
model directory, the second dumps the detect model to disk, and the
third runs the model.

rm -rf model_detect/; \
 python face_privacy_filter/filter_image.py -d model_detect -f detect; \
 python ../acumos-python-client/testing/wrap/runner.py --port 8884 --modeldir model_detect/face_privacy_filter_detect

	Finally, dump and launch the face pixelation model. Again, if you
modify the ports to run the models, please change them accordingly.
Aside from the model and port, the main difference between the above
line is that the model runner is instructed to ignore the
downstream forward (runtime.json) file so that it doesn’t attempt
to forward the request to itself.

rm -rf model_pix; \
 python face_privacy_filter/filter_image.py -d model_pix -f pixelate; \
 python ../acumos-python-client/testing/wrap/runner.py --port 8885 --modeldir model_pix/face_privacy_filter_pixelate --no_downstream

Installation Troubleshoting

Using some environment-based versions of python (e.g. conda), one
problem seemed to come up with the installation of the dependent package
opencv-python. If you launch your python instance and see an error
like the one below, keep reading.

>>> import cv2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: dynamic module does not define module export function (PyInit_cv2)
>>>

This is likely because your PYTHONPATH is not correctly configured
to point to the additional installed libraries.

	From the simple example
here [https://stackoverflow.com/a/42160595] you can check your
environment with echo $PYTHONPATH. If it does not contain the
directory that you installed to, then you have a problem.

	Please check your installation by running
python -v -v; import cv2 and checking that the last loaded
library is in the right location.

	In some instances, this variable needed to be blank to work properly
(i.e. export PYTHONPATH=) run at some time during start up.

 Tutorial

Tutorial

	Deployment: Wrapping and Executing Face Privacy Models
	Model Deployment

	In-place Evaluation

	Using the client model runner

	Demonstrations: Tutorial for Face Privacy
	Web Demo

	Browser Interaction

	Example face privacy demo (docker and protobuf)

	Example Interface

 web_demo

web_demo

This directory provides a simple web page and demo content for
the image-based classifier demo.

Please consult the tutorial documentation for more information.

 Acumos Proto Viewer

Acumos Proto Viewer

Please see the docs directory for the docs in Sphinx format.

License

Copyright (C) 2017 AT&T Intellectual Property & Tech Mahindra. All rights reserved.
Acumos is distributed by AT&T and Tech Mahindra under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Proto Viewer Developer Guide

Proto Viewer Developer Guide

This project allows visualization of messages transferred in protobuf
format. This is a passive component that shows the messages
explicitly delivered to it; it does not listen (“sniff”) all network
traffic searching for protobuf data. Displaying the contents of a
protobuf message requires the corresponding protocol buffer definition
(.proto) file, which are fetched from a network server, usually a
Nexus registry.

Dependencies

If you are running in Docker there are no external dependencies, for
better or worse[1] it is totally self contained.

If you are running locally, please follow the quickstart guide below.

[1] This Docker container runs Redis and Bokeh. The original
requirements stated that the probe had to be a single Docker
container.

Design

The proto-viewer enables viewing of binary-encoded protocol buffer
messages passed among elements of a composite solution by the runtime
orchestrator component. To display message content the proto-viewer
must parse the binary message using a protocol buffer message
definition file. Those files are obtained dynamically by the
proto-viewer from network sources.

Messages are passed to the proto-viewer by the Acumos blueprint
orchestrator component, also known as the model connector. The model
connector makes HTTP POST calls to deliver a copy of each message to
the proto-viewer along with some details about the message definition.

Each message POST-ed to the proto-viewer must contain only binary
Protocol-Buffer encoded content, and must include the following HTTP
headers:

PROTO-URL
Message-Name

The “PROTO-URL” parameter can be either a complete URL (e.g.,
“http://host:port/path/to/file”) or just a suffix (e.g.,
“/path/to/file”). The URL is used to fetch the protocol buffer
specification file for the message. The “Message-Name” parameter
specifies the name of the message (data structure) within that
protocol buffer specification file, which may define multiple
messages.

If the PROTO-URL header parameter is just a suffix, the value of this
environment variable is consulted:

NEXUSENDPOINTURL

This is expected to contain the prefix of a URL where the protocol
buffer file can be obtained; e.g., “http://host:port/context/path”.

When the probe is sent the URL of a protocol buffer definition file,
the probe downloads the .proto file. The file is also cached for reuse
if the same URL is encountered again. One complication here is that
the protoc tool fails for input files that contain a dot or hyphen in
the filename, so the filenames are mangled by the proto-viewer to
remove all offending characters. A second complication is that the
proto file is only downloaded once and changes will not be discovered;
but this should never happen without the version number changing.

The probe then invokes the “protoc” compiler on the definition file to
generate a Python module, working in a temporary directory. Finally
the proto-viewer imports the newly created Python module and uses it
to parse binary messages.

The probe normally listens for requests on port 5006, which
unfortunately cannot be changed due to flaws in the Bokeh library.
The probe also limits connections using a websocket filter. To allow
deployment in a Kubernetes environment where port 5006 is not readily
accessible, the probe can be configured to accept incoming requests on
any port by setting the environment variable
ACUMOS_PROBE_EXTERNAL_PORT.

Data Stores and Retention

The proto-viewer stores incoming data feeds (one feed per model and
message) so that it can produce visualizations such as time series.

The feed content is maintained in two data stores. The first store is
Redis, which holds every raw incoming message, subject to retention as
discussed below. The second store is a Bokeh data structure known as
a “Column Data Store”, which holds the message data selected by a user
in a Bokeh session. Bokeh expects to serve its data from its column
data store. However, that store has some constraints on it; for
example it is JSON, so it does not support “bytes”, which are what
images are. So when message data is fetched from the Redis store for
use by Bokeh, a conversion is performed to produce the format that
Bokeh expects.

The current server-side data retention policy in Redis is that the raw
data cache resets every midnight. Meaning, if a user logs into the
proto-viewer, they will see all data that came in since the prior
midnight, and will see new data as it streams in. This is because the
proto-viewer may be a long running process, and memory would increase
without bound, so there has to be a TTL on data. If there is a need
for a user to log in and see MORE data than the prior midnight, we can
change this later by increasing the TTL to the last week or something.

For the client side, Bokeh uses column data source(s) for each
session. A column data source holds the data sent from the server to
the browser, so we also have to limit the client side data in case a
user is logged in for a very long time. The “streaming limit” for
numerical data is 100,000 records, just over a day of data assuming
one record per second. The streaming limit for images and raw data is
just 1; the user sees it as it goes by, or it is lost (there is
currently no replay).

I thought the Bokeh stores can have their own timeouts, and for the
image one, the code set it to 1. This can be seen as ” stream_limit”
in the bokeh run file. However now that I’m looking at Bokeh’s
documentation, I don’t actually see that parameter in their source
code! So I’m not sure it works. It might just control how many items
go into it at any given time.

The function that uploads data from Redis to Bokeh (which is doing the
copying), depending on what the user is trying to look at, is a Bokeh
callback implemented in the run.py script.

To reduce Redis memory usage consider the following options:

	Reduce the historic time window of data; i.e., drop all data much sooner.

	Send fewer feeds. If you want a more “microservice-ey” architecture, you could launch more probes, send them each a fraction of the feeds, and each will use less total data

	Send the same number of feeds but at a reduced rate

	Send smaller data in each feed. If you are sending the probe images, and each one is a few hundred KB or MB, that is going to pile up quickly.

Filesystem

This application makes the directory /tmp/protofiles and uses that
for the proto files. Inside Docker this all gets cleaned up. On your
machine if you run this, be sure to clean that after. Note many OSs
automatically clean up /tmp on reboot.

Build

Follow these instructions to build the Docker image with all required software.
Please replace “my.registry.com:12345” with a host name and port combination where
a Docker registry server listens.

docker build -t my.registry.com:12345/acumos_proto_viewer:X.Y.Z .
docker push my.registry.com:12345/acumos_proto_viewer:X.Y.Z

Run

Follow these instructions to launch the Docker image with the proto-viewer.

docker run -dt -p 5006:5006 -e NEXUSENDPOINTURL=xxxx my.registry.com:12345/acumos_proto_viewer:X.Y.Z

Required environment variables

The following required environment variables determine the proto-viewer behavior:

	ACUMOS_PROBE_EXTERNAL_PORT (optional, defaults to 5006)

	NEXUSENDPOINTURL (required, no useful default, must be URL of server with protobuf files)

Optional additional environment variables

The following optional environment variables alter the proto-viewer behavior:

	UPDATE_CALLBACK_FREQUENCY
This sets the frequency (milliseconds, 1000=every second) of the callbacks that update the graphs on the screen, e.g., 500.

Extra Fields

Every protobuf message that enters the /senddata endpoint is
injected, by this server, with additional keys:

	apv_received_at: the epoch timestamp when the model was received.
Can be used for plotting a single variable against time

	apv_model_as_string: the string representation of the entire
model, used for plotting the raw message content and structure

	apv_sequence_number: the sequence number of this “type” of raw
data, where type = (model_id, message_name)

Development Quickstart

The following steps set up a machine as a development and test
environment without use of Docker, which is convenient for use on a
typical desktop/laptop.

	Install prerequisites so they can be invoked by the probe:

	Python version 3.6+, ideally in a virtual environment

	The protocol buffer compiler (“protoc”), version 3.5.1 (note: 3.6.1 does not appear to work, requires investigation)

	The npm tool, version 2.15.5 or later

	The npm package protobuf-jsonschema, version 1.1.1 or later (npm install protobuf-jsonschema)

	Clone the proto-viewer repository (which you may already have done, since you’re reading this):

git clone https://gerrit.acumos.org/r/proto-viewer

	Download the Redis server source from this site:

https://redis.io/download

	Build the Redis binary, which requires a C compiler and the make tool:

make

	Start the Redis server on the development machine:

src/redis-server

	Create a virtual environment with Python 3.6 or later. The name “apv36” is not magic, but will be used in all of the following directions:

virtualenv -p python3.6 apv36

	Activate the virtualenv:

source bin/activate

	Use the newly created virtual environment to install the proto-viewer (i.e., this) python package:

pip install -r requirements.txt
pip install .

	Start a Python HTTP server to publish the protocol buffer definition files. It uses port 8000 by default:

cd tests/fixtures; python -m http.server

	Set an environment variable with the appropriate URL of the Python HTTP server:

export NEXUSENDPOINTURL=http://localhost:8000

	Launch the Bokeh-enabled web server that is the proto-viewer:

./bin/run.py

	Start the data-injection script:

./bin/fake_data.py

	Open a web browser:

http://localhost:5006

Never ever change the port. It will not work. It will evolve to
endless suffering. Darkness will envelop you. Essentially there’s a
bug in Bokeh.

Testing

The proto-viewer can be tested standalone; i.e., without deploying a
composite solution to any cloud environment. Follow the development
quickstart instructions above to install prerequisites and start the
necessary servers. Then use the data-generation script described
next.

Data Injector

A Python script is provided to generate and send data to the probe.
The name is “fake_data.py” and it can be found in the bin
subdirectory. Launch the script like this:

fake_data.py [host:port]

[host:port] is an optional cmd line argument giving the target proto
to send data to; it defaults to localhost:5006 for local development.

Test Messages

The test script creates and sends messages continually. Those
messages are cached within the running Redis server. The following
message types are used:

	image-mood-classification-100.
This message carries an array of objects including an image.

	probe-testimage-100
This message carries a single image.
Use this to test display of an image.

	probe-testnested-100
This message has a hierarchical message; i.e., an inner complex object within an outer complex object.
Use this to test selection of nested fields.

	probe-testxyz-100
This message carries several numeric and string values.
Use this to test plotting x, y values on various graphs.

Expected Behavior

Use a web browser to visit the proto-viewer with the appropriate host
and port, the default URL is the following:

http://localhost:5006

Upon browsing to this URL a page like the following should load:

[image: img-probe-start]

After the data-injection script has sent a few data points, follow
these steps to view a plot of data that arrives in a nested message:

	In the Model Selection drop-down, pick item “protobuf_probe_testnested_100proto”

	In the Message Selection drop-down, pick item “NestOuter”

	In the Graph Selection drop-down, pick item “scatter”

	In the X axis drop-down, pick item “i.x : {‘type’: ‘number’}

	In the Y axis drop-down, pick item “i.y : {‘type’: ‘number’}

The page should change to resemble the following:

[image: img-probe-plot]

 Proto Viewer

Proto Viewer

	Proto Viewer Developer Guide
	Dependencies

	Design

	Data Stores and Retention

	Filesystem

	Build

	Run

	Extra Fields

	Development Quickstart

	Testing

	Proto Viewer Release Notes
	[1.6.0] - 11/9/2018

	[1.5.7] - 10/18/2018

	[1.5.6] - 9/26/2018

	[1.5.5] - 9/6/2018

	[1.5.4] - 7/30/2018

	[1.5.3] - 7/9/2018

	[1.5.2] - 6/29/2018

	[1.5.1] - 6/11/18

	[1.5.0] - 4/24/18

	[1.4.2] - 3/25/18

	[1.4.1] - 3/25/18

	[1.4.0] - 3/25/18

	[1.3.1] - 3/24/18

	[1.3.0]

	[1.2.0]

	[1.1.0]

	[1.0.0]

	[0.7.0]

	[0.6.0]

	[0.5.0]

	[0.4.0]

	[0.3.0]

	[0.2.0]

	[0.1.0]

	[0.0.5]

	[0.0.4]

	[0.0.3]

 Proto Viewer Release Notes

Proto Viewer Release Notes

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/]
and this project adheres to Semantic Versioning [http://semver.org/].

[1.6.0] - 11/9/2018

	Update to python3.7

	Make requirements.txt much less specific

	Remove outdated information in dev guide

[1.5.7] - 10/18/2018

	Repair get-image method variable usage failure

[1.5.6] - 9/26/2018

	Read external port from environment with default to 5006 (ACUMOS-1790 [https://jira.acumos.org/browse/ACUMOS-1790])

	Extend method that generates model ID (ACUMOS-1793 [https://jira.acumos.org/browse/ACUMOS-1793])

[1.5.5] - 9/6/2018

	Repair parameter-name botch in return_image callback (ACUMOS-1681 [https://jira.acumos.org/browse/ACUMOS-1681])

[1.5.4] - 7/30/2018

	Add test data

	Add directions for running web server to publish test data

	Revise utils.py to expose load_module function

	Revise bin/fake_data.py to call test data using simple paths

[1.5.3] - 7/9/2018

	Tell json converter to preserve protobuf names (ACUMOS-1366 [https://jira.acumos.org/browse/ACUMOS-1366])

	Add debug log to inject_data

[1.5.2] - 6/29/2018

	Add debug logging statements to util functions

[1.5.1] - 6/11/18

	Change “recieved” to “received” in probe’s metadata key

[1.5.0] - 4/24/18

	Add table option to view data in rows and columns

[1.4.2] - 3/25/18

	Make raw formatting work even with bytes by truncating them

[1.4.1] - 3/25/18

	Slightly better raw formatting

[1.4.0] - 3/25/18

	Handle “repeated” keyword

	Better raw display

[1.3.1] - 3/24/18

	Swap out marshal for pickle

[1.3.0]

	No longer need NGINX

[1.2.0]

	Makes the probe compatible with ONAP Message Router

	Code cleanups, increase in testing, use better concepts in bin/run

[1.1.0]

	Allow the POST to contain a partial URL, and implement the ENV
variable the model connector will deploy the probe with;
contatenating the two forms the full probe URL.

	Start the breakout of functionality from bin/run to other modules to
enable more unit testing

	Fix more (but not all) pylint violations

[1.0.0]

	Move from modelid to protourl, and rename headers per what model
connector wants

	Probe will now download the proto file from the URL

	Fix some PEP8 violations after installing FLAKE8

[0.7.0]

	By request from Kazi, when posting into /data, return the request
body back to the caller.

[0.6.0]

	Switch to Redis so we can start TTLing datasets

	Add tests

[0.5.0]

	Move to NGINX reverse proxy to get rid of hostname nonsense

	Add target host as a cmd line arg in fake_data

[0.4.0]

	Package my own image resolver to drastically shrink page size; data
URLs are huge

[0.3.0]

	Code cleanups; move get_raw_index into a get/setter abstraction
instead

	Support JPEG, make user select MIME type instead of assuming PNG

	Rename POST /senddata to POST /data to be “rest-ier”

[0.2.0]

	Add UPDATE_CALLBACK_FREQUENCY as an env variable

	Add apv_model_as_string to each record

	Add apv_sequence_number to each record

	Add a raw type; still needs astetic work

[0.1.0]

	Dockerize

	Switch from gunicorn to Tornado

[0.0.5]

	Inject timestamp into all incoming records

	Switch graph selection and field selection

	Support image type (most of this PRs work)

	Bugfixes, cleanups.

[0.0.4]

	Switch to a third party lib for parsing the proto file

	Move away from the proto file name being significant, to a notion of
“model id” instead

	Support multiple connections

[0.0.3]

	This changelog started

	Add input controls for selection proto file etc

	Add util functions for listing and loading compiled protos

	Added Paul’s code for parsing proto file

 acumos-onnx-client

 [image: ../../_images/Acumos_logo_white.png]

acumos-onnx-client

[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

A client library that allows developers to push their ONNX models to Acumos.

See our installation guide and our user guide to get started.

 acumos-onnx-client

 [image: submodules/acumos-onnx-client/docs/docs/images/Acumos_logo_white.png]

acumos-onnx-client

[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

A client library that allows developers to push their ONNX models to Acumos.

See our installation guide and our user guide to get started.

 Acumos onnx Client Developer Guide

Acumos onnx Client Developer Guide

Testing

We use a combination of tox, pytest, and flake8 to test
acumos_onnx_client. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd acumos-onnx-client
$ autopep8 -r --in-place --ignore E501 acumos_onnx_client/ testing/ examples/

Run tox directly:

$ cd acumos-onnx-client
$ export WORKSPACE=$(pwd) # env var normally provided by Jenkins
$ tox

You can also specify certain tox environments to test:

$ tox -e py36 # only test against Python 3.6
$ tox -e flake8 # only lint code

A set of integration test is also available in acumos-package/testing/integration_tests.
To run those, use acumos-package/testing/tox-integration.ini as tox config (-c flag),
onboarding tests will be ran with python 3.6 to 3.9.
You will need to set your user credentials and platform configuration in tox-integration.ini.

$ tox -c acumos-package/testing/integration_tests

Packaging

The RST files in the docs/ directory are used to publish HTML pages to
ReadTheDocs.io and to build the package long description in setup.py.
The symlink from the subdirectory acumos-package to the docs/ directory
is required for the Python packaging tools. Those tools build a source
distribution from files in the package root, the directory acumos-package.
The MANIFEST.in file directs the tools to pull files from directory docs/,
and the symlink makes it possible because the tools only look within the
package root.

 Acumos Onnx Client

Acumos Onnx Client

The User Guide is located on PyPI [https://pypi.org/project/onnx4acumos/].

	Acumos ONNX Client Release Notes

	Acumos onnx Client Developer Guide

	onnx4acumos Tutorial

 Acumos ONNX Client Release Notes

Acumos ONNX Client Release Notes

v1.0.1, 05 February 2021

	Avoid the use of configuration file when model bundle is dumped ACUMOS-4317 [https://jira.acumos.org/browse/ACUMOS-4317]

	fix typo “Exemples” in folder ACUMOS-4318 [https://jira.acumos.org/browse/ACUMOS-4318]

	fix typo “and/” in index file ACUMOS-4320 [https://jira.acumos.org/browse/ACUMOS-4320]

v1.0.0, 22 January 2021

	Creation of onnx4acumos ‘ACUMOS-3101 <https://jira.acumos.org/browse/ACUMOS-3101>’_

 onnx4acumos

onnx4acumos

[image: Build Status] [https://jenkins.acumos.org/job/acumos-onnx-client-tox-verify-master/]

onnx4acumos is a client library that allows modelers to on-board their onnx models
on an Acumos platform and also to test and run their onnx models.

For more informations on Acumos see :
Acumos AI Linux Fondation project [https://www.acumos.org/] , his Acumos AI Wiki [https://wiki.acumos.org/]
and his Documentation [https://docs.acumos.org/en/latest/].

Based on the acumos python client, we built onnx4acumos client able to create the onnx model bundle with all the
required files needed by Acumos platform.
When you used onnx4acumos, you can choose to on-board your onnx model directly in Acumos with or whithout micro-service
creation (CLI on-boarding). Or you can choose to save your Acumos model bundle locally for later manual on-boarding (Web-onboarding).
It that case onnx4acumos will create a ModelName Directory in which you will find the Acumos model bundle and all the
necessary files to test and run the Acumos onnx model bundle locally.

Micro-service generation in Acumos will transform your onnx model as a serving model, based on docker, ready to be deployed.

Installation

The main requirements to install onnx4acumos is to install first the following dependancies :

onnx, zipp, acumos, acumos-model-runner, numpy, requests, protobuf, dill, appdirs, filelock, typing-inspect, grpcio, onnxruntime

Once it is done, you can install onnx4acumos with pip:

pip install onnx4acumos

remark : if you used Acumos CLIO you must used python3.6 with acumos 0.8.0 and acumos_model_runner 0.2.3

 onnx4acumos Tutorial

onnx4acumos Tutorial

This tutorial explains how to on-board an onnx model in an Acumos platform with microservice creation.
It’s meant to be followed linearly, and some code snippets depend on earlier imports and objects.
Full onnx python client examples are available in the /acumos-onnx-client/acumos-package/onnx4acumos
directory of the Acumos onnx client repository [https://gerrit.acumos.org/r/gitweb?p=acumos-onnx-client.git;a=tree].

We assume that you have already installed onnx4acumos package.

	On-boarding Onnx Model on Acumos Platform

	How to test & run your ONNX model

	More Examples

On-boarding Onnx Model on Acumos Platform

Clone the acumos-onnx-client from gerrit

git clone "ssh://your_gerrit_login@gerrit.acumos.org:29418/acumos-onnx-client" && scp -p -P 29418 your_gerrit_login@gerrit.acumos.org:hooks/commit-msg "acumos-onnx-client/.git/hooks/"
or
git clone "ssh://your_gerrit_login@gerrit.acumos.org:29418/acumos-onnx-client"

or from Github [https://github.com/acumos/acumos-onnx-client]

You will need the two following files for this tutorial :

	The model located at /acumos-onnx-client/acumos-package/onnx4acumos/OnnxModels/super_resolution_zoo.onnx

	A configuration file located at /acumos-onnx-client/acumos-package/onnx4acumos/Templates/onnx4acumos.ini

This configuration file is mandatory if you want to push your model in Acumos by CLI (CLI on-boarding).

onnx4acumos.ini looks like :

[certificates]
CURL_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt

[proxy]
https_proxy: socks5h://127.0.0.1:8886/
http_proxy: socks5h://127.0.0.1:8886/

[session]
push_api: https://acumos/onboarding-app/v2/models

certificates : location of acumos certificates generated during the installation,
you can also let this parameter empty (CURL_CA_BUNDLE:), in that case you will just
receive a warning.

proxy : The proxy you used to reach your acumos platform.

session : The on-boarding model push API URL, available in Acumos GUI in the ON-BOARDING MODEL page.

To on-board, by CLI, the super_resolution_zoo model in Acumos platform with micro-service activation, use the following
command line :

onnx4acumos super_resolution_zoo.onnx onnx4acumos.ini -push -ms

In this command line the -push parameter is used to on-board the onnx model directly
in Acumos (CLI on-boarding). You will be prompted to enter your on-boarding token
: onboarding token = “your Acumos login”:”authentication token” (example : acumos_user:a2a6a9e8f4gbg3c147eq9g3h).
The “authentication token” can be retrieved in the ACUMOS GUI in your personal settings.
The -ms parameter is used to launch the micro-service creation in Acumos right after the on-boarding.
If -ms is omitted, the model will be on-boarded whithout micro-service generation.
(don’t worry, you can create the micro-service later in Acumos))

To on-board by web the super_resolution_zoo model in Acumos platform, follow the next step :

First you have to dump the super_resolution_zoo model locally :

onnx4acumos super_resolution_zoo.onnx onnx4acumos.ini -dump -f input/cat.jpg

The onnx4acumos.ini configuration file is optionnal when you dump your model bundle localy for WEB on-boarding purpose, however
it can be provided, in the commande line, in order to copy it in “ModelName” directory for later use (push using ModelName/ModelName_OnnxModelOnBoarding.py).

Thanks to the command line above a “ModelName” directory (“super_resolution_zoo” directory in our case)
is created and it contains all the files needed to test the onnx model locally, the -f parameter is optional and
is used to add an input data file in the ModelName_OnnxClient folder.

An Acumos model bundle is also created locally and ready to be on-boarded in Acumos manually (Web onboarding).
The default parameter -dump (can be omitted) allows the bundle to be saved locally.

You can find the “ModelName” directory contents description below :

[image: ../../../../_images/Capture2.png]
In this directory, you cand find :

	ModelName_OnnxModelOnboarding.py : Python file used to onboard a model in Acumos by CLI and/or to dump the model bundle locally.

	Dumped Model directory(model bundle) : Directory that contains all the required files nedded by an Acumos platform.

	Zipped model bundle(ModelName.zip) : zip file (built from Dumped Model directory) ready to be onboarded in Acumos.

	ModelName_OnnxClient directory : Directory that contains all the necessary files to create a client/server able to test & run your model.

Then The last thing to do is to drag and drop the Zipped model bundle in the “ON-BOARDING BY WEB” page of Acumos or use the browse function to on-board your
model.

How to test & run your ONNX model

This on-boarding client can also be used to test and run your onnx model, regardless of whether you want to on-board it or not in Acumos.
You have to follow the two main steps, first Launch the model runner server and then fill the skeleton client file to create the onnx client.

We assume that:

	You have installed acumos_model_runner [https://pypi.org/project/acumos-model-runner/] package.

	You have dumped the model bundle locally as explained above.

We use a client-server architecture to test and run onnx models, first you have to launch your model runner locally to create the server,
then you have to use a python sript as an onnx client to interact with the server.

Launch model runner server

The local server part can be started quite simply as follows :

acumos_model_runner super_resolution_zoo/dumpedModel/super_resolution_zoo

The acumos model runner will also create a swagger interface available at localhost:3330.

Fill skeleton client file to create the ONNX client

You can find the python client skeleton file desciptions below :

[image: ../../../../_images/Capture4.png]
This python client skeleton file is available in the following folder super_resolution_zoo/super_resolution_zoo_OnnxClient

All steps, in order to fill this python client skeleton, are described below. You must filled the part between two lines of “*******”
You just have to copy/paste the following code snipsets below in the right place of your skeleton file.

First import your own needed libraries:

Import your own needed library below
"**************************************"
from numpy import clip
import PIL
torch imports
import torchvision.transforms as transforms
"**************************************"

Second, define your own needed methods:

Define your own needed method below
"**************************************"
def to_numpy(tensor):
 return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
"**************************************"

Third, define Preprocessing method:

Import the management of the Onnx data preprocessing below.
The "preProcessingOutput" variable must contain the preprocessing result with type found in run_xx_OnnxModel method signature below
"***"
global img_cb, img_cr
img = PIL.Image.open(preProcessingInput)
resize = transforms.Resize([224, 224])
img = resize(img)
img.show()
img_ycbcr = img.convert('YCbCr')
img_y, img_cb, img_cr = img_ycbcr.split()
to_tensor = transforms.ToTensor()
img_y = to_tensor(img_y)
img_y.unsqueeze_(0)
preprocessingResult = to_numpy(img_y)
"**"

"PreProcessingOutput" variable affectation with the preprocessing result

Fourth, define Postprocessing method:

Import the management of the Onnx data postprocessing below.
The "postProcessingInput" variable must contain the data of the Onnx model result with type found in method signature below
"***"
global img_cb, img_cr
img_out_y = output[0]
img_out_y = np.array((img_out_y[0] * 255.0))
img_out_y = clip(img_out_y,0, 255)
img_out_y = PIL.Image.fromarray(np.uint8(img_out_y), mode='L')
final_img = PIL.Image.merge(
 "YCbCr", [
 img_out_y,
 img_cb.resize(img_out_y.size, PIL.Image.BICUBIC),
 img_cr.resize(img_out_y.size, PIL.Image.BICUBIC),
]).convert("RGB")
f=io.BytesIO()
final_img.save(f,format='jpeg')
imageOutputData = f.getvalue()
final_img.show()
postProcessingResult = imageOutputData
"***"

And finally :

Redefine the REST URL if necessary (by default, localhost on port 3330):

restURL = "http://localhost:3330/model/methods/run_super_resolution_zoo_OnnxModel"

The final name of the filled skeleton ModelName_OnnxClientSkeleton.py could be ModelName_OnnxClient.py
(the same name without Skeleton, super_resolution_zoo_OnnxClient.py for our example).

The filled python client skeleton file can be retrieved in the acumos-onnx-client folder :
acumos-onnx-client/acumos-package/onnx4acumos/FilledClientSkeletonsExamples/super_resolution_zoo_OnnxClient.py.

Remark : To test super_resolution_zoo you must have a server X running on your local system.

Command lines

You can find all command lines to test and run onnx model super_resolution_zoo below :

onnx4acumos super_resolution_zoo.onnx onnx4acumos.ini -f InputData/cat.jpg
acumos_model_runner super_resolution_zoo/dumpedModel/super_resolution_zoo/ ## Launch the model runner server
python super_resolution_zoo_OnnxClient.py -f input/cat.jpg ## Launch client and send input data

super_resolution_zoo_Model example

[image: ../../../../_images/superResoZoo.png]

More Examples

Below are some additional examples.
Post and Pre-processing methods are available in the Github folder : onnx/models [https://github.com/onnx/models]

GoogLeNet

You can find all command lines for GoogleNetexample below :

[image: ../../../../_images/Commandes.png]
onnx4acumos OnnxModels/GoogleNet.onnx onnx4acumos.ini -f InputData/car4.jpg
acumos_model_runner GoogLeNet/dumpedModel/GoogleNet/ ## Lanch the model runner server
cd GoogLeNet/GoogLeNet_OnnxClient
python GoogLeNet_OnnxClient.py -f input/car4.jpg ## Launch client and send input data

[image: ../../../../_images/bvlc.png]
In our example above :

python GoogLeNet_OnnxClient.py -f input/car4.jpg
python GoogLeNet_OnnxClient.py -f input/BM4.jpeg
python GoogLeNet_OnnxClient.py -f input/espresso.jpeg
python GoogLeNet_OnnxClient.py -f input/cat.jpg
python GoogLeNet_OnnxClient.py -f input/pesan3.jpg

Emotion Ferplus Model example

[image: ../../../../_images/emotionFerPlus.png]
python emotion_ferplus_model_OnnxClient.py -f input/angryMan.png
python emotion_ferplus_model_OnnxClient.py -f input/sadness.png
python emotion_ferplus_model_OnnxClient.py -f input/happy.jpg
python emotion_ferplus_model_OnnxClient.py -f input/joker.jpg

That’s all :-)

 acumos-onnx-client

 [image: ../../../_images/Acumos_logo_white1.png]

acumos-onnx-client

[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

A client library that allows developers to push their ONNX models to Acumos.

See our installation guide and our user guide to get started.

 acumos-onnx-client

 [image: submodules/acumos-onnx-client/acumos-package/docs/docs/images/Acumos_logo_white.png]

acumos-onnx-client

[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

A client library that allows developers to push their ONNX models to Acumos.

See our installation guide and our user guide to get started.

 Acumos onnx Client Developer Guide

Acumos onnx Client Developer Guide

Testing

We use a combination of tox, pytest, and flake8 to test
acumos_onnx_client. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd acumos-onnx-client
$ autopep8 -r --in-place --ignore E501 acumos_onnx_client/ testing/ examples/

Run tox directly:

$ cd acumos-onnx-client
$ export WORKSPACE=$(pwd) # env var normally provided by Jenkins
$ tox

You can also specify certain tox environments to test:

$ tox -e py36 # only test against Python 3.6
$ tox -e flake8 # only lint code

A set of integration test is also available in acumos-package/testing/integration_tests.
To run those, use acumos-package/testing/tox-integration.ini as tox config (-c flag),
onboarding tests will be ran with python 3.6 to 3.9.
You will need to set your user credentials and platform configuration in tox-integration.ini.

$ tox -c acumos-package/testing/integration_tests

Packaging

The RST files in the docs/ directory are used to publish HTML pages to
ReadTheDocs.io and to build the package long description in setup.py.
The symlink from the subdirectory acumos-package to the docs/ directory
is required for the Python packaging tools. Those tools build a source
distribution from files in the package root, the directory acumos-package.
The MANIFEST.in file directs the tools to pull files from directory docs/,
and the symlink makes it possible because the tools only look within the
package root.

 Acumos Onnx Client

Acumos Onnx Client

The User Guide is located on PyPI [https://pypi.org/project/onnx4acumos/].

	Acumos ONNX Client Release Notes

	Acumos onnx Client Developer Guide

	onnx4acumos Tutorial

 Acumos ONNX Client Release Notes

Acumos ONNX Client Release Notes

v1.0.1, 05 February 2021

	Avoid the use of configuration file when model bundle is dumped ACUMOS-4317 [https://jira.acumos.org/browse/ACUMOS-4317]

	fix typo “Exemples” in folder ACUMOS-4318 [https://jira.acumos.org/browse/ACUMOS-4318]

	fix typo “and/” in index file ACUMOS-4320 [https://jira.acumos.org/browse/ACUMOS-4320]

v1.0.0, 22 January 2021

	Creation of onnx4acumos ‘ACUMOS-3101 <https://jira.acumos.org/browse/ACUMOS-3101>’_

 onnx4acumos

onnx4acumos

[image: Build Status] [https://jenkins.acumos.org/job/acumos-onnx-client-tox-verify-master/]

onnx4acumos is a client library that allows modelers to on-board their onnx models
on an Acumos platform and also to test and run their onnx models.

For more informations on Acumos see :
Acumos AI Linux Fondation project [https://www.acumos.org/] , his Acumos AI Wiki [https://wiki.acumos.org/]
and his Documentation [https://docs.acumos.org/en/latest/].

Based on the acumos python client, we built onnx4acumos client able to create the onnx model bundle with all the
required files needed by Acumos platform.
When you used onnx4acumos, you can choose to on-board your onnx model directly in Acumos with or whithout micro-service
creation (CLI on-boarding). Or you can choose to save your Acumos model bundle locally for later manual on-boarding (Web-onboarding).
It that case onnx4acumos will create a ModelName Directory in which you will find the Acumos model bundle and all the
necessary files to test and run the Acumos onnx model bundle locally.

Micro-service generation in Acumos will transform your onnx model as a serving model, based on docker, ready to be deployed.

Installation

The main requirements to install onnx4acumos is to install first the following dependancies :

onnx, zipp, acumos, acumos-model-runner, numpy, requests, protobuf, dill, appdirs, filelock, typing-inspect, grpcio, onnxruntime

Once it is done, you can install onnx4acumos with pip:

pip install onnx4acumos

remark : if you used Acumos CLIO you must used python3.6 with acumos 0.8.0 and acumos_model_runner 0.2.3

 onnx4acumos Tutorial

onnx4acumos Tutorial

This tutorial explains how to on-board an onnx model in an Acumos platform with microservice creation.
It’s meant to be followed linearly, and some code snippets depend on earlier imports and objects.
Full onnx python client examples are available in the /acumos-onnx-client/acumos-package/onnx4acumos
directory of the Acumos onnx client repository [https://gerrit.acumos.org/r/gitweb?p=acumos-onnx-client.git;a=tree].

We assume that you have already installed onnx4acumos package.

	On-boarding Onnx Model on Acumos Platform

	How to test & run your ONNX model

	More Examples

On-boarding Onnx Model on Acumos Platform

Clone the acumos-onnx-client from gerrit

git clone "ssh://your_gerrit_login@gerrit.acumos.org:29418/acumos-onnx-client" && scp -p -P 29418 your_gerrit_login@gerrit.acumos.org:hooks/commit-msg "acumos-onnx-client/.git/hooks/"
or
git clone "ssh://your_gerrit_login@gerrit.acumos.org:29418/acumos-onnx-client"

or from Github [https://github.com/acumos/acumos-onnx-client]

You will need the two following files for this tutorial :

	The model located at /acumos-onnx-client/acumos-package/onnx4acumos/OnnxModels/super_resolution_zoo.onnx

	A configuration file located at /acumos-onnx-client/acumos-package/onnx4acumos/Templates/onnx4acumos.ini

This configuration file is mandatory if you want to push your model in Acumos by CLI (CLI on-boarding).

onnx4acumos.ini looks like :

[certificates]
CURL_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt

[proxy]
https_proxy: socks5h://127.0.0.1:8886/
http_proxy: socks5h://127.0.0.1:8886/

[session]
push_api: https://acumos/onboarding-app/v2/models

certificates : location of acumos certificates generated during the installation,
you can also let this parameter empty (CURL_CA_BUNDLE:), in that case you will just
receive a warning.

proxy : The proxy you used to reach your acumos platform.

session : The on-boarding model push API URL, available in Acumos GUI in the ON-BOARDING MODEL page.

To on-board, by CLI, the super_resolution_zoo model in Acumos platform with micro-service activation, use the following
command line :

onnx4acumos super_resolution_zoo.onnx onnx4acumos.ini -push -ms

In this command line the -push parameter is used to on-board the onnx model directly
in Acumos (CLI on-boarding). You will be prompted to enter your on-boarding token
: onboarding token = “your Acumos login”:”authentication token” (example : acumos_user:a2a6a9e8f4gbg3c147eq9g3h).
The “authentication token” can be retrieved in the ACUMOS GUI in your personal settings.
The -ms parameter is used to launch the micro-service creation in Acumos right after the on-boarding.
If -ms is omitted, the model will be on-boarded whithout micro-service generation.
(don’t worry, you can create the micro-service later in Acumos))

To on-board by web the super_resolution_zoo model in Acumos platform, follow the next step :

First you have to dump the super_resolution_zoo model locally :

onnx4acumos super_resolution_zoo.onnx onnx4acumos.ini -dump -f input/cat.jpg

The onnx4acumos.ini configuration file is optionnal when you dump your model bundle localy for WEB on-boarding purpose, however
it can be provided, in the commande line, in order to copy it in “ModelName” directory for later use (push using ModelName/ModelName_OnnxModelOnBoarding.py).

Thanks to the command line above a “ModelName” directory (“super_resolution_zoo” directory in our case)
is created and it contains all the files needed to test the onnx model locally, the -f parameter is optional and
is used to add an input data file in the ModelName_OnnxClient folder.

An Acumos model bundle is also created locally and ready to be on-boarded in Acumos manually (Web onboarding).
The default parameter -dump (can be omitted) allows the bundle to be saved locally.

You can find the “ModelName” directory contents description below :

[image: ../../../../../_images/Capture2.png]
In this directory, you cand find :

	ModelName_OnnxModelOnboarding.py : Python file used to onboard a model in Acumos by CLI and/or to dump the model bundle locally.

	Dumped Model directory(model bundle) : Directory that contains all the required files nedded by an Acumos platform.

	Zipped model bundle(ModelName.zip) : zip file (built from Dumped Model directory) ready to be onboarded in Acumos.

	ModelName_OnnxClient directory : Directory that contains all the necessary files to create a client/server able to test & run your model.

Then The last thing to do is to drag and drop the Zipped model bundle in the “ON-BOARDING BY WEB” page of Acumos or use the browse function to on-board your
model.

How to test & run your ONNX model

This on-boarding client can also be used to test and run your onnx model, regardless of whether you want to on-board it or not in Acumos.
You have to follow the two main steps, first Launch the model runner server and then fill the skeleton client file to create the onnx client.

We assume that:

	You have installed acumos_model_runner [https://pypi.org/project/acumos-model-runner/] package.

	You have dumped the model bundle locally as explained above.

We use a client-server architecture to test and run onnx models, first you have to launch your model runner locally to create the server,
then you have to use a python sript as an onnx client to interact with the server.

Launch model runner server

The local server part can be started quite simply as follows :

acumos_model_runner super_resolution_zoo/dumpedModel/super_resolution_zoo

The acumos model runner will also create a swagger interface available at localhost:3330.

Fill skeleton client file to create the ONNX client

You can find the python client skeleton file desciptions below :

[image: ../../../../../_images/Capture4.png]
This python client skeleton file is available in the following folder super_resolution_zoo/super_resolution_zoo_OnnxClient

All steps, in order to fill this python client skeleton, are described below. You must filled the part between two lines of “*******”
You just have to copy/paste the following code snipsets below in the right place of your skeleton file.

First import your own needed libraries:

Import your own needed library below
"**************************************"
from numpy import clip
import PIL
torch imports
import torchvision.transforms as transforms
"**************************************"

Second, define your own needed methods:

Define your own needed method below
"**************************************"
def to_numpy(tensor):
 return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
"**************************************"

Third, define Preprocessing method:

Import the management of the Onnx data preprocessing below.
The "preProcessingOutput" variable must contain the preprocessing result with type found in run_xx_OnnxModel method signature below
"***"
global img_cb, img_cr
img = PIL.Image.open(preProcessingInput)
resize = transforms.Resize([224, 224])
img = resize(img)
img.show()
img_ycbcr = img.convert('YCbCr')
img_y, img_cb, img_cr = img_ycbcr.split()
to_tensor = transforms.ToTensor()
img_y = to_tensor(img_y)
img_y.unsqueeze_(0)
preprocessingResult = to_numpy(img_y)
"**"

"PreProcessingOutput" variable affectation with the preprocessing result

Fourth, define Postprocessing method:

Import the management of the Onnx data postprocessing below.
The "postProcessingInput" variable must contain the data of the Onnx model result with type found in method signature below
"***"
global img_cb, img_cr
img_out_y = output[0]
img_out_y = np.array((img_out_y[0] * 255.0))
img_out_y = clip(img_out_y,0, 255)
img_out_y = PIL.Image.fromarray(np.uint8(img_out_y), mode='L')
final_img = PIL.Image.merge(
 "YCbCr", [
 img_out_y,
 img_cb.resize(img_out_y.size, PIL.Image.BICUBIC),
 img_cr.resize(img_out_y.size, PIL.Image.BICUBIC),
]).convert("RGB")
f=io.BytesIO()
final_img.save(f,format='jpeg')
imageOutputData = f.getvalue()
final_img.show()
postProcessingResult = imageOutputData
"***"

And finally :

Redefine the REST URL if necessary (by default, localhost on port 3330):

restURL = "http://localhost:3330/model/methods/run_super_resolution_zoo_OnnxModel"

The final name of the filled skeleton ModelName_OnnxClientSkeleton.py could be ModelName_OnnxClient.py
(the same name without Skeleton, super_resolution_zoo_OnnxClient.py for our example).

The filled python client skeleton file can be retrieved in the acumos-onnx-client folder :
acumos-onnx-client/acumos-package/onnx4acumos/FilledClientSkeletonsExamples/super_resolution_zoo_OnnxClient.py.

Remark : To test super_resolution_zoo you must have a server X running on your local system.

Command lines

You can find all command lines to test and run onnx model super_resolution_zoo below :

onnx4acumos super_resolution_zoo.onnx onnx4acumos.ini -f InputData/cat.jpg
acumos_model_runner super_resolution_zoo/dumpedModel/super_resolution_zoo/ ## Launch the model runner server
python super_resolution_zoo_OnnxClient.py -f input/cat.jpg ## Launch client and send input data

super_resolution_zoo_Model example

[image: ../../../../../_images/superResoZoo.png]

More Examples

Below are some additional examples.
Post and Pre-processing methods are available in the Github folder : onnx/models [https://github.com/onnx/models]

GoogLeNet

You can find all command lines for GoogleNetexample below :

[image: ../../../../../_images/Commandes.png]
onnx4acumos OnnxModels/GoogleNet.onnx onnx4acumos.ini -f InputData/car4.jpg
acumos_model_runner GoogLeNet/dumpedModel/GoogleNet/ ## Lanch the model runner server
cd GoogLeNet/GoogLeNet_OnnxClient
python GoogLeNet_OnnxClient.py -f input/car4.jpg ## Launch client and send input data

[image: ../../../../../_images/bvlc.png]
In our example above :

python GoogLeNet_OnnxClient.py -f input/car4.jpg
python GoogLeNet_OnnxClient.py -f input/BM4.jpeg
python GoogLeNet_OnnxClient.py -f input/espresso.jpeg
python GoogLeNet_OnnxClient.py -f input/cat.jpg
python GoogLeNet_OnnxClient.py -f input/pesan3.jpg

Emotion Ferplus Model example

[image: ../../../../../_images/emotionFerPlus.png]
python emotion_ferplus_model_OnnxClient.py -f input/angryMan.png
python emotion_ferplus_model_OnnxClient.py -f input/sadness.png
python emotion_ferplus_model_OnnxClient.py -f input/happy.jpg
python emotion_ferplus_model_OnnxClient.py -f input/joker.jpg

That’s all :-)

 Acumos H2O Model Builder Service

Acumos H2O Model Builder Service

This repository holds the server components of the H2O Model Builder Service
for the Acumos machine-learning platform. The service provides a way to build
H2O models from a dataset and the ability to export them to model-management
to permanently store the models.

Please see the documentation in the “docs” folder.

License

Copyright (C) 2018 AT&T Intellectual Property. All rights reserved.
Acumos is distributed by AT&T under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

This file is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

 Acumos H2O Model Builder Python Developer Guide

Acumos H2O Model Builder Python Developer Guide

This H2O Model builder builds H2O models given a dataset which is a location to read the data to train the model as well as a validation dataset. This service has a dependency on dataset service and dataset service for this operation of building the model. Once the model is built, the user may upload the model to model-management using the export method so this service also has a dependency on model-management service.

This service also uses memcache to store model generation history information as building the model happens asynchronously.

The main class to start this service is /h2o-model-builder/microservice_flask.py

The command line interface gives options to run the application. Type help for a list of available options.
> microservice_flask.py help
usage: microservice_flask.py [-h] [–host HOST] [–settings SETTINGS] [–port PORT]

By default without adding arguments the swagger interface should be available at: http://localhost:8061/v2/

Testing

The only prerequisite for running unit testing is installing python and tox. It is recommended to use a virtual environment for running any python application. If using a virtual environment make sure to run “pip install tox” to install it

	For testing the actual service, memcache will need to be running on the system.

	https://memcached.org/

We use a combination of ‘tox’, ‘pytest’, and ‘flake8’ to test
‘h20-model-builder’. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like ‘autopep8’ to
“clean” your code as follows:

$ pip install autopep8 pyflakes pycodestyle
$ cd h2o-model-builder
$ autopep8 -r --in-place modelbuilder

Run tox directly:

$ cd h2o-model-builder
$ tox

You can also specify certain tox environments to test:

$ tox -e py34 # only test against Python 3.4
$ tox -e flake8 # only lint code

And finally, you can run pytest directly in your environment (recommended starting place):

$ pytest
$ pytest -s # verbose output

 Acumos H2O Model Builder

Acumos H2O Model Builder

Contents:

	H2O Model Builder Service Overview

	Acumos H2O Model Builder Release Notes
	v0.1.0 09-19-2018

	Acumos H2O Model Builder Python Developer Guide
	Testing

	Search Page

 H2O Model Builder Service Overview

H2O Model Builder Service Overview

The Acumos H2O Model Builder service provides a way to create H2O models from a dataset
and also upload them through model-management to save them for use in h2o-model-runner.
The Acumos H2O Model Builder service is a Flask application that provides RESTFul
endpoints, with a swagger spec detailing each endpoint.

The source is available from the Linux Foundation Gerrit server:

https://gerrit.acumos.org/r/gitweb?p=model-builder/h2o-model-builder.git;a=summary

The CI/CD jobs are in the Linux Foundation Jenkins server:

https://jenkins.acumos.org/view/model-builder/h2o-model-builder/

Issues are tracked in the Linux Foundation Jira server:

https://jira.acumos.org/secure/Dashboard.jspa

Further information is available from the Linux Foundation Wiki:

https://wiki.acumos.org/

 Acumos H2O Model Builder Release Notes

Acumos H2O Model Builder Release Notes

v0.1.0 09-19-2018

	Added initial code with swagger specs and unit test cases.

 image-classification

 [image: Build Status] [https://jenkins.acumos.org/job/image-classification-tox-verify-master/]

image-classification

A model example for image classification within Acumos.

 testing

testing

This directory provides a simple web server for demonstrating an image-based classifier example.
This web demo will launch an application with a swagger page.

Please consult the tutorial documentation for more information.

 Image Classification Guide

 [image: Build Status] [https://jenkins.acumos.org/job/image-mood-classifier-tox-verify-master/]

Image Classification Guide

A model example for image classification with a Keras wrapper within Acumos.

[image: Sample images and example image classification scores]

Background

This model analyzes static images and produces a probability for a number of
objects, scene, and activity tags. It is a Keras-based wrapper around a
visual model trained for Inception Net [https://github.com/google/inception]
and this source code creates and pushes
a model into Acumos. This model utilizes the pre-trained network from
keras inception v4 [https://github.com/kentsommer/keras-inceptionV4]
and utilizes the
pretrained keras model [https://github.com/kentsommer/keras-inceptionV4/releases]
At time of writing,
this sample does not support retraining.

Usage

Input to the model is an array of one or more tuples of image binary data and
a binary mime type. The position of the image within the array is utilized
in the output signature as a zero-based index. For example if three images
were sent, the output probabilities would have 0, 1, and 2 as index values.
The probabilities are normalized to sum to 1.0 over all values so that they
can be utilized as relative confidence scores.

A web demo is included with the source code, available via the
Acumos Gerrit repository [https://gerrit.acumos.org/r/gitweb?p=image-classification.git;a=summary] or
the mirrored Acumos Github repository [https://github.com/acumos/image-classification].
It utilizes a protobuf javascript library and inputs captured frames
from a few video samples to classify and display the top N detected
classification scores, as illustrated in the model image.

Once deployed, you can quickly jump to the
default webhost page [http://htmlpreview.github.io/?https://github.com/acumos/image-classification/blob/master/web_demo/image-classes.html]
and point to your model for a demo; see Demonstrations: Tutorial for Image Classification Models in the Tutorials.

Performance

Formal performance is not provided here because this is a wrapped, pre-generated
model, but the original authors point to
these sources for information [https://github.com/kentsommer/keras-inceptionV4#performance-metrics-top5-top1].

Error rates are actually slightly lower than the listed error rates on
non-blacklisted subset of ILSVRC2012 Validation Dataset (Single Crop):

	Top@1 Error: 20.0%

	Top@5 Error: 5.0%

More Information

Enhancements to this model may include additional training capabilities or
adaptation to new model weights (and classes) when available.

Source Installation

This section is useful for source-based installations and is not generally intended
for catalog documentation.

Package dependencies

Package dependencies for the core code and testing have been flattened into a
single file for convenience. Instead of installing this package into your
your local environment, execute the command below.

Note: If you are using an anaconda-based environment [https://anaconda.org],
you may want to try installing with conda first and then pip.

conda install --yes --file requirements.txt # suggested first step if you're using conda

Installation of the package requirements for a new environment.

pip install -r requirements.txt

Usage

This package contains runable scripts for command-line evaluation,
packaging of a model (both dump and posting), and simple web-test
uses. All functionality is encapsulsted in the classify_image.py
script and has the following arguments.

usage: classify_image.py [-h] [-m MODEL_PATH] [-i IMAGE] [-I IMAGE_LIST]
 [-p PREDICT_PATH] [-f {keras,tensorflow}]
 [-C CUDA_ENV] [-l LABEL_PATH]
 [-n NUM_TOP_PREDICTIONS] [-a PUSH_ADDRESS]
 [-A AUTH_ADDRESS] [-d DUMP_MODEL]

optional arguments:
 -h, --help show this help message and exit

main execution and evaluation functionality:
 -m MODEL_PATH, --model_path MODEL_PATH
 Path to read and store image model. (created if not
 provided)
 -i IMAGE, --image IMAGE
 Absolute path to image file. (for now must be a jpeg)
 -I IMAGE_LIST, --image_list IMAGE_LIST
 To batch process multiple images in one load
 -p PREDICT_PATH, --predict_path PREDICT_PATH
 Optional place to save intermediate predictions from
 model
 -l LABEL_PATH, --label_path LABEL_PATH
 Path to class label file for output columns, unnamed
 if empty (i.e. data/keras_class_names.txt).

model creation and configuration options:
 -f {keras,tensorflow}, --framework {keras,tensorflow}
 Underlying framework to utilize
 -C CUDA_ENV, --cuda_env CUDA_ENV
 Anything special to inject into CUDA_VISIBLE_DEVICES
 environment string
 -n NUM_TOP_PREDICTIONS, --num_top_predictions NUM_TOP_PREDICTIONS
 Display this many predictions. (0=disable)
 -a PUSH_ADDRESS, --push_address PUSH_ADDRESS
 server address to push the model (e.g.
 http://localhost:8887/v2/upload)
 -A AUTH_ADDRESS, --auth_address AUTH_ADDRESS
 server address for login and push of the model (e.g.
 http://localhost:8887/v2/auth)
 -d DUMP_MODEL, --dump_model DUMP_MODEL
 dump model to a directory for local running

Example Usages

Please consult the Tutorials directory for usage examples.

Release Notes

The Image Classification Release Notes catalog additions and modifications
over various version changes.

 Image Classification

Image Classification

	Image Classification Guide
	Background

	Performance

	Source Installation

	Example Usages

	Release Notes

	Tutorials
	Deployment: Wrapping and Executing Image Classification Models

	Demonstrations: Tutorial for Image Classification Models

	Image Classification Release Notes
	0.5.4

	0.5.3

	0.5.2

	0.5.1

	0.5.0

	0.4.6

	0.4.5

	0.4.4

	0.4.3

	0.4.2

	0.4.0

	0.3

 Image Classification Release Notes

Image Classification Release Notes

0.5.4

	Add the possibility to on-board a model with or without a license file ‘ACUMOS-4056 <https://jira.acumos.org/browse/ACUMOS-4056>’_

	Add the possibility to launch, or not, the Micro-service generation at the end of on-boarding ‘ACUMOS-4056 <https://jira.acumos.org/browse/ACUMOS-4056>’_

0.5.3

	Clean up tutorial documentation naming and remove deprecated swagger demo app

	Rework demonstration page to allow image upload and support object-based detection

0.5.2

	Clean up documentation for install and parameter descriptions

	Add documentation and functionality for environment variables in push request

0.5.1

	Update model to use single image as input type

	Update javascript demo to run with better CORS behavior (github htmlpreview)

	Additional documentation for environmental variables

	Simplify operation for active prediction to use created model (no save+load required)

0.5.0

	Documentation (lesson1) updated with model runner examples. Deprecation notice
in using explicit proto- and swagger-based serves.

	Update the structure of the protobuf input and output to use flattened (row-based)
structure instead of columnar data for all i/o channels. This should allow
other inspecting applications to more easily understand and reuse implementations
for image data.

	Update the demonstration HTML pages for similar modifications.

0.4.6

	Update image examples for open-source video.

0.4.5

	Documentation and package update to use install instructions instead of installing
this package directly into a user’s environment.

	License addition

0.4.4

	Refactor to remote the demo bin scripts and rewire for direct call of the
script classify_image.py as the primary interaction mechanism.

	Refactor documentation into sections and tutorials.

	Create this release notes document for better version understanding.

0.4.3

	Minor refactor to avoid possibly reserved syntax name

0.4.2

	Refactor for compliant dataframe usage following primary client library
examples for repeated columns (e.g. dataframes) instead of custom types
that parsed rows individually.

	Refactor web, api, main model wrapper code for corresponding changes.

0.4.0

	Migration from previous library structure to new acumos client library

	Refactor to not need this library as a runtime/installed dependency

0.3

	Added example for evaluation of a multiple image with all results, saving predictions.

 Demonstrations: Tutorial for Image Classification Models

Demonstrations: Tutorial for Image Classification Models

To extend functionality into a usable web-demo, a second set of assets were
created within the web_demo directory.

This web page sample uses an HTML5 player to play an mp4 video and submit its
frames to an image classification service.

	video/stock-footage-bicycles.mp4 [https://videos.pexels.com/videos/mountain-bikers-during-daytime-857083]

	video/stock-footage-city-cars.mp4 [https://videos.pexels.com/videos/cars-on-the-road-854745]

	video/stock-footage-coast-time.mp4 [https://videos.pexels.com/videos/sunset-by-the-sea-857056]

	video/stock-footage-dogs.mp4 [https://videos.pexels.com/videos/dogs-playing-853846]

	video/stock-footage-squirrel.mp4 [https://videos.pexels.com/videos/squirrel-eating-855213]

	video/stock-footage-scuba.mp4 [https://videos.pexels.com/videos/paddle-surfing-and-scuba-diving-video-854387]

Browser Interaction

Most browsers should have no
CORS or other cross-domain objections to dropping the file image-classes.html
into the browser and accesing a locally hosted server API, as configured
in Deployment: Wrapping and Executing Image Classification Models.

Open-source hosted run

Utilizing the generous htmlpreview function [https://htmlpreview.github.io/] available on
GitHub, you can also experiment with the respository-based web resource. This resource
will proxy the repository web_demo directory into a live resource.

Navigate to the default webhost page [http://htmlpreview.github.io/?https://github.com/acumos/image-classification/blob/master/web_demo/image-classes.html]
and confirm that the resource load properly. The image at the bottom of this guide
is a good reference for correct page loading and display.

After confirming correct page load, simply replace the value in the Transform URL
field to point at your deployed instance. For example, if you’ve created a
dumped model locally, it might be a localhost port.

Local webserver run

If you want to run the test locally, you can use a supplied python
webserver with the line below while working in the web_demo
directory (assuming you’re running python3).

python simple-cors-http-server-python3.py 5000

Afterwards, just point your browser at http://localhost:5000/image-classes.html.

Usage of protobuf binaries for testing

Binary (protobuf encoded) data can be downloaded from the web page or directly with curl.
Two demonstration binaries have been included in the source repository for testing, as
captured from the demonstration-image_classification_running_example image below.

	protobuf.Image.bin - a protobuf-encoded image of a coastal-lapse video

	protobuf.ImageTagSet.bin - a protobuf-encoded classification tag set for the coastal-lapse video

Within the webpage demo, simply select the correct protobuf method and then drag and
drop the binary file into the Protobuf Payload Input file uploader. It will be
immediately uploaded through javascript to your specified Transform Url.

Example image classification demo (docker and protobuf)

To customize this demo, one should change either the included javascript
or simply update the primary classification URL on the page itself during runtime.
This demo utilizes the javascript protobuf library [https://github.com/dcodeIO/ProtoBuf.js/]
to encode parameters into proto binaries in the browser.

** NOTE ** One version of the model’s protobuf schema is included with
this web page, but it may change over time. If you receive encoding errors
or unexpected results, please verify that your target model and this web page
are using the same .proto file.

	confirm that your target docker instance is configured and running

	
	download this directory to your local machine

	
	confirm the host port and classification service URL in the file image-classes.js

classificationServer: "http://localhost:8886/classify",

	view the page image-classes.html in a Crome or Firefox browser

	you can switch between a few sample images or upload your own by clicking on the buttons below the main image window

[image: example web application classifying costal video]

Special decoding example

You can also download a binary, encoded version of the last
image or output that was sent to the remote service. When available, the Download Encoded Message
button will be enabled and a binary file will be generated in the browser.

protoc --decode=ZmazgwcYOzRPSlAKlNLcoITKjByZchTo.ImageTagSet model.scene.proto < protobuf.out.bin
protoc --decode=ZmazgwcYOzRPSlAKlNLcoITKjByZchTo.Image model.scene.proto < protobuf.in.bin

NOTE The specific package name may have changed since the time of writing,
so be sure to check the contents of the current .proto file.

Reuse with object detectors

This framework can be used to demonstrate other object detector and manipulation models
as well. Although the source for the model is not included in this repo, an object
detection model based on the common Objects in Context (COCO) [http://cocodataset.org]
dataset was created and tested with this content. The example below shows use of the
relevant endpoint and .proto file (also included in this sample).

[image: example web application classifying bicycle image]

 Deployment: Wrapping and Executing Image Classification Models

Deployment: Wrapping and Executing Image Classification Models

To utilize this classifier model, it wraps and deploys a version of the
underlying keras (or tensorflow) model. Continue to the Demonstrations: Tutorial for Image Classification Models
to see how to utilize these models in a demo scenario.

Model Deployment

Following similar use pattens described by the main client library, there are
two primary modes to export and deploy the generated classifier: by dumping
it to disk or by pushing it to an onboarding server. Please consult the
Usage for more specific arguments
but the examples below demonstrate basic capabilities.

	elephant.jpg [https://www.pexels.com/photo/animal-big-ear-elephant-133393/]

	panda.jpg [https://www.pexels.com/photo/red-panda-eating-green-leaf-on-tree-branch-during-daytime-146033/]

Example for training a model that will return the top 100 classifier scores.

python image_classifier/classify_image.py -m model.h5 -f keras -l data/keras_class_names.txt -n 100 -d model -i data/elephant.jpg

Example for training a model, dumping it to disk, and pushing that model that returns all scores. (recommended)

export ACUMOS_USERNAME="user"; \
export ACUMOS_PASSWORD="password";
or
export ACUMOS_TOKEN="a_very_long_token";

export ACUMOS_PUSH="https://acumos-challenge.org/onboarding-app/v2/models"; \
export ACUMOS_AUTH="https://acumos-challenge.org/onboarding-app/v2/auth"; \
python image_classifier/classify_image.py -n 0 -d model

In-place Evaluation

In-place evaluation will not utilize a serialized version of the model and will
instead wrap it in memory and use it in-place. This mode is handy for quick
evaluation of images or image sets for use in other classifiers.

	model-t.jpg [https://www.pexels.com/photo/aged-antique-automobile-automotive-208582/]

Example for dumping model for use in cascade scenario (all classes return probability). recommended

python image_classifier/classify_image.py -n 0 -d model

Example for evaluation of a test image with top 5 results.

python image_classifier/classify_image.py -m model.h5 -i data/model-t.jpg -f keras -l data/keras_class_names.txt -n 5

Example for evaluation of a multiple image with all results, saving predictions. __(Added v0.3)__

python image_classifier/classify_image.py -m model.h5 -I data/image_list.txt -f keras -p data/features.csv -l data/keras_class_names.txt -n 0

Model Runner: Using the Client Library

Getting even closer to what it looks like in a deployed model, you can also use
the model runner code to run classification locally. (added v0.5.0)

1. First, decide the ports to run your classification and other models. In the example
below, classiciation runs on port 8886.

2. Second, dump and launch the classification model. If you modify the ports to
run the models, please change them accordingly. This command example assumes
that you have cloned the client library in a relative path of ../acumos-python-client.
The first line removes any prior model directory, the second dumps the detect
model to disk, and the third runs the model.

rm -rf model; \
 python image_classifier/classify_image.py -m model.h5 -f keras -l data/keras_class_names.txt -n 0 -d model -i data/elephant.jpg; \
 python ../acumos-python-client/testing/wrap/runner.py --port 8886 --modeldir model/image_classifier --no_downstream

 Tutorials

Tutorials

	Deployment: Wrapping and Executing Image Classification Models
	Model Deployment

	Model Runner: Using the Client Library

	Demonstrations: Tutorial for Image Classification Models
	Browser Interaction

	Example image classification demo (docker and protobuf)

 Web Demonstration

Web Demonstration

This directory provides a simple web page and demo content for the
image-based classifier demo.

Please consult the tutorial documentation for more information.

	video/stock-footage-bicycles.mp4 [https://videos.pexels.com/videos/mountain-bikers-during-daytime-857083]

	video/stock-footage-city-cars.mp4 [https://videos.pexels.com/videos/cars-on-the-road-854745]

	video/stock-footage-coast-time.mp4 [https://videos.pexels.com/videos/sunset-by-the-sea-857056]

	video/stock-footage-dogs.mp4 [https://videos.pexels.com/videos/dogs-playing-853846]

	video/stock-footage-squirrel.mp4 [https://videos.pexels.com/videos/squirrel-eating-855213]

	video/stock-footage-scuba.mp4 [https://videos.pexels.com/videos/paddle-surfing-and-scuba-diving-video-854387]

 acumos-python-client

acumos-python-client

[image: ../../_images/Acumos_logo_white2.png]
[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

A client library that allows developers to push their Python models to Acumos.

See our documentation to get started.

 Acumos Python Client Developer Guide

Acumos Python Client Developer Guide

Testing

We use a combination of tox, pytest, and flake8 to test
acumos. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd acumos-python-client
$ autopep8 -r --in-place --ignore E501 acumos/ testing/ examples/

Run tox directly:

$ cd acumos-python-client
$ export WORKSPACE=$(pwd) # env var normally provided by Jenkins
$ tox

You can also specify certain tox environments to test:

$ tox -e py36 # only test against Python 3.6
$ tox -e flake8 # only lint code

A set of integration test is also available in acumos-package/testing/integration_tests.
To run those, use acumos-package/testing/tox-integration.ini as tox config (-c flag),
onboarding tests will be ran with python 3.6 to 3.9.
You will need to set your user credentials and platform configuration in tox-integration.ini.

$ tox -c acumos-package/testing/integration_tests

Packaging

The RST files in the docs/ directory are used to publish HTML pages to
ReadTheDocs.io and to build the package long description in setup.py.
The symlink from the subdirectory acumos-package to the docs/ directory
is required for the Python packaging tools. Those tools build a source
distribution from files in the package root, the directory acumos-package.
The MANIFEST.in file directs the tools to pull files from directory docs/,
and the symlink makes it possible because the tools only look within the
package root.

 Acumos Python Client

Acumos Python Client

The User Guide is located on PyPI [https://pypi.org/project/acumos/].
(Recommended version for Clio release is 0.8.0)

	Acumos Python Client Release Notes

	Acumos Python Client Developer Guide

	Acumos Python Client User Guide

	Acumos Python Client Tutorial

 Acumos Python Client Release Notes

Acumos Python Client Release Notes

v0.9.8, 06 November 2020

	Return docker URI & added an optional flag to replace and existing model when dumping ‘ACUMOS-4298 <https://jira.acumos.org/browse/ACUMOS-4298>’_

	The model bundle can now be dumped directly as a zip file ‘ACUMOS-4273 <https://jira.acumos.org/browse/ACUMOS-4273>’_

	Allow installation on python 3.9 ‘ACUMOS-4123 <https://jira.acumos.org/browse/ACUMOS-4123>’_

v0.9.7, 27 August 2020

	Add support of python 3.7 & 3.8 ‘ACUMOS-4123 <https://jira.acumos.org/browse/ACUMOS-4123>’_

	Display acumos logo on github ‘ACUMOS-4094 <https://jira.acumos.org/browse/ACUMOS-4094>’_

v0.9.4, 05 April 2020

	Give image tag URL from python client ‘ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3961>’_

v0.9.3, 30 Mar 2020

	Modify unstructured type section in pypi ‘ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3956>’_

	Raise an Error when using asymetric type ‘ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3956>’_

v0.9.2, 31 Jan 2020

	Remove support for python 3.5 Gerrit-6275 [https://gerrit.acumos.org/r/c/acumos-python-client/+/6275]

v0.9.1

	add raw format support ACUMOS-2712 [https://jira.acumos.org/browse/ACUMOS-2712]

	publish content type for long description Gerrit-5504 [https://gerrit.acumos.org/r/c/acumos-python-client/+/5504]

v0.8.0

(This is the recommended version for the Clio release)

	Enhancements

	Users may now specify additional options when pushing their Acumos model. See the options section in the tutorial for more information.

	acumos now supports Keras models built with tensorflow.keras

	Support changes

	acumos no longer supports Python 3.4

v0.7.2

	Bug fixes

	The deprecated authentication API is now considered optional

	A more portable path solution is now used when saving models, to avoid issues with models developed in Windows

v0.7.1

	Authentication

	Username and password authentication has been deprecated

	Users are now interactively prompted for an onboarding token, as opposed to a username and password

v0.7.0

	Requirements

	Python script dependencies can now be specified using a Requirements object

	Python script dependencies found during the introspection stage are now included with the model

v0.6.5

	Bug fixes

	Don’t attempt to use an empty auth token (avoids blank strings to be set in environment)

v0.6.4

	Bug fixes

	The normalized path of the system base prefix is now used for identifying stdlib packages

v0.6.3

	Bug fixes

	Improved dependency inspection when using a virtualenv

	Removed custom packages from model metadata, as it caused image build failures

	Fixed Python 3.5.2 ordering bug in wrapped model usage

v0.6.2

	TensorFlow

	Fixed a serialization issue that occurred when using a frozen graph

v0.6.1

	Model upload

	The JWT is now cleared immediately after a failed upload

	Additional HTTP information is now included in the error message

v0.6.0

	Authentication token

	A new environment variable ACUMOS_TOKEN can be used to short-circuit
the authentication process

	Extra headers

	AcumosSession.push now accepts an optional extra_headers argument,
which will allow users and systems to include additional information when
pushing models to the onboarding server

v0.5.0

	Modeling

	Python 3.6 NamedTuple syntax support now tested

	User documentation includes example of new NamedTuple syntax

	Model wrapper

	Model wrapper now has APIs for consuming and producing Python
dicts and JSON strings

	Protobuf and protoc

	An explicit check for protoc is now made, which raises a more
informative error message

	User documentation is more clear about dependence on protoc, and
provides an easier way to install protoc via Anaconda

	Keras

	The active keras backend is now included as a tracked module

	keras_contrib layers are now supported

v0.4.0

	Replaced library-specific onboarding functions with “new-style”
models

	Support for arbitrary Python functions using type hints

	Support for custom user-defined types

	Support for TensorFlow models

	Improved dependency introspection

	Improved object serialization mechanisms

 Acumos Python Client User Guide

Acumos Python Client User Guide

[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

acumos is a client library that allows modelers to push their Python models
to the Acumos platform [https://www.acumos.org/].

Installation

You will need a Python 3.6 or 3.7 environment in order to install acumos.
Python 3.8 and later can also be used starting with version 0.9.5, some AI
framework like Tensor Flow was not supported in Python 3.8 and later.
You can use Anaconda [https://www.anaconda.com/download/]
(preferred) or pyenv [https://github.com/pyenv/pyenv] to install and
manage Python environments.

If you’re new to Python and need an IDE to start developing, we
recommend using Spyder [https://github.com/spyder-ide/spyder] which
can easily be installed with Anaconda.

The acumos package can be installed with pip:

pip install acumos

Protocol Buffers

The acumos package uses protocol buffers and assumes you have
the protobuf compiler protoc installed. Please visit the protobuf
repository [https://github.com/google/protobuf/releases/tag/v3.4.0]
and install the appropriate protoc for your operating system.
Installation is as easy as downloading a binary release and adding it to
your system $PATH. This is a temporary requirement that will be
removed in a future version of acumos.

Anaconda Users: You can easily install protoc from an Anaconda
package [https://anaconda.org/anaconda/libprotobuf] via:

conda install -c anaconda libprotobuf

 Acumos Python Client Tutorial

Acumos Python Client Tutorial

This tutorial provides a brief overview of acumos for creating
Acumos models. The tutorial is meant to be followed linearly, and some
code snippets depend on earlier imports and objects. Full examples are
available in the examples/ directory of the Acumos Python client repository [https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git;a=summary].

	Importing Acumos

	Creating A Session

	A Simple Model

	Exporting Models

	Defining Types

	Using DataFrames with scikit-learn

	Declaring Requirements

	Declaring Options

	Keras and TensorFlow

	Testing Models

	More Examples

Importing Acumos

First import the modeling and session packages:

from acumos.modeling import Model, List, Dict, create_namedtuple, create_dataframe
from acumos.session import AcumosSession

Creating A Session

An AcumosSession allows you to export your models to Acumos. You can
either dump a model to disk locally, so that you can upload it via the
Acumos website, or push the model to Acumos directly.

If you’d like to push directly to Acumos, create a session with the push_api argument:

session = AcumosSession(push_api="https://my.acumos.instance.com/push")

See the onboarding page of your Acumos instance website to find the correct
push_api URL to use.

If you’re only interested in dumping a model to disk, arguments aren’t needed:

session = AcumosSession()

A Simple Model

Any Python function can be used to define an Acumos model using Python
type hints [https://docs.python.org/3/library/typing.html].

Let’s first create a simple model that adds two integers together.
Acumos needs to know what the inputs and outputs of your functions are.
We can use the Python type annotation syntax to specify the function
signature.

Below we define a function add_numbers with int type parameters
x and y, and an int return type. We then build an Acumos
model with an add method.

Note: Function
docstrings [https://www.python.org/dev/peps/pep-0257/] are included
with your model and used for documentation, so be sure to include one!

def add_numbers(x: int, y: int) -> int:
 '''Returns the sum of x and y'''
 return x + y

model = Model(add=add_numbers)

Exporting Models

We can now export our model using the AcumosSession object created
earlier. The push and dump_zip APIs are shown below. The dump_zip method will
save the model to disk so that it can be onboarded via the Acumos website. The
push method pushes the model directly to Acumos.

session.push(model, 'my-model')
session.dump_zip(model, 'my-model', '~/my-model.zip') # creates ~/my-model.zip

For more information on how to onboard a dumped model via the Acumos website,
see the web onboarding guide [https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-user/portal/portal-onboarding-intro.html#on-boarding-by-web].

Note: Pushing a model to Acumos will prompt you for an onboarding token if
you have not previously provided one. The interactive prompt can be avoided by
exporting the ACUMOS_TOKEN environment variable, which corresponds to an
authentication token that can be found in your account settings on the Acumos
website.

Defining Types

In this example, we make a model that can read binary images and output
some metadata about them. This model makes use of a custom type
ImageShape.

We first create a NamedTuple type called ImageShape, which is
like an ordinary tuple but with field accessors. We can then use
ImageShape as the return type of get_shape. Note how
ImageShape can be instantiated as a new object.

import io
import PIL

ImageShape = create_namedtuple('ImageShape', [('width', int), ('height', int)])

def get_format(data: bytes) -> str:
 '''Returns the format of an image'''
 buffer = io.BytesIO(data)
 img = PIL.Image.open(buffer)
 return img.format

def get_shape(data: bytes) -> ImageShape:
 '''Returns the width and height of an image'''
 buffer = io.BytesIO(data)
 img = PIL.Image.open(buffer)
 shape = ImageShape(width=img.width, height=img.height)
 return shape

model = Model(get_format=get_format, get_shape=get_shape)

Note: Starting in Python 3.6, you can alternatively use this simpler
syntax:

from acumos.modeling import NamedTuple

class ImageShape(NamedTuple):
 '''Type representing the shape of an image'''
 width: int
 height: int

Defining Unstructured Types

The create_namedtuple function allows us to create types with structure,
however sometimes it’s useful to work with unstructured data, such as plain
text, dictionaries or byte strings. The new_type function allows for just
that.

For example, here’s a model that takes in unstructured text, and returns the
number of words in the text:

from acumos.modeling import new_type

Text = new_type(str, 'Text')

def count(text: Text) -> int:
 '''Counts the number of words in the text'''
 return len(text.split(' '))

def create_text(x: int, y: int) -> Text:
 '''Returns a string containing ints from x to y'''
 return " ".join(map(str, range(x, y+1)))

def reverse_text(text: Text) -> Text:
 '''Returns an empty image buffer from dimensions'''
 return text[::-1]

By using the new_type function, you inform acumos that Text is
unstructured, and therefore acumos will not create any structured types or
messages for the count function.

You can use the new_type function to create dictionaries or byte string
type unstructured data as shown below.

from acumos.modeling import new_type

Dict = new_type(dict, 'Dict')

Image = new_type(byte, 'Image')

Using DataFrames with scikit-learn

In this example, we train a RandomForestClassifier using
scikit-learn and use it to create an Acumos model.

When making machine learning models, it’s common to use a dataframe data
structure to represent data. To make things easier, acumos can
create NamedTuple types directly from pandas.DataFrame objects.

NamedTuple types created from pandas.DataFrame objects store
columns as named attributes and preserve column order. Because
NamedTuple types are like ordinary tuple types, the resulting
object can be iterated over. Thus, iterating over a NamedTuple
dataframe object is the same as iterating over the columns of a
pandas.DataFrame. As a consequence, note how np.column_stack can
be used to create a numpy.ndarray from the input df.

Finally, the model returns a numpy.ndarray of int corresponding
to predicted iris classes. The classify_iris function represents
this as List[int] in the signature return.

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

iris = load_iris()
X = iris.data
y = iris.target

clf = RandomForestClassifier(random_state=0)
clf.fit(X, y)

here, an appropriate NamedTuple type is inferred from a pandas DataFrame
X_df = pd.DataFrame(X, columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'])
IrisDataFrame = create_dataframe('IrisDataFrame', X_df)

==
or equivalently:
#
IrisDataFrame = create_namedtuple('IrisDataFrame', [('sepal_length', List[float]),
('sepal_width', List[float]),
('petal_length', List[float]),
('petal_width', List[float])])
==

def classify_iris(df: IrisDataFrame) -> List[int]:
 '''Returns an array of iris classifications'''
 X = np.column_stack(df)
 return clf.predict(X)

model = Model(classify=classify_iris)

Check out the sklearn examples in the examples directory for full
runnable scripts.

Declaring Requirements

If your model depends on another Python script or package that you wrote, you can
declare the dependency via the acumos.metadata.Requirements class:

from acumos.metadata import Requirements

Note that only pure Python is supported at this time.

Custom Scripts

Custom scripts can be included by giving Requirements a sequence of paths
to Python scripts, or directories containing Python scripts. For example, if the
model defined in model.py depended on helper1.py:

model_workspace/
├── model.py
├── helper1.py
└── helper2.py

this dependency could be declared like so:

from helper1 import do_thing

def transform(x: int) -> int:
 '''Does the thing'''
 return do_thing(x)

model = Model(transform=transform)

reqs = Requirements(scripts=['./helper1.py'])

using the AcumosSession created earlier:
session.push(model, 'my-model', reqs)
session.dump(model, 'my-model', '~/', reqs) # creates ~/my-model

Alternatively, all Python scripts within model_workspace/ could be included
using:

reqs = Requirements(scripts=['.'])

Custom Packages

Custom packages can be included by giving Requirements a sequence of paths to
Python packages, i.e. directories with an __init__.py file. Assuming that the
package ~/repos/my_pkg contains:

my_pkg/
├── __init__.py
├── bar.py
└── foo.py

then you can bundle my_pkg with your model like so:

from my_pkg.bar import do_thing

def transform(x: int) -> int:
 '''Does the thing'''
 return do_thing(x)

model = Model(transform=transform)

reqs = Requirements(packages=['~/repos/my_pkg'])

using the AcumosSession created earlier:
session.push(model, 'my-model', reqs)
session.dump(model, 'my-model', '~/', reqs) # creates ~/my-model

Requirement Mapping

Python packaging and PyPI [https://pypi.org/] aren’t
perfect, and sometimes the name of the Python package you import in your
code is different than the package name used to install it. One example
of this is the PIL package, which is commonly installed using a fork
called pillow [https://pillow.readthedocs.io] (i.e.
pip install pillow will provide the PIL package).

To address this inconsistency, the Requirements
class allows you to map Python package names to PyPI package names. When
your model is analyzed for dependencies by acumos, this mapping is
used to ensure the correct PyPI packages will be used.

In the example below, the req_map parameter is used to declare a
requirements mapping from the PIL Python package to the pillow
PyPI package:

reqs = Requirements(req_map={'PIL': 'pillow'})

Declaring Options

The acumos.metadata.Options class is a collection of options that users may
wish to specify along with their Acumos model. If an Options instance is not
provided to AcumosSession.push, then default options are applied. See the
class docstring for more details.

Below, we demonstrate how options can be used to include additional model metadata
and influence the behavior of the Acumos platform. For example, a license can be
included with a model via the license parameter, either by providing a license
string or a path to a license file. Likewise, we can specify whether or not the Acumos
platform should eagerly build the model microservice via the create_microservice
parameter.

from acumos.metadata import Options

opts = Options(license="Apache 2.0", # "./path/to/license_file" also works
 create_microservice=False, # don't build the microservice yet

session.push(model, 'my-model', options=opts)

Keras and TensorFlow

Check out the Keras and TensorFlow examples in the examples/ directory of
the Acumos Python client repository [https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git;a=summary].

Testing Models

The acumos.modeling.Model class wraps your custom functions and
produces corresponding input and output types. This section shows how to
access those types for the purpose of testing. For simplicity, we’ll
create a model using the add_numbers function again:

def add_numbers(x: int, y: int) -> int:
 '''Returns the sum of x and y'''
 return x + y

model = Model(add=add_numbers)

The model object now has an add attribute, which acts as a
wrapper around add_numbers. The add_numbers function can be
invoked like so:

result = model.add.inner(1, 2)
print(result) # 3

The model.add object also has a corresponding wrapped function
that is generated by acumos.modeling.Model. The wrapped function is
the primary way your model will be used within Acumos.

We can access the input_type and output_type attributes to test
that the function works as expected:

AddIn = model.add.input_type
AddOut = model.add.output_type

add_in = AddIn(1, 2)
print(add_in) # AddIn(x=1, y=2)

add_out = AddOut(3)
print(add_out) # AddOut(value=3)

model.add.wrapped(add_in) == add_out # True

More Examples

Below are some additional function examples. Note how numpy types
can even be used in type hints, as shown in the numpy_sum function.

from collections import Counter
import numpy as np

def list_sum(x: List[int]) -> int:
 '''Computes the sum of a sequence of integers'''
 return sum(x)

def numpy_sum(x: List[np.int32]) -> np.int32:
 '''Uses numpy to compute a vectorized sum over x'''
 return np.sum(x)

def count_strings(x: List[str]) -> Dict[str, int]:
 '''Returns a count mapping from a sequence of strings'''
 return Counter(x)

 testing/wrap

testing/wrap

This directory provides example applications that demonstrate how wrapped models work

Scripts

dump_example_model.py

This script trains a scikit-learn model on the iris dataset and dumps the model to the present working directory.

$ cd testing/wrap
$ python dump_example_model.py

This creates additional files that would be used for pushing the dumped model to the Acumos upload server:

.
├── model
│ ├── metadata.json
│ ├── model.pkl
│ ├── model.py
│ ├── wrap.json
│ ├── model.proto
│ └── model.zip

talker.py

This script continuously sends DataFrame messages to the model runner script every 5 seconds by default.

runner.py

This script loads the dumped model and uses it to dynamically add flask endpoints. In this instance, the scikit-learn model implements the transform API which results in a /transform endpoint.

usage: runner.py [-h] [--port PORT] [--modeldir MODELDIR] [--json_io]
 [--return_output]

optional arguments:
 -h, --help show this help message and exit
 --port PORT
 --modeldir MODELDIR specify the model directory to load
 --json_io input+output rich JSON instead of protobuf
 --return_output return output in response instae of just downstream

To test JSON-based endpoints, you can specify the flag --json_io and the app will attempt ot decode and encode outputs in JSON.

Note that the downstream applications that are being “published” to are defined in runtime.json file via the downstream key. However, you can
also request that the output is included in the response with the flag --return_output.

The following examples are provided for curl-based evaluation from a command-line.

(as GET)
curl -X GET "http://localhost:3330/transform?x0=123&x2=0.31&x1=0.77&x3=0.12"

(as POST)
curl --data x1=123 -d x0=0.2 -d x2=0.5 -d x3=0.1 -X POST http://localhost:3330/transform

(as POST, with multiple)
curl --data x1=123 -d x0=0.2 -d x2=0.5 -d x3=0.1 -d x1=2 -d x0=0.1 -d x2=3 -d x3=0.4 -X POST http://localhost:3330/transform

listen.py

This script receives Prediction messages produced by the model runner script and prints them to console.

Running the example

Run all three applications together to create the pipeline:

$ python talker.py &> /dev/null &
$ python runner.py &> /dev/null &
$ python listener.py

Running your own example.

To aide in the testing of your own work, each of these scripts have an additional
argument --modeldir that can be used to point to your own model directory
Additionally, while you are encouraged to derive your own talker script, you can
also utilize this script to feed test samples to your script by providing
a CSV-based file. This changes the run patterns for these scripts as thus.

$ python talker.py --modeldir /some/path/model --csvdata /some/path/data.csv &> /dev/null &
$ python runner.py --modeldir /some/path/model &> /dev/null &
$ python listener.py --modeldir /some/path/model

Swagger and Wrapper example

To aide in the development and export of models to a swagger/webapp interface
a sample script was created to inspect models and generate python dict wrapper. To call
this sample jut point it at your target model directory and a simple output will be
generated for all methods. If you don’t have a model a simple model will be dumped to the
target directory.

$ python swagger.py --modeldir /some/path/model

(output)
[{
 'name': 'transform',
 'out': {
 'predictions': <class 'int'>
 },
 'in': {
 'x1': <class 'float'>,
 'x3': <class 'float'>,
 'x0': <class 'float'>,
 'x2': <class 'float'>
 }
}]

 Acumos Python Client Developer Guide

Acumos Python Client Developer Guide

Testing

We use a combination of tox, pytest, and flake8 to test
acumos. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd acumos-python-client
$ autopep8 -r --in-place --ignore E501 acumos/ testing/ examples/

Run tox directly:

$ cd acumos-python-client
$ export WORKSPACE=$(pwd) # env var normally provided by Jenkins
$ tox

You can also specify certain tox environments to test:

$ tox -e py36 # only test against Python 3.6
$ tox -e flake8 # only lint code

A set of integration test is also available in acumos-package/testing/integration_tests.
To run those, use acumos-package/testing/tox-integration.ini as tox config (-c flag),
onboarding tests will be ran with python 3.6 to 3.9.
You will need to set your user credentials and platform configuration in tox-integration.ini.

$ tox -c acumos-package/testing/integration_tests

Packaging

The RST files in the docs/ directory are used to publish HTML pages to
ReadTheDocs.io and to build the package long description in setup.py.
The symlink from the subdirectory acumos-package to the docs/ directory
is required for the Python packaging tools. Those tools build a source
distribution from files in the package root, the directory acumos-package.
The MANIFEST.in file directs the tools to pull files from directory docs/,
and the symlink makes it possible because the tools only look within the
package root.

 Acumos Python Client

Acumos Python Client

The User Guide is located on PyPI [https://pypi.org/project/acumos/].
(Recommended version for Clio release is 0.8.0)

	Acumos Python Client Release Notes

	Acumos Python Client Developer Guide

	Acumos Python Client User Guide

	Acumos Python Client Tutorial

 Acumos Python Client Release Notes

Acumos Python Client Release Notes

v0.9.8, 06 November 2020

	Return docker URI & added an optional flag to replace and existing model when dumping ‘ACUMOS-4298 <https://jira.acumos.org/browse/ACUMOS-4298>’_

	The model bundle can now be dumped directly as a zip file ‘ACUMOS-4273 <https://jira.acumos.org/browse/ACUMOS-4273>’_

	Allow installation on python 3.9 ‘ACUMOS-4123 <https://jira.acumos.org/browse/ACUMOS-4123>’_

v0.9.7, 27 August 2020

	Add support of python 3.7 & 3.8 ‘ACUMOS-4123 <https://jira.acumos.org/browse/ACUMOS-4123>’_

	Display acumos logo on github ‘ACUMOS-4094 <https://jira.acumos.org/browse/ACUMOS-4094>’_

v0.9.4, 05 April 2020

	Give image tag URL from python client ‘ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3961>’_

v0.9.3, 30 Mar 2020

	Modify unstructured type section in pypi ‘ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3956>’_

	Raise an Error when using asymetric type ‘ACUMOS-3956 <https://jira.acumos.org/browse/ACUMOS-3956>’_

v0.9.2, 31 Jan 2020

	Remove support for python 3.5 Gerrit-6275 [https://gerrit.acumos.org/r/c/acumos-python-client/+/6275]

v0.9.1

	add raw format support ACUMOS-2712 [https://jira.acumos.org/browse/ACUMOS-2712]

	publish content type for long description Gerrit-5504 [https://gerrit.acumos.org/r/c/acumos-python-client/+/5504]

v0.8.0

(This is the recommended version for the Clio release)

	Enhancements

	Users may now specify additional options when pushing their Acumos model. See the options section in the tutorial for more information.

	acumos now supports Keras models built with tensorflow.keras

	Support changes

	acumos no longer supports Python 3.4

v0.7.2

	Bug fixes

	The deprecated authentication API is now considered optional

	A more portable path solution is now used when saving models, to avoid issues with models developed in Windows

v0.7.1

	Authentication

	Username and password authentication has been deprecated

	Users are now interactively prompted for an onboarding token, as opposed to a username and password

v0.7.0

	Requirements

	Python script dependencies can now be specified using a Requirements object

	Python script dependencies found during the introspection stage are now included with the model

v0.6.5

	Bug fixes

	Don’t attempt to use an empty auth token (avoids blank strings to be set in environment)

v0.6.4

	Bug fixes

	The normalized path of the system base prefix is now used for identifying stdlib packages

v0.6.3

	Bug fixes

	Improved dependency inspection when using a virtualenv

	Removed custom packages from model metadata, as it caused image build failures

	Fixed Python 3.5.2 ordering bug in wrapped model usage

v0.6.2

	TensorFlow

	Fixed a serialization issue that occurred when using a frozen graph

v0.6.1

	Model upload

	The JWT is now cleared immediately after a failed upload

	Additional HTTP information is now included in the error message

v0.6.0

	Authentication token

	A new environment variable ACUMOS_TOKEN can be used to short-circuit
the authentication process

	Extra headers

	AcumosSession.push now accepts an optional extra_headers argument,
which will allow users and systems to include additional information when
pushing models to the onboarding server

v0.5.0

	Modeling

	Python 3.6 NamedTuple syntax support now tested

	User documentation includes example of new NamedTuple syntax

	Model wrapper

	Model wrapper now has APIs for consuming and producing Python
dicts and JSON strings

	Protobuf and protoc

	An explicit check for protoc is now made, which raises a more
informative error message

	User documentation is more clear about dependence on protoc, and
provides an easier way to install protoc via Anaconda

	Keras

	The active keras backend is now included as a tracked module

	keras_contrib layers are now supported

v0.4.0

	Replaced library-specific onboarding functions with “new-style”
models

	Support for arbitrary Python functions using type hints

	Support for custom user-defined types

	Support for TensorFlow models

	Improved dependency introspection

	Improved object serialization mechanisms

 Acumos Python Client User Guide

Acumos Python Client User Guide

[image: Build Status] [https://jenkins.acumos.org/job/acumos-python-client-tox-verify-master/]

acumos is a client library that allows modelers to push their Python models
to the Acumos platform [https://www.acumos.org/].

Installation

You will need a Python 3.6 or 3.7 environment in order to install acumos.
Python 3.8 and later can also be used starting with version 0.9.5, some AI
framework like Tensor Flow was not supported in Python 3.8 and later.
You can use Anaconda [https://www.anaconda.com/download/]
(preferred) or pyenv [https://github.com/pyenv/pyenv] to install and
manage Python environments.

If you’re new to Python and need an IDE to start developing, we
recommend using Spyder [https://github.com/spyder-ide/spyder] which
can easily be installed with Anaconda.

The acumos package can be installed with pip:

pip install acumos

Protocol Buffers

The acumos package uses protocol buffers and assumes you have
the protobuf compiler protoc installed. Please visit the protobuf
repository [https://github.com/google/protobuf/releases/tag/v3.4.0]
and install the appropriate protoc for your operating system.
Installation is as easy as downloading a binary release and adding it to
your system $PATH. This is a temporary requirement that will be
removed in a future version of acumos.

Anaconda Users: You can easily install protoc from an Anaconda
package [https://anaconda.org/anaconda/libprotobuf] via:

conda install -c anaconda libprotobuf

 Acumos Python Client Tutorial

Acumos Python Client Tutorial

This tutorial provides a brief overview of acumos for creating
Acumos models. The tutorial is meant to be followed linearly, and some
code snippets depend on earlier imports and objects. Full examples are
available in the examples/ directory of the Acumos Python client repository [https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git;a=summary].

	Importing Acumos

	Creating A Session

	A Simple Model

	Exporting Models

	Defining Types

	Using DataFrames with scikit-learn

	Declaring Requirements

	Declaring Options

	Keras and TensorFlow

	Testing Models

	More Examples

Importing Acumos

First import the modeling and session packages:

from acumos.modeling import Model, List, Dict, create_namedtuple, create_dataframe
from acumos.session import AcumosSession

Creating A Session

An AcumosSession allows you to export your models to Acumos. You can
either dump a model to disk locally, so that you can upload it via the
Acumos website, or push the model to Acumos directly.

If you’d like to push directly to Acumos, create a session with the push_api argument:

session = AcumosSession(push_api="https://my.acumos.instance.com/push")

See the onboarding page of your Acumos instance website to find the correct
push_api URL to use.

If you’re only interested in dumping a model to disk, arguments aren’t needed:

session = AcumosSession()

A Simple Model

Any Python function can be used to define an Acumos model using Python
type hints [https://docs.python.org/3/library/typing.html].

Let’s first create a simple model that adds two integers together.
Acumos needs to know what the inputs and outputs of your functions are.
We can use the Python type annotation syntax to specify the function
signature.

Below we define a function add_numbers with int type parameters
x and y, and an int return type. We then build an Acumos
model with an add method.

Note: Function
docstrings [https://www.python.org/dev/peps/pep-0257/] are included
with your model and used for documentation, so be sure to include one!

def add_numbers(x: int, y: int) -> int:
 '''Returns the sum of x and y'''
 return x + y

model = Model(add=add_numbers)

Exporting Models

We can now export our model using the AcumosSession object created
earlier. The push and dump_zip APIs are shown below. The dump_zip method will
save the model to disk so that it can be onboarded via the Acumos website. The
push method pushes the model directly to Acumos.

session.push(model, 'my-model')
session.dump_zip(model, 'my-model', '~/my-model.zip') # creates ~/my-model.zip

For more information on how to onboard a dumped model via the Acumos website,
see the web onboarding guide [https://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-user/portal/portal-onboarding-intro.html#on-boarding-by-web].

Note: Pushing a model to Acumos will prompt you for an onboarding token if
you have not previously provided one. The interactive prompt can be avoided by
exporting the ACUMOS_TOKEN environment variable, which corresponds to an
authentication token that can be found in your account settings on the Acumos
website.

Defining Types

In this example, we make a model that can read binary images and output
some metadata about them. This model makes use of a custom type
ImageShape.

We first create a NamedTuple type called ImageShape, which is
like an ordinary tuple but with field accessors. We can then use
ImageShape as the return type of get_shape. Note how
ImageShape can be instantiated as a new object.

import io
import PIL

ImageShape = create_namedtuple('ImageShape', [('width', int), ('height', int)])

def get_format(data: bytes) -> str:
 '''Returns the format of an image'''
 buffer = io.BytesIO(data)
 img = PIL.Image.open(buffer)
 return img.format

def get_shape(data: bytes) -> ImageShape:
 '''Returns the width and height of an image'''
 buffer = io.BytesIO(data)
 img = PIL.Image.open(buffer)
 shape = ImageShape(width=img.width, height=img.height)
 return shape

model = Model(get_format=get_format, get_shape=get_shape)

Note: Starting in Python 3.6, you can alternatively use this simpler
syntax:

from acumos.modeling import NamedTuple

class ImageShape(NamedTuple):
 '''Type representing the shape of an image'''
 width: int
 height: int

Defining Unstructured Types

The create_namedtuple function allows us to create types with structure,
however sometimes it’s useful to work with unstructured data, such as plain
text, dictionaries or byte strings. The new_type function allows for just
that.

For example, here’s a model that takes in unstructured text, and returns the
number of words in the text:

from acumos.modeling import new_type

Text = new_type(str, 'Text')

def count(text: Text) -> int:
 '''Counts the number of words in the text'''
 return len(text.split(' '))

def create_text(x: int, y: int) -> Text:
 '''Returns a string containing ints from x to y'''
 return " ".join(map(str, range(x, y+1)))

def reverse_text(text: Text) -> Text:
 '''Returns an empty image buffer from dimensions'''
 return text[::-1]

By using the new_type function, you inform acumos that Text is
unstructured, and therefore acumos will not create any structured types or
messages for the count function.

You can use the new_type function to create dictionaries or byte string
type unstructured data as shown below.

from acumos.modeling import new_type

Dict = new_type(dict, 'Dict')

Image = new_type(byte, 'Image')

Using DataFrames with scikit-learn

In this example, we train a RandomForestClassifier using
scikit-learn and use it to create an Acumos model.

When making machine learning models, it’s common to use a dataframe data
structure to represent data. To make things easier, acumos can
create NamedTuple types directly from pandas.DataFrame objects.

NamedTuple types created from pandas.DataFrame objects store
columns as named attributes and preserve column order. Because
NamedTuple types are like ordinary tuple types, the resulting
object can be iterated over. Thus, iterating over a NamedTuple
dataframe object is the same as iterating over the columns of a
pandas.DataFrame. As a consequence, note how np.column_stack can
be used to create a numpy.ndarray from the input df.

Finally, the model returns a numpy.ndarray of int corresponding
to predicted iris classes. The classify_iris function represents
this as List[int] in the signature return.

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier

iris = load_iris()
X = iris.data
y = iris.target

clf = RandomForestClassifier(random_state=0)
clf.fit(X, y)

here, an appropriate NamedTuple type is inferred from a pandas DataFrame
X_df = pd.DataFrame(X, columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'])
IrisDataFrame = create_dataframe('IrisDataFrame', X_df)

==
or equivalently:
#
IrisDataFrame = create_namedtuple('IrisDataFrame', [('sepal_length', List[float]),
('sepal_width', List[float]),
('petal_length', List[float]),
('petal_width', List[float])])
==

def classify_iris(df: IrisDataFrame) -> List[int]:
 '''Returns an array of iris classifications'''
 X = np.column_stack(df)
 return clf.predict(X)

model = Model(classify=classify_iris)

Check out the sklearn examples in the examples directory for full
runnable scripts.

Declaring Requirements

If your model depends on another Python script or package that you wrote, you can
declare the dependency via the acumos.metadata.Requirements class:

from acumos.metadata import Requirements

Note that only pure Python is supported at this time.

Custom Scripts

Custom scripts can be included by giving Requirements a sequence of paths
to Python scripts, or directories containing Python scripts. For example, if the
model defined in model.py depended on helper1.py:

model_workspace/
├── model.py
├── helper1.py
└── helper2.py

this dependency could be declared like so:

from helper1 import do_thing

def transform(x: int) -> int:
 '''Does the thing'''
 return do_thing(x)

model = Model(transform=transform)

reqs = Requirements(scripts=['./helper1.py'])

using the AcumosSession created earlier:
session.push(model, 'my-model', reqs)
session.dump(model, 'my-model', '~/', reqs) # creates ~/my-model

Alternatively, all Python scripts within model_workspace/ could be included
using:

reqs = Requirements(scripts=['.'])

Custom Packages

Custom packages can be included by giving Requirements a sequence of paths to
Python packages, i.e. directories with an __init__.py file. Assuming that the
package ~/repos/my_pkg contains:

my_pkg/
├── __init__.py
├── bar.py
└── foo.py

then you can bundle my_pkg with your model like so:

from my_pkg.bar import do_thing

def transform(x: int) -> int:
 '''Does the thing'''
 return do_thing(x)

model = Model(transform=transform)

reqs = Requirements(packages=['~/repos/my_pkg'])

using the AcumosSession created earlier:
session.push(model, 'my-model', reqs)
session.dump(model, 'my-model', '~/', reqs) # creates ~/my-model

Requirement Mapping

Python packaging and PyPI [https://pypi.org/] aren’t
perfect, and sometimes the name of the Python package you import in your
code is different than the package name used to install it. One example
of this is the PIL package, which is commonly installed using a fork
called pillow [https://pillow.readthedocs.io] (i.e.
pip install pillow will provide the PIL package).

To address this inconsistency, the Requirements
class allows you to map Python package names to PyPI package names. When
your model is analyzed for dependencies by acumos, this mapping is
used to ensure the correct PyPI packages will be used.

In the example below, the req_map parameter is used to declare a
requirements mapping from the PIL Python package to the pillow
PyPI package:

reqs = Requirements(req_map={'PIL': 'pillow'})

Declaring Options

The acumos.metadata.Options class is a collection of options that users may
wish to specify along with their Acumos model. If an Options instance is not
provided to AcumosSession.push, then default options are applied. See the
class docstring for more details.

Below, we demonstrate how options can be used to include additional model metadata
and influence the behavior of the Acumos platform. For example, a license can be
included with a model via the license parameter, either by providing a license
string or a path to a license file. Likewise, we can specify whether or not the Acumos
platform should eagerly build the model microservice via the create_microservice
parameter.

from acumos.metadata import Options

opts = Options(license="Apache 2.0", # "./path/to/license_file" also works
 create_microservice=False, # don't build the microservice yet

session.push(model, 'my-model', options=opts)

Keras and TensorFlow

Check out the Keras and TensorFlow examples in the examples/ directory of
the Acumos Python client repository [https://gerrit.acumos.org/r/gitweb?p=acumos-python-client.git;a=summary].

Testing Models

The acumos.modeling.Model class wraps your custom functions and
produces corresponding input and output types. This section shows how to
access those types for the purpose of testing. For simplicity, we’ll
create a model using the add_numbers function again:

def add_numbers(x: int, y: int) -> int:
 '''Returns the sum of x and y'''
 return x + y

model = Model(add=add_numbers)

The model object now has an add attribute, which acts as a
wrapper around add_numbers. The add_numbers function can be
invoked like so:

result = model.add.inner(1, 2)
print(result) # 3

The model.add object also has a corresponding wrapped function
that is generated by acumos.modeling.Model. The wrapped function is
the primary way your model will be used within Acumos.

We can access the input_type and output_type attributes to test
that the function works as expected:

AddIn = model.add.input_type
AddOut = model.add.output_type

add_in = AddIn(1, 2)
print(add_in) # AddIn(x=1, y=2)

add_out = AddOut(3)
print(add_out) # AddOut(value=3)

model.add.wrapped(add_in) == add_out # True

More Examples

Below are some additional function examples. Note how numpy types
can even be used in type hints, as shown in the numpy_sum function.

from collections import Counter
import numpy as np

def list_sum(x: List[int]) -> int:
 '''Computes the sum of a sequence of integers'''
 return sum(x)

def numpy_sum(x: List[np.int32]) -> np.int32:
 '''Uses numpy to compute a vectorized sum over x'''
 return np.sum(x)

def count_strings(x: List[str]) -> Dict[str, int]:
 '''Returns a count mapping from a sequence of strings'''
 return Counter(x)

 acumos-model-schema

acumos-model-schema

This repository contains the evolution of Acumos model metadata jsonschema.

See the release notes for the latest changes and examples.

 Model Schema Developer Guide

Model Schema Developer Guide

The model-schema repository version controls the JSON schema used to define and validate the Acumos model metadata generated by client libraries.

See the Release Notes for the latest updates and examples.

 Model Schema

Model Schema

	Model Schema Release Notes
	Version 0.5.0

	Version 0.4.0

	Versions 0.1.0 - 0.3.0

	Model Schema Developer Guide

 Model Schema Release Notes

Model Schema Release Notes

Version 0.5.0

	The runtime field is now a list instead of an object, allowing for multiple runtimes to be specified. For example, to allow R + Java (e.g. to use RWeka) or R + Python (e.g to use kerasR).

Example:

{
 "schema": "acumos.schema.model:0.5.0",
 "name": "my-model",
 "runtime": [
 {
 "name": "python",
 "version": "3.4.5",
 "dependencies": {
 "pip": {
 "indexes": [],
 "requirements": [
 {
 "name": "scikit-learn",
 "version": "0.18.0"
 }
]
 },
 "conda": {
 "channels": [],
 "requirements": []
 }
 }
 }
],
 "methods": {
 "transform": {
 "input": "DataFrame",
 "output": "Classification",
 "description": "Classifies the input iris data as one of 3 possible classes "
 }
 }
}

Version 0.4.0

	Introduced arbitrary function names, removing reserved functions such as fit, predict, etc.

	Descriptions added to clarify the purpose of various schema fields.

	Added regex pattern to required schema field.

Example:

{
 "schema": "acumos.schema.model:0.4.0",
 "name": "my-model",
 "runtime": {
 "name": "python",
 "version": "3.4.5",
 "dependencies": {
 "pip": {
 "indexes": [],
 "requirements": [
 {
 "name": "scikit-learn",
 "version": "0.18.0"
 }
]
 },
 "conda": {
 "channels": [],
 "requirements": []
 }
 }
 },
 "methods": {
 "transform": {
 "input": "DataFrame",
 "output": "Classification",
 "description": "Classifies the input iris data as one of 3 possible classes "
 }
 }
}

Versions 0.1.0 - 0.3.0

	Older schemas used during initial development.

	Now deprecated and should not be used.

 python-model-runner

python-model-runner

[image: Build Status] [https://jenkins.acumos.org/job/python-model-runner-tox-verify-master/]

This repository holds the code for the Python model runner,
a microservice that wraps models on-boarded by Acumos users.

 Acumos Python Model Runner Developer Guide

Acumos Python Model Runner Developer Guide

Testing

We use a combination of tox, pytest, and flake8 to test
acumos_model_runner. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd python-model-runner
$ autopep8 -r --in-place --ignore E501 acumos_model_runner/ testing/ examples/

Run tox directly:

$ cd python-model-runner
$ tox

You can also specify certain tox environments to test:

$ tox -e py34 # only test against Python 3.4
$ tox -e flake8 # only lint code

And finally, you can run pytest directly in your environment (recommended starting place):

$ pytest
$ pytest -s # verbose output

 Acumos Python Model Runner

Acumos Python Model Runner

Contents:

	Acumos Python Model Runner Release Notes
	v0.2.6, 23 Novemver 2020

	v0.2.5, 04 June 2020

	v0.2.4, 15 May 2020

	v0.2.3, 23 January 2020

	v0.2.2

	v0.2.1

	v0.2.0

	v0.1.0

	Acumos Python Model Runner User Guide
	Installation

	Command Line Usage

	Acumos Python Model Runner Tutorial
	Creating A Model

	Running A Model

	Using A Model

	Acumos Python Model Runner Developer Guide
	Testing

	Search Page

 Acumos Python Model Runner Release Notes

Acumos Python Model Runner Release Notes

v0.2.6, 23 Novemver 2020

	Fix unicode conversion error when using Text. ACUMOS-4275 [https://jira.acumos.org/browse/ACUMOS-4275]

v0.2.5, 04 June 2020

	Fix backward compatibility issue with old models ACUMOS-4164 [https://jira.acumos.org/browse/ACUMOS-4164]

v0.2.4, 15 May 2020

	Fix OpenAPI spec generation for empty inputs ACUMOS-4010 [https://jira.acumos.org/browse/ACUMOS-4010]

	Allow the model runner to use raw data types ACUMOS-3956 [https://jira.acumos.org/browse/ACUMOS-3956]

	Receive the licence profile from the running micro-service ACUMOS-3161 [https://jira.acumos.org/browse/ACUMOS-3161]

v0.2.3, 23 January 2020

	larkparser lark-parser<0.8.0 pinning to prevent error

	Fixing issue with using 0.6.0 model metadata schema - works with model metadata versions <0.6.0 and 0.6.0

	python removing 3.4 support

v0.2.2

	Fixed 404 bug for model artifact resources caused by relative model directory

	Fixed incorrect media type for protobuf resource

v0.2.1

	Upgraded Swagger UI from v2 to v3

v0.2.0

	Overhaul of model runner API

	Added support for application/json via Content-Type and Accept headers

	Added automatic generation of OpenAPI Specification [https://swagger.io/docs/specification/2-0/basic-structure/] and Swagger UI [https://swagger.io/tools/swagger-ui/]

	Added support for CORS

v0.1.0

	Model runner implementation split off from Acumos Python client [https://pypi.org/project/acumos/] project

 Acumos Python Model Runner User Guide

Acumos Python Model Runner User Guide

[image: Build Status] [https://jenkins.acumos.org/job/python-model-runner-tox-verify-master/]

The acumos_model_runner package installs a command line tool acumos_model_runner for running models created by the Acumos Python client library [https://pypi.org/project/acumos/].

The model runner provides an HTTP API for invoking model methods, as well as a Swagger UI [https://swagger.io/tools/swagger-ui/] for documentation. See the tutorial for more information on usage.

Installation

You will need a Python 3.4+ environment in order to install acumos_model_runner.
You can use Anaconda [https://www.anaconda.com/download/]
(preferred) or pyenv [https://github.com/pyenv/pyenv] to install and
manage Python environments.

The acumos_model_runner package can be installed with pip:

$ pip install acumos_model_runner

Command Line Usage

usage: acumos_model_runner [-h] [--host HOST] [--port PORT]
 [--workers WORKERS] [--timeout TIMEOUT]
 [--cors CORS]
 model_dir

positional arguments:
 model_dir Directory containing a dumped Acumos Python model

optional arguments:
 -h, --help show this help message and exit
 --host HOST The interface to bind to
 --port PORT The port to bind to
 --workers WORKERS The number of gunicorn workers to spawn
 --timeout TIMEOUT Time to wait (seconds) before a frozen worker is
 restarted
 --cors CORS Enables CORS if provided. Can be a domain, comma-
 separated list of domains, or *

 Acumos Python Model Runner Tutorial

Acumos Python Model Runner Tutorial

This tutorial demonstrates how to use the Acumos Python model runner with an example model.

Creating A Model

An Acumos model must first be defined using the Acumos Python client library [https://pypi.org/project/acumos/]. For illustrative purposes, a simple model with deterministic methods is defined below.

example_model.py
from collections import Counter

from acumos.session import AcumosSession
from acumos.modeling import Model, List, Dict

def add(x: int, y: int) -> int:
 '''Adds two numbers'''
 return x + y

def count(strings: List[str]) -> Dict[str, int]:
 '''Counts the occurrences of words in `strings`'''
 return Counter(strings)

model = Model(add=add, count=count)

session = AcumosSession()
session.dump(model, 'example-model', '.')

Executing example_model.py results in the following directory:

.
├── example_model.py
└── example-model

Running A Model

Now the acumos_model_runner command line tool can be used to run the saved model.

$ acumos_model_runner example-model/
[2018-08-08 12:16:57 -0400] [61113] [INFO] Starting gunicorn 19.9.0
[2018-08-08 12:16:57 -0400] [61113] [INFO] Listening at: http://0.0.0.0:3330 (61113)
[2018-08-08 12:16:57 -0400] [61113] [INFO] Using worker: sync
[2018-08-08 12:16:57 -0400] [61151] [INFO] Booting worker with pid: 61151

Using A Model

The model HTTP API can be explored via its generated Swagger UI. The Swagger UI of example-model above can be accessed by navigating to http://localhost:3330 in your web browser.

Below are some screenshots of the Swagger UI for example-model.

Model APIs

The Swagger UI enumerates model method APIs, as well as APIs for accessing model artifacts. Below, the APIs corresponding to the add and count methods are listed under the methods tag.

[image: Model APIs]

Count Method API

Expanding the documentation for the count method reveals more information on how to invoke the API.

[image: Model Method]

Count Method Request

The Swagger UI provides an input form that can be used to try out the count API with sample data.

[image: Model Method Request]

Count Method Response

The response from the count API shows that everything is working as expected!

[image: Model Method Response]

 Acumos Python Model Runner Examples

Acumos Python Model Runner Examples

This directory provides example scripts that demonstrate how to use the model runner.

example_model.py

Invoking this script creates an Acumos model and saves it to a directory example-model. This model can then be used with the model runner.

$ python example_model.py
$ acumos_model_runner example-model/

chain_models.py

This script shows how one can combine multiple Acumos models in a chain of operations.

 python-dcae-model-runner

python-dcae-model-runner

Provides a Python package and CLI utility that runs Acumos models as
DCAE applications.

Read the docs to get started.

 Acumos DCAE Model Runner

Acumos DCAE Model Runner

The Acumos DCAE model runner enables Acumos Python models to be run as if they were
DCAE components.

Each Acumos model method is mapped to a subscriber and publisher stream,
with _subscriber and _publisher suffixes respectively. For example,
a model with a transform method would have transform_subscriber and
transform_publisher streams.

The model runner implements DCAE APIs such as health checks and configuration
updates.

The acumos_dcae_model_runner Python package provides a command line utility
that can be used to instantiate the model runner. See the tutorial for more information.

The acumos_dcae_model_runner package should be installed in the docker image
that is ultimately on-boarded into DCAE. The model runner CLI utility should be
the entry point of that Docker image, as shown in the Dockerfile provided
in example/ directory in the root of the Acumos DCAE Model Runner repository [https://gerrit.acumos.org/r/gitweb?p=python-dcae-model-runner.git;a=summary].

Installation

The acumos_dcae_model_runner package can be installed with pip like so:

pip install acumos_dcae_model_runner

Note: installing acumos_dcae_model_runner will also install the latest version
of dcaeapplib [https://pypi.org/project/dcaeapplib/], which is only compatible
with DCAE Dublin or later. To use acumos_dcae_model_runner with earlier versions
of DCAE, be sure to pin or bound the version of dcaeapplib appropriately. Consult
the DCAE documentation for more information.

 Contributing Guidelines

Contributing Guidelines

Testing

We use a combination of tox, pytest, and flake8 to test
acumos. Code which is not PEP8 compliant (aside from E501) will be
considered a failing test. You can use tools like autopep8 to
“clean” your code as follows:

$ pip install autopep8
$ cd python-dcae-model-runner
$ autopep8 -r --in-place --ignore E501 acumos_dcae_model_runner/

Run tox directly:

$ cd python-dcae-model-runner
$ export WORKSPACE=$(pwd) # env var normally provided by Jenkins
$ tox

You can also specify certain tox environments to test:

$ tox -e py34 # only test against Python 3.4
$ tox -e flake8 # only lint code

 Acumos DCAE Model Runner

Acumos DCAE Model Runner

	Acumos DCAE Model Runner Release Notes
	v0.1.3

	v0.1.2

	v0.1.1

	v0.1.0

	Acumos DCAE Model Runner
	Installation

	Contributing Guidelines
	Testing

	Tutorial
	CLI Usage

	DCAE Onboarding Example

 Acumos DCAE Model Runner Release Notes

Acumos DCAE Model Runner Release Notes

v0.1.3

	Updated major release bound for dcaeapplib

v0.1.2

	Removed dependency link for dcaeapplib

v0.1.1

	Updated dependency link for dcaeapplib. It released a patch that fixed an authentication error. The dcaeapplib dependency link will be removed once dcaeapplib is hosted in PyPI.

v0.1.0

	Initial release of the Acumos DCAE Python model runner

 Tutorial

Tutorial

CLI Usage

To execute the model runner, use the provided CLI:

$ acumos_dcae_model_runner --help
usage: acumos_dcae_model_runner [-h] [--timeout TIMEOUT] [--debug] model_dir

positional arguments:
 model_dir Directory that contains either the dumped model.zip or
 its unzipped contents.

optional arguments:
 -h, --help show this help message and exit
 --timeout TIMEOUT Timeout (ms) used when fetching.
 --debug Sets the log level to DEBUG

DCAE Onboarding Example

The python-dcae-model-runner repository has an example/ directory
that shows how an Acumos model can be onboarded as a DCAE component.

After executing the steps below, the directory should have this
structure:

example/
├── Dockerfile
├── dcae-artifacts
│ ├── component.json
│ ├── number-out.json
│ └── numbers-in.json
├── example-model
│ ├── metadata.json
│ ├── model.proto
│ └── model.zip
├── example_model.py
└── requirements.txt

Note: For this example, the requirements.txt file should reflect the
packages and versions listed in example-model/metadata.json.

Steps

1) Create the Acumos model

The example_model.py script defines a simple Acumos model that can
add two integers together. The following will generate
example-model/:

python example_model.py

2) Build the docker image

docker build -t acumos-python-model-test:0.1.0 .

3) Onboard the Acumos model to DCAE

The onboarding procedure involves adding the component and data format
artifacts provided in example/dcae-artifacts to the DCAE catalog.

Refer to the official DCAE onboarding documentation for the full
procedure.

 2. Component Docs Guide

2. Component Docs Guide

In the past, standard documentation methods included ad-hoc Word documents,
PDFs, poorly organized wikis, and other, often closed, tools like Adobe
FrameMaker. The rise of DevOps, Agile, and Continuous Integration, however,
created a paradigm shift for those who care about documentation because:

1. Documentation must be tightly coupled with code/product releases. In many
cases, particularly with open-source products, many different versions of the
same code can be installed in various production environments. DevOps personnel
must have access to the correct version of documentation.

2. Resources are often tight, volunteers scarce. With a large software base
like Acumos, a small team of technical writers, even if they are also
developers, cannot keep up with a constantly changing, large code base.
Therefore, those closest to the code should document it as best they can, and
let professional writers edit for style, grammar, and consistency.

Plain-text formatting syntaxes, such as reStructuredText (RST), are a good
choice for documentation because:

	They are editor agnostic

	The source is nearly as easy to read as the rendered text

	Documentation can be treated exactly as source code is treated

	Shallow learning curve

The Documentation team chose reStructuredText largely because of Sphinx [http://www.sphinx-doc.org/], a Python-based documentation build system,
which uses reStructuredText [http://docutils.sourceforge.net/rst.html/]
natively. In a code base as large as Acumos’, cross-referencing between
component documentation was deemed critical. Sphinx and reStructuredText have
built-in functionality that makes collating and cross-referencing component
documentation easier.

The Sphinx version is defined in `documentation/etc/requirements.txt`.

2.1. RST vs the Wiki - Which Docs Go Where

Frequently, developers ask where documentation should be created. Should they
always use reStructuredText/Sphinx? Not necessarily. Is the wiki appropriate
for anything at all? Yes.

It’s really up to the development team. Here is a simple rule:

The more tightly coupled the documentation is to a particular version of the
code, the more likely it is that it should be stored with the code in
reStructuredText.

Two examples on opposite ends of the spectrum:

Example 1: API documentation is often stored literally as code in the form of
formatted comment sections. This would be an ideal choice for reStructuredText
stored in a docs repo.

Example 2: Meeting notes, release plans – the wiki would be a better choice
for this.

[image: ../_images/doc-places.png]

The Docs team encourages component teams to store as much documentation as
reStructuredText as possible because:

	The Docs team can more easily edit component documentation for grammar, spelling, clarity, and consistency

	A consistent formatting syntax across components will allow the doc team more flexibility in producing different kinds of output

	The documentation can easily be reorganized

	Wiki articles tend to grow stale over time as the people who write them change positions or projects

2.2. RST Tools and Resources

For detailed information ReStructuredText and how to best use the format, see:

	RST Primer [http://docutils.sourceforge.net/docs/user/rst/quickstart.html]

	RST Quick Reference [http://docutils.sourceforge.net/docs/user/rst/quickref.html]

	RST Directives [http://docutils.sourceforge.net/docs/ref/rst/directives.html]

	RST Cheatsheet [http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt]

A list of RST tools is available on the Tools for Creating Documentation in RST page.

2.3. Component Docs Structure

Each component should have a docs folder with a minimum of:

[image: ../_images/docs-structure.png]

2.3.1. Required Files

	index.rst is the table of contents

	release-notes.rst contains the release notes for the component

	developer-guide.rst contains information that a developer needs to know in order to work on the component

	this should be very technical, aimed at people who want to help develop the components

	this should be how the component does what it does, not a requirements document of what the component should do

	this should contain what language(s) and frameworks are used, with versions

	this should contain how to obtain the code, where to look at work items (Jira tickets), how to get started developing

	api-docs.rst contains details on the component’s API

2.3.2. Optional Files

#. user-guide.rst contains information on how to use and configure the
component; most components will not have a user guide

	if the guide contains sections on third-party tools, is it clearly stated why the Acumos platform is using those tools? are there instructions on how to install and configure each tool/toolset?

	does the guide state who the target users are? for example, modeler/data scientist, Acumos platform admin, marketplace user, design studio end user, etc

	if there are instructions, they are clear, correct, and fit for purpose

	does the guide contain information more suited for a different guide?

	a user guide should be how to use the component or system; it should not be a requirements document

	a user guide should contain configuration, administration, management, using, and troubleshooting sections for the feature.

2.3.3. Templates

Templates are available in the documentation project under docs/docs-contributor-guide/templates.
You can clone the documentation project or download the templates from Github [https://github.com/acumos/documentation/tree/master/docs/docs-contributor-guide].

Current list of templates:

	api-docs.rst [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/api-docs.rst] | rendered [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/api-docs.html]

	developer-guide.rst [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/developer-guide.rst] | rendered [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/developer-guide.html]

	index.rst [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/index.rst] | rendered [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/index.html]

	install-guide.rst [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/install-guide.rst] | rendered [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/install-guide.html]

	release-notes.rst [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/release-notes.rst] | rendered [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/release-notes.html]

	user-guide.rst [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/user-guide.rst] | rendered [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/user-guide.html]

The templates themselves also contain guidance on what topics to include in the contents.
Please read the contents of the templates!

2.4. Writing Guidelines

Following these writing guidelines will keep Acumos documentation consistent
and readable. Only a few areas are covered below, as we don’t want to make it
too complex. You can’t go wrong keeping things simple and clear.

Don’t get too hung up on using correct style. We’d rather have you submit
good information that doesn’t conform to this guide than no information at
all. Acumos’ Documentation project team will be happy to help you with the
prose.

2.4.1. General Guidelines for All Documents

	Use standard American English and spelling

	Use consistent terminology

	Write in the active voice, using present simple tense when possible

	Write objective, professional content

	Keep sentences and paragraphs short and clear

	Use a spell checker

2.4.2. Abbreviations and Acronyms

Write out the term the first time it appears in the document, immediately
followed by the acronym or abbreviation in parentheses, i.e. ReStructuredText
(RST). Then use the acronym in the rest of the document. In diagrams, if space
allows, write out the full term.
Use “an” before an acronym that begins with a vowel sound when spoken
aloud; use “a” before an acronym that begins with a consonant sound when
spoken aloud. Examples: an RST file, a PMML file.

2.4.3. GUI Elements

In general, write menu names as they appear in the UI. For example, if a menu
or item name is all caps, then write it all caps in the document.

2.4.4. Headings (Titles)

	Use brief, but specific, informative titles

	Use capitalization; do not end with a period or colon

	Use a gerund to begin section titles if it makes sense. Examples: Configuring, Managing, Starting

	Use descriptive titles for tables and figures titles; do not number tables or figures; do not (in general) add titles for screen shots

Use the following to create the Document title:

	= with overline/underline

Use the following symbols to create headings:

	Section 1: * with overline/underline

	Section 1.1: - with underline

	Section 1.1.1: + with underline

	Section 1.1.1.1: ^ with underline

Consider rewriting the content if your document needs more than 4 levels of headings.

2.4.4.1. Non-Numbered Headings in RST

Below is an example of how to denote headings of various levels in RST.

See the Section Headers Example - No Automatic Numbering for how this renders in HTML.

=================
H1 Document Title
=================

Section 1 Title

Section 1.1 Title

Section 1.1.1 Title
+++++++++++++++++++

Section 1.1.1.1 Title
^^^^^^^^^^^^^^^^^^^^^

Section 1.1.1.1 Title2
^^^^^^^^^^^^^^^^^^^^^^

Another Section at the 1.1.1 Level
++++++++++++++++++++++++++++++++++

How the Header is Underlined Makes all the Difference
+++

Section 1.2 Title

Section 1.2.1 Title
+++++++++++++++++++

Section 1.2.2 Title
+++++++++++++++++++

Section 2 Title

Section 3 Title

2.4.4.2. Automatically Numbered Headings in RST

RST supports automatic numbering of sections. Place the sectnum directive
at the top of your page. See the 1 Section Headers Example - Automatic Numbering for how this renders in HTML.
Note that RST considers the Document Title to be the first Header and will number it!

=================
H1 Document Title
=================

.. sectnum::

Section 1 Title

Section 1.1 Title

Section 1.1.1 Title
+++++++++++++++++++

Section 1.1.1.1 Title
^^^^^^^^^^^^^^^^^^^^^

Section 1.1.1.1 Title2
^^^^^^^^^^^^^^^^^^^^^^

Another Section at the 1.1.1 Level
++++++++++++++++++++++++++++++++++

How the Header is Underlined Makes all the Difference
+++

Section 1.2 Title

Section 1.2.1 Title
+++++++++++++++++++

Section 1.2.2 Title
+++++++++++++++++++

Section 2 Title

Section 3 Title

If your guide has enough content, consider breaking it up into chapters, with
one chapter per RST file. You will need to list each page in your index.rst.
See Developer Guide with Automatically Numbered Sections for an example.

2.4.5. Task(s)

	Start task titles with an action word. Examples: Create, Add, Validate, Update.

	Use [Optional] at the beginning of an optional step.

	Provide information on the expected outcome of a step, especially when it is not obvious.

	Break down end-to-end tasks into manageable chunks.

2.4.6. Including Design Diagrams and Images

The developer-guide.rst template [https://raw.githubusercontent.com/acumos/documentation/master/docs/docs-contributor-guide/templates/developer-guide.rst] contains information and examples on how to incorporate design diagrams in your guide.

 Documentation Contributor Guide

Documentation Contributor Guide

Note

This is a work in progress. Please help us improve it by contributing to the Docs project!

This guide describes how to create documentation for the Acumos platform.
Acumos repositories create a variety of content depending on the nature of the
project. For example, projects delivering a platform component may have
different types of content from a project that creates libraries for a software
development kit. The content from each project may be used together as a
reference for that project and/or be used in documents are tailored to a
specific user audience and task they are performing.

Much of the content in this document is derived from similar documentation
processes used in other Linux Foundation Projects including ONAP, OPNFV and
Open Daylight.

Acumos documentation is stored in git repositories, changes are managed with
gerrit reviews, and published documents generated when there is a change in any
source used to build the documentation.

Authors create source for documents in reStructured Text (RST) that is and
published on docs.acumos.org [http://docs.acumos.org/]. The Acumos wiki [http://wiki.acumos.org/] and
other web sites can reference these rendered documents directly, allowing
projects to easily maintain current release documentation.

	1. Tools for Creating Documentation in RST
	1.1. Editing Tools

	1.2. Screen Capture and Edit

	2. Component Docs Guide
	2.1. RST vs the Wiki - Which Docs Go Where

	2.2. RST Tools and Resources

	2.3. Component Docs Structure

	2.4. Writing Guidelines

	3. Reviewing RST Docs in Gerrit

 3. Reviewing RST Docs in Gerrit

3. Reviewing RST Docs in Gerrit

Once the Acumos Jobbuilder has finished running, you can view the generated HTML output by clicking on the “Logs” link:

[image: ../_images/gerrit-docsjoblinks.png]

The “Logs” link open a new page. From there, click the “html” folder link.

[image: ../_images/gerrit-htmlfolder.png]

Navigate to your generated document pages.

 1. Tools for Creating Documentation in RST

1. Tools for Creating Documentation in RST

1.1. Editing Tools

1.1.1. Ubuntu

	ReText [https://github.com/retext-project/retext/]: Ubuntu Software Store or follow the instructions on the project’s Github [https://github.com/retext-project/retext/] page; ReText has a live preview feature

	Atom [https://atom.io/] with the RST-Preview Package

	Notepadqq [https://notepadqq.com/]

	gedit

1.1.2. All Platforms

	ReST Editor for Eclipse [https://marketplace.eclipse.org/content/rest-editor/]

	Visual Studio Code [http://code.visualstudio.com/] with the vscode-restructuredtext [https://github.com/lextm/vscode-restructuredtext/] extension

	VIM [https://www.vim.org/]

	reStructuredText syntax highlighting mode [http://www.vim.org/scripts/script.php?script_id=973/]

	VST [http://www.vim.org/scripts/script.php?script_id=1334/] (Vim reStructuredText) plugin for Vim7 with folding.

	VOoM plugin [http://www.vim.org/scripts/script.php?script_id=2657/] for Vim that emulates two-pane outliner with support for reStructuredText (since version 4.0b2).

	Riv: Take notes in rst [https://github.com/Rykka/riv.vim/] Vim plugin to take notes in reStructured text.

	Emacs [http://www.gnu.org/software/emacs/emacs.html/] with rst-mode [http://docutils.sourceforge.net/docs/user/emacs.html/] turned on

	PyCharm [https://www.jetbrains.com/pycharm/download/]

	Atom [https://atom.io/] with RST plugins [https://atom.io/packages/search?utf8=%E2%9C%93&q=keyword:rst]

1.1.3. Web-based Editors

	NoTex [https://www.notex.ch/editor/] - it can handle complete projects. You can upload your files and edit stuff.

	Online reStructuredText Editor [http://rst.ninjs.org/] - It does not support all reST constructs (like the .. codeblock:: directive),

1.2. Screen Capture and Edit

1.2.1. Ubuntu

	Shutter [http://shutter-project.org/]: Ubuntu Software Store or from PPA instructions on the project’s website

1.2.2. Mac

	Greenshot [http://getgreenshot.org/]: Mac App Store ($1.99)

1.2.3. Windows

	Greenshot [http://getgreenshot.org/] (free)

 Section Headers Example - No Automatic Numbering

Section Headers Example - No Automatic Numbering

Section 1 Title

Section 1.1 Title

Section 1.1.1 Title

Section 1.1.1.1 Title

Section 1.1.1.1 Title2

Another Section at the 1.1.1 Level

How the Header is Underlined Makes all the Difference

Section 1.2 Title

Section 1.2.1 Title

Section 1.2.2 Title

Section 2 Title

Section 3 Title - RST Code for Non-Numbered Section Headings

==
Section Headers Example - No Automatic Numbering
==

Section 1 Title

Section 1.1 Title

Section 1.1.1 Title
+++++++++++++++++++

Section 1.1.1.1 Title
^^^^^^^^^^^^^^^^^^^^^

Section 1.1.1.1 Title2
^^^^^^^^^^^^^^^^^^^^^^

Another Section at the 1.1.1 Level
++++++++++++++++++++++++++++++++++

How the Header is Underlined Makes all the Difference
+++

Section 1.2 Title

Section 1.2.1 Title
+++++++++++++++++++

Section 1.2.2 Title
+++++++++++++++++++

Section 2 Title

**
Section 3 Title - RST Code for Non-Numbered Section Headings
**

 1 Section Headers Example - Automatic Numbering

1 Section Headers Example - Automatic Numbering

Notice that the document title is considered a header and has a number.

1.1 Section 1 Title

1.1.1 Section 1.1 Title

1.1.1.1 Section 1.1.1 Title

1.1.1.1.1 Section 1.1.1.1 Title

1.1.1.1.2 Section 1.1.1.1 Title2

1.1.1.2 Another Section at the 1.1.1 Level

1.1.1.3 How the Header is Underlined Makes all the Difference

1.1.2 Section 1.2 Title

1.1.2.1 Section 1.2.1 Title

1.1.2.2 Section 1.2.2 Title

1.2 Section 2 Title

1.3 Section 3 Title - RST Code for Numbered Section Headings

===
Section Headers Example - Automatic Numbering
===
.. sectnum::

Section 1 Title

Section 1.1 Title

Section 1.1.1 Title
+++++++++++++++++++

Section 1.1.1.1 Title
^^^^^^^^^^^^^^^^^^^^^

Section 1.1.1.1 Title2
^^^^^^^^^^^^^^^^^^^^^^

Another Section at the 1.1.1 Level
++++++++++++++++++++++++++++++++++

How the Header is Underlined Makes all the Difference
+++

Section 1.2 Title

Section 1.2.1 Title
+++++++++++++++++++

Section 1.2.2 Title
+++++++++++++++++++

Section 2 Title

**
Section 3 Title - RST Code for Numbered Section Headings
**

 Developer Guide with Automatically Numbered Sections

Developer Guide with Automatically Numbered Sections

	1 Chapter 1 Title (this is also the document title, i.e. H1)
	1.1 Section Title

	2 Chapter 2 Title (this is also the document title, i.e. H1)
	2.1 Section Title

 1 Chapter 1 Title (this is also the document title, i.e. H1)

1 Chapter 1 Title (this is also the document title, i.e. H1)

1.1 Section Title

1.1.1 Section Title

1.1.1.1 Section Title

1.1.1.1.1 Section Title

1.1.1.1.2 Section Title2

1.1.1.2 Another Section

1.1.1.3 How the Header is Underlined Makes all the Difference

1.1.2 Section Title

1.1.2.1 Section Title

1.1.2.2 Section Title

 2 Chapter 2 Title (this is also the document title, i.e. H1)

2 Chapter 2 Title (this is also the document title, i.e. H1)

2.1 Section Title

2.1.1 Section Title

2.1.1.1 Section Title

2.1.1.1.1 Section Title

2.1.1.1.2 Section Title2

2.1.1.2 Another Section

2.1.1.3 How the Header is Underlined Makes all the Difference

2.1.2 Section Title

2.1.2.1 Section Title

2.1.2.2 Section Title

 Application Programming Interfaces

Application Programming Interfaces

Document the key things a developer needs to know about your component’s APIs. For some components,
there will only be one logical grouping of APIs. For others there may be more than one grouping.

API Group 1

Provide a description of what the API does and some examples of how to
use it.

API Group 2

Provide a description of what the API does and some examples of how to
use it.

Including a Swagger File

Acumos uses Swagger [https://swagger.io/] to generate dynamic API docs. However, to read the docs you must have access to the Swagger server running on your Acumos instance. This can be inconvenient, so the Docs project uses a Sphinx plugin called sphinx-swaggerdoc [https://github.com/unaguil/sphinx-swaggerdoc/], which provides an RST directive to render a swagger.json file. The sphinx-swaggerdoc extension is defined in the Documentation project’s conf.py file.

You an include your API JSON file either by pointing to a URL or by pointing to a file. This example uses a local file called example-swagger.json. See the sphinx-swaggerdoc [https://github.com/unaguil/sphinx-swaggerdoc/] for more examples.

.. swaggerv2doc:: example-swagger.json

Example of Rendered Content From api-docs.json File

https://docs.acumos.org/en/latest/docs-contributor-guide/templates/swaggerv2doc-example-output.html

 <COMPONENT NAME> Developer Guide

<COMPONENT NAME> Developer Guide

Overview

Provide an overview of the component. To be clear, the target
audience for this guide is a developer who will be developing
code for this feature itself.

Architecture and Design

Provide information about feature components and how they work together.
Also include information about how the feature integrates with
Acumos. An architecture diagram could help. This may be the same
as the diagram used in the user guide, but it should likely be less
abstract and provide more information that would be applicable to a
developer.

Actual diagrams as well as their image output should be stored in git. In this
“templates” directory are two folders: images and diagrams. The diagrams folder
contains 2 examples created with draw.io Desktop [https://about.draw.io/integrations/#integrations_offline],
which is freely available for Windows, Mac, and Linux. If you are unable to install
draw.io on your workstation, you can create diagrams using the draw.io plugin on
the Acumos wiki. Instructions for using the draw.io wiki plugin are here [https://wiki.acumos.org/display/AC/draw.io+Wiki+Macro].
Diagrams saved as XML need to be exported as an image and then included in the RST file.

Note

Please remember that the images below are just examples and do not reflect the current design of any specific component!

High-Level Flow

This section contains an example of embedding a high-level architecture diagram.
Leave a blank line both before and after the .. image:: directive.
templates/diagrams/security-verification-arch.xml` was created using draw.io, saved, and then exported as PNG.
The resulting image was saved to the images directory.

[image: ../../_images/security-verification-arch.png]

Generated HTML output [https://docs.acumos.org/en/latest/docs-contributor-guide/templates/developer-guide.html] as it appears on docs.acumos.org.

Class Diagrams

This section contains an example of embedding a class diagram.
Leave a blank line both before and after the .. image:: directive.
templates/images/scantool.png is a class diagram generated by the Eclipse
plugin ObjectAid UML Explorer [http://www.objectaid.com/].

[image: ../../_images/scantool.png]

Sequence Diagrams

This section contains an example of embedding a sequence diagram.
Leave a blank line both before and after the .. image:: directive.
templates/diagrams/ActorInvokesScan.xml is the editable diagram created with draw.io.
The exported image was saved to templates/images/ActorInvovkesScan.png.

[image: ../../_images/ActorInvokesScan.png]

** Images may be resized. See the .. image:: directive options [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image].

Technology and Frameworks

Provide a list of the development languages, frameworks, etc. For example:

	Java 8

	Maven 3.x

	Spring Tool Suite

Project Resources

Provide gerrit, Jira info, JavaDoc (javadoc.acumos.org) if relevant, link to REST API documentation, etc.
For example:

	Gerrit repo: <name of gerrit repo>

	Jira [https://jira.acumos.org] <component name>

Development Setup

Instructions for how to set up a local development environment.

How to Run

Provide steps to package and deploy your component, both for local testing
and for testing on a server.

How to Test

Provide information how to test your component

 <no title>

	<component name> Release Notes

	<COMPONENT NAME> Developer Guide

	Application Programming Interfaces

	<PLATFORM OR COMPONENT NAME> Installation Guide

	<COMPONENT NAME> User Guide

 <PLATFORM OR COMPONENT NAME> Installation Guide

<PLATFORM OR COMPONENT NAME> Installation Guide

Overview

Add overview of the platform or component.

Prerequisites

	Hardware Requirements

	Software Requirements

Preparing for Installation

Include any pre configuration, database, or other software downloads
required to install <feature>.

Installation

Step by step instructions

Verifying the Installation

Describe how to verify the installation

Troubleshooting

optional

Text goes here.

Post Installation Configuration

Post Installation Configuration section must include some basic
(must-do) procedures if any, to get started.

Mandatory instructions to get started.

	Logging in

	Getting Started

	Manual Configuration

Upgrading From a Previous Release

Text goes here.

Uninstalling

Text goes here.

 <component name> Release Notes

<component name> Release Notes

Version 0.1, 15 February 2018

	Add method to get solution revision comment count (ACUMOS-1270 [https://jira.acumos.org/browse/ACUMOS-1270/])

	Show exception details in log files (ACUMOS-1328 [https://jira.acumos.org/browse/ACUMOS-1328/])

	Requires database schema version 1.15

 Example of Rendered Content From api-docs.json File

Example of Rendered Content From api-docs.json File

code-table-controller

GET /code/artifact/type

Gets the list of artifact type codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/notifmech

Gets the list of notification delivery mechanism codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/msgsev

Gets the list of message severity codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/deploy/status

Gets the list of deployment status codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/pair/{name}

Gets the list of code-name pairs for the specified value set.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	name

	path

	name

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/model/type

Gets the list of model type codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/toolkit/type

Gets the list of toolkit type codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/access/type

Gets the list of access type codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/peer/status

Gets the list of peer status codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/step/status

Gets the list of step status codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/logprov

Gets the list of login provider codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/val/type

Gets the list of validation type codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/step/type

Gets the list of step type codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/sub/type

Gets the list of subscription scope codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/val/status

Gets the list of validation status codes.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /code/pair

Gets the list of value set names.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

healthcheck-controller

GET /healthcheck

Assesses the health of the application by querying the database.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /version

Gets the value of the MANIFEST.MF property Implementation-Version as written by maven.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

peer-controller

POST /peer/sub

Creates a new peer subscription.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerSub

	body

	peerSub

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/{peerId}

Updates a peer.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	peer

	body

	peer

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /peer/{peerId}

Deletes a peer.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /peer/{peerId}

Gets the peer for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/{peerId}/sub

Gets all subscriptions for the specified peer.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /peer

Creates a new peer.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peer

	body

	peer

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer

Gets a page of peers, optionally sorted on fields.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /peer/sub/{subId}

Updates a peer subscription.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

	peerSub

	body

	peerSub

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /peer/sub/{subId}

Deletes a peer subscription.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /peer/sub/{subId}

Gets the peer subscription for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	subId

	path

	subId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /peer/search

Searches for peers using the field name - field value pairs specified as query parameters. Defaults to and (conjunction); send junction query parameter = o for or (disjunction).
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

step-result-controller

PUT /stepresult/{stepResultId}

Updates a step result.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

	stepResult

	body

	stepResult

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /stepresult/{stepResultId}

Deletes the stepResult with the specified ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /stepresult/{stepResultId}

Gets the step result for the specified ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResultId

	path

	stepResultId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /stepresult/search

Searches for step results using the field name - field value pairs specified as query parameters. Defaults to and (conjunction); send junction query parameter = o for or (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /stepresult

Creates a new step result.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	stepResult

	body

	stepResult

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /stepresult

Gets a page of step results, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

notification-controller

POST /notif

Creates a new notification.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notif

	body

	notif

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif

Gets a page of notifications, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /notif/count

Gets the count of notifications.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /notif/{notificationId}

Updates a notification.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

	notif

	body

	notif

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /notif/{notificationId}

Deletes a notification.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	notificationId

	path

	notificationId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

solution-controller

DELETE /solution/{solutionId}/dnld/{downloadId}

Deletes the specified solution download record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	downloadId

	path

	downloadId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/count

Gets the count of solutions.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{parentId}/comp

Gets a list of child solution IDs used in the specified composite solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision/{revisionId}/deploy

Creates a new deployment record for the specified solution and revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	sd

	body

	sd

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/deploy

Gets the deployments for the specified solution and revision IDs.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/user

Gets a page of user-accessible solutions
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision/{revisionId}/artifact/{artifactId}

Adds an artifact to the solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	artifactId

	path

	artifactId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/revision/{revisionId}/artifact/{artifactId}

Removes an artifact from the solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	artifactId

	path

	artifactId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/{solutionId}/web

Gets web metadata for the specified solution including average rating and total download count.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/user/{userId}/deploy

Gets the deployments for the specified solution, revision and user IDs.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Updates the deployment record for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	deploymentId

	path

	deploymentId

	string

	sd

	body

	sd

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/revision/{revisionId}/deploy/{deploymentId}

Deletes the specified deployment record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	deploymentId

	path

	deploymentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

PUT /solution/{solutionId}/view

Increments view count of the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution

Creates a new solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solution

	body

	solution

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution

Gets a page of solutions, optionally sorted on fields.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/date

Gets a page of solutions modified after the specified time, expressed in milliseconds since the Epoch.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{parentId}/comp/{childId}

Adds a child to the parent composite solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

	childId

	path

	childId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{parentId}/comp/{childId}

Drops a child from the parent composite solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	parentId

	path

	parentId

	string

	childId

	path

	childId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

PUT /solution/{solutionId}/revision/{revisionId}/validation/{taskId}

Updates the specified solution validation.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	taskId

	path

	taskId

	string

	sv

	body

	sv

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision/{revisionId}/validation/{taskId}

Creates a new solution validation record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	taskId

	path

	taskId

	string

	sv

	body

	sv

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/revision/{revisionId}/validation/{taskId}

Deletes the specified solution validation record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	taskId

	path

	taskId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/user/{userId}/access

Gets a page of solutions with the specified user in the ACL, optionally sorted on fields.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/tag

Gets a list of tags for the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/dnld/artifact/{artifactId}/user/{userId}

Creates a new solution download record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	artifactId

	path

	artifactId

	string

	sd

	body

	sd

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/like

Searches for solutions with names or descriptions that contain the search term.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	term

	query

	term

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/revision

Creates a new solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revision

	body

	revision

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision

Gets a list of revisions for the specified solution IDs.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/validation

Gets validation results for the specified solution and revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/rating

Gets all user ratings for the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/portal

Gets a page of solutions matching all criteria.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}/artifact

Gets the artifacts for the solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}

Updates a solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	solution

	body

	solution

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}

Deletes a solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/{solutionId}

Gets the solution for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/{solutionId}/dnld

Gets a page of download records for the specified solution ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/tag/{tag}

Adds a tag to the solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/tag/{tag}

Drops a tag from the solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/{solutionId}/user/access

Gets access-control list of users for the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search/tag

Gets a page of solutions matching the specified tag.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	query

	tag

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/user/{userId}/access

Adds a user to the ACL for the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/user/{userId}/access

Drops a user from the ACL for the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

PUT /solution/{solutionId}/revision/{revisionId}

Updates an existing solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

	revision

	body

	revision

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/revision/{revisionId}

Deletes a solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/{solutionId}/revision/{revisionId}

Gets the revision for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /solution/search

Searches for solutions using the field name - field value pairs specified as query parameters. Defaults to and (conjunction); send junction query parameter = o for or (disjunction). With no limit, defaults to size 20.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /solution/{solutionId}/rating/user/{userId}

Updates the specified solution rating.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	sr

	body

	sr

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /solution/{solutionId}/rating/user/{userId}

Creates a new solution rating.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	sr

	body

	sr

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /solution/{solutionId}/rating/user/{userId}

Deletes the specified solution rating.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /solution/{solutionId}/rating/user/{userId}

Gets an existing solution rating.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

group-peer-solution-controller

GET /group/peer/{peerId}/solution/{solutionId}/access

Checks access for the specified peer to the specified solution.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

	solutionId

	path

	solutionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/peer/{principalGroupId}/peer/{resourceGroupId}

Grants access for the specified principal peer group to the specified resource peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	principalGroupId

	path

	principalGroupId

	integer

	resourceGroupId

	path

	resourceGroupId

	integer

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/peer/{principalGroupId}/peer/{resourceGroupId}

Removes access for the specified principal peer group to the specified resource peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	principalGroupId

	path

	principalGroupId

	integer

	resourceGroupId

	path

	resourceGroupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /group/peer/solution

Gets a page of peer-solution membership mappings, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/{groupId}/peer/{peerId}

Adds the specified peer as a member of the specified peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	peerId

	path

	peerId

	string

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/{groupId}/peer/{peerId}

Drops the specified peer as a member of the specified peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	peerId

	path

	peerId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

PUT /group/{groupId}/solution

Updates a solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/{groupId}/solution

Deletes a solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /group/{groupId}/solution

Gets a page of solution members in the specified solution group, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /group/{groupId}/peer

Updates a peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/{groupId}/peer

Deletes a peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /group/{groupId}/peer

Gets a page of peer members of the specified peer group, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/peer/{peerGroupId}/solution/{solutionGroupId}

Grants access for the specified peer group to the specified solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerGroupId

	path

	peerGroupId

	integer

	solutionGroupId

	path

	solutionGroupId

	integer

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/peer/{peerGroupId}/solution/{solutionGroupId}

Removes access for the specified peer group to the specified solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerGroupId

	path

	peerGroupId

	integer

	solutionGroupId

	path

	solutionGroupId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /group/peer/{peerId}/access

Gets peers accessible to the specified peer.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	peerId

	path

	peerId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/peer

Creates a new peer group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /group/peer

Gets a page of peer groups, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /group/{groupId}/solution/{solutionId}

Adds the specified solution as a member of the specified solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	solutionId

	path

	solutionId

	string

	map

	body

	map

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /group/{groupId}/solution/{solutionId}

Drops the specified solution as a member of the specified solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	groupId

	path

	groupId

	integer

	solutionId

	path

	solutionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

POST /group/solution

Creates a new solution group.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	group

	body

	group

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /group/solution

Gets a page of solution groups, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

artifact-controller

GET /artifact/like

Searches for artifacts with names or descriptions that contain the search term
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	term

	query

	term

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /artifact/{artifactId}

Updates an artifact.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

	artifact

	body

	artifact

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /artifact/{artifactId}

Deletes the artifact with the specified ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /artifact/{artifactId}

Gets the artifact for the specified ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/count

Gets the count of artifacts.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/{artifactId}/revision

Gets the solution revisions that use the specified artifact ID.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifactId

	path

	artifactId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /artifact

Creates a new artifact.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	artifact

	body

	artifact

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact

Gets a page of artifacts, optionally sorted on fields.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /artifact/search

Searches for artifacts using the field name - field value pairs specified as query parameters. Defaults to and (conjunction); send junction query parameter = o for or (disjunction).
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

thread-controller

POST /thread

Creates a thread.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	thread

	body

	thread

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread

Gets a page of threads, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/count

Gets the count of threads.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment/count

Gets comment count for the solution revision.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /thread/{threadId}/comment

Creates a comment.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	comment

	body

	comment

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/{threadId}/comment

Gets a page of comments in the thread.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}

Updates a thread.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	thread

	body

	thread

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /thread/{threadId}

Deletes a thread.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /thread/{threadId}

Gets the thread for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}

Gets a page of threads for the solution and revision IDs, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/{threadId}/comment/count

Gets the number of comments in the thread.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /thread/solution/{solutionId}/revision/{revisionId}/comment

Gets a page of comments for the solution revision, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	revisionId

	path

	revisionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /thread/{threadId}/comment/{commentId}

Updates a comment.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	commentId

	path

	commentId

	string

	comment

	body

	comment

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /thread/{threadId}/comment/{commentId}

Deletes a comment.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	commentId

	path

	commentId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /thread/{threadId}/comment/{commentId}

Gets the comment for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	threadId

	path

	threadId

	string

	commentId

	path

	commentId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

site-config-controller

POST /config

Creates a new site configuration.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /config/{configKey}

Updates a site configuration.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

	siteConfig

	body

	siteConfig

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /config/{configKey}

Deletes a site configuration.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /config/{configKey}

Gets the site configuration for the specified key.
	Produces:
[u’application/json’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	configKey

	path

	configKey

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

role-controller

POST /role/{roleId}/function

Creates a new role function.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	roleFunction

	body

	roleFunction

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /role/{roleId}/function

Gets the functions for the specified role.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}/function/{functionId}

Updates an existing role function.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	functionId

	path

	functionId

	string

	roleFunction

	body

	roleFunction

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /role/{roleId}/function/{functionId}

Deletes a role function.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	functionId

	path

	functionId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /role/{roleId}/function/{functionId}

Gets the role function for the specified role and function IDs.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	functionId

	path

	functionId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /role/search

Searches for roles using the field name - field value pairs specified as query parameters. Defaults to and (conjunction); send junction query parameter = o for or (disjunction).
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /role/count

Gets the count of roles.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /role/{roleId}

Updates a role.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	role

	body

	role

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /role/{roleId}

Deletes a role.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /role/{roleId}

Gets the role for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /role

Creates a new role.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	role

	body

	role

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /role

Gets a page of roles, optionally sorted on fields.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

tag-controller

DELETE /tag/{tag}

Deletes a tag.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	path

	tag

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

POST /tag

Creates a new tag.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	tag

	body

	tag

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /tag

Gets a page of tags, optionally sorted.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

validation-sequence-controller

POST /valseq/{sequence}/valtype/{valTypeCode}

Creates a new validation sequence record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	sequence

	path

	sequence

	integer

	valTypeCode

	path

	valTypeCode

	string

	valSeq

	body

	valSeq

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /valseq/{sequence}/valtype/{valTypeCode}

Deletes the specified validation sequence record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	sequence

	path

	sequence

	integer

	valTypeCode

	path

	valTypeCode

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /valseq

Gets the list of validation sequence records.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

user-controller

PUT /user/role/{roleId}

Adds or removes the specified role for multiple users.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

	usersRoleRequest

	body

	usersRoleRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/notifpref

Creates a new user notification preference
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/{userId}/role/{roleId}

Adds a role to the user.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	roleId

	path

	roleId

	string

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /user/{userId}/role/{roleId}

Drops a role from the user.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	roleId

	path

	roleId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /user/count

Gets the count of users.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/login

Checks the specified credentials. Searches both login name and email fields for the specified name. Returns the user object if an active user exists with the specified credentials; answers bad request if no match is found.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	login

	body

	login

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user

Creates a new user.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	user

	body

	user

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user

Gets a page of users, optionally sorted on fields.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/like

Searches for users with names that contain the search term.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	term

	query

	term

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}

Updates a user.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	user

	body

	user

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /user/{userId}

Deletes a user.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /user/{userId}

Gets the user for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/role/{roleId}/count

Gets the count of users in a role.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	roleId

	path

	roleId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/{userId}/favorite/solution

Gets a page of solutions which are favorites for the specified user ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Updates the specified user login provider entry.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Creates a user login provider entry.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

	ulp

	body

	ulp

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Deletes the specified user login provider entry.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /user/{userId}/logprov/{providerCode}/login/{providerUserId}

Gets the login provider for the specified user, provider code and provider login.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	providerCode

	path

	providerCode

	string

	providerUserId

	path

	providerUserId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/chgpw

Sets the user’s password to the new value if the user exists, is active, and the old password matches.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	changeRequest

	body

	changeRequest

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/notifpref/{userNotifPrefId}

Updates a user notification preference.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

	usrNotifPref

	body

	usrNotifPref

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /user/notifpref/{userNotifPrefId}

Deletes the user notification preference with the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /user/notifpref/{userNotifPrefId}

Gets the user notification preference for the specified ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userNotifPrefId

	path

	userNotifPrefId

	integer

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/{userId}/logprov

Gets all login providers for the specified user.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/role

Assigns the specified roles to the user after dropping any existing assignments.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	roleIds

	body

	roleIds

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/{userId}/role

Gets roles for the specified user ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/{userId}/notif

Gets active notifications for the specified user ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

GET /user/search

Searches for users using the field name - field value pairs specified as query parameters. Defaults to and (conjunction); send junction query parameter = o for or (disjunction).
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	queryParameters

	query

	queryParameters

	

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

PUT /user/{userId}/notif/{notificationId}

Updates the notification-user map; e.g., to record the date when the user viewed the notification.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	notificationId

	path

	notificationId

	string

	notifUserMap

	body

	notifUserMap

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/{userId}/notif/{notificationId}

Adds a user as a recipient of the notification.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	notificationId

	path

	notificationId

	string

	notifUserMap

	body

	notifUserMap

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /user/{userId}/notif/{notificationId}

Drops a user as a recipient of the notification.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

	notificationId

	path

	notificationId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /user/{userId}/deploy

Gets the deployments for the specified user ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

POST /user/{userId}/favorite/solution/{solutionId}

Creates a new solution favorite record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

	sfv

	body

	sfv

	

Responses

201 - Created

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

DELETE /user/{userId}/favorite/solution/{solutionId}

Deletes the specified solution favorite record.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	solutionId

	path

	solutionId

	string

	userId

	path

	userId

	string

Responses

200 - OK

403 - Forbidden

204 - No Content

401 - Unauthorized

GET /user/{userId}/notifpref

Gets notification preferences for the specified user ID.
	Produces:
[u’*/*’]

	Consumes:
[u’application/json’]

Parameters

	Name

	Position

	Description

	Type

	userId

	path

	userId

	string

Responses

200 - OK

404 - Not Found

403 - Forbidden

401 - Unauthorized

 <COMPONENT NAME> User Guide

<COMPONENT NAME> User Guide

Target Users

Provide information on who your users are: Modelers, administrators, developers, etc

Overview

Provide an overview of the component and the use case.

Architecture

Provide high-level information about the feature components and how it fits
into the Acumos platform. Detailed architecture should be part of the Developer Guide.

Note

Please do not include detailed internals that somebody
using the feature would not care about.

How to Use <COMPONENT NAME>

Describe how to use the component

Tutorial

optional

If there is only one tutorial, you can include it in the User Guide.
If there are several tutorials, it is better to create separate guides
for each one.

<Tutorial Name>

Ensure that the title starts with a gerund. For example using,
monitoring, creating, and so on.

Overview

An overview of the use case.

Prerequisites

Provide any prerequisite information, assumed knowledge, or environment
required to execute the use case.

Instructions

This section should be step by step instructions on how to use
the component. You can include screenshots and code samples
to make the instructions clearer.

 Source Serif Pro

Source Serif Pro

Source Serif Pro is a set of OpenType fonts to complement the Source Sans Pro [https://github.com/adobe-fonts/source-sans-pro] family.
In addition to a functional OpenType font, this open source project provides all of the source files that were used to build this OpenType font by using the AFDKO makeotf tool.

Installation instructions

	Mac OS X [http://support.apple.com/kb/HT2509]

	Windows [http://windows.microsoft.com/en-us/windows-vista/install-or-uninstall-fonts]

	Linux/Unix-based systems [https://github.com/adobe-fonts/source-code-pro/issues/17#issuecomment-8967116]

Getting Involved

Send suggestions for changes to the Source Serif OpenType font project maintainer, [Frank Grießhammer](mailto:opensourcefonts@adobe.com?subject=[GitHub] Source Serif Pro), for consideration.

Further information

For information about the design and background of Source Serif, please refer to the official font readme file [http://htmlpreview.github.io/?https://github.com/adobe-fonts/source-serif-pro/blob/master/SourceSerifProReadMe.html].

nav.xhtml

 Table of Contents

 		
 Acumos Documentation

 		
 Demeter Release, 10 June 2020

 		
 Demeter Release Notes

 		
 Release Highlights

 		
 Installation

 		
 Supported Browsers, Devices, and Resolutions

 		
 How to Get Help

 		
 How to Report a Bug

 		
 Demeter Manifest

 		
 Operating System

 		
 Platform Components

 		
 Supporting Libraries Used by Platform Components

 		
 Modeler Client Libraries

 		
 Clio Release, 13 November 2019

 		
 Clio Release Notes

 		
 Release Highlights

 		
 Installation

 		
 Supported Browsers, Devices, and Resolutions

 		
 How to Get Help

 		
 How to Report a Bug

 		
 Clio Manifest

 		
 Operating System

 		
 Platform Components

 		
 Supporting Libraries Used by Platform Components

 		
 Modeler Client Libraries

 		
 Boreas Release, 5 Jun 2019

 		
 Boreas Release Notes

 		
 Release Highlights

 		
 Installation

 		
 Supported Browsers, Devices, and Resolutions

 		
 How to Get Help

 		
 How to Report a Bug

 		
 Boreas Manifest

 		
 Operating System

 		
 Platform Components

 		
 Supporting Libraries Used by Platform Components

 		
 Modeler Client Libraries

 		
 Model Runners

 		
 Athena Maintenance Release, 12 December 2018

 		
 Athena Maintenance Release Notes

 		
 Supported Browsers, Devices, and Resolutions

 		
 Issues Addressed

 		
 Known Issues and Limitations

 		
 Security Notes

 		
 Installation

 		
 Documentation

 		
 Licenses

 		
 How to Get Help

 		
 How to Report a Bug

 		
 Athena Maintenance Manifest

 		
 Operating System

 		
 Platform Components

 		
 Supporting Libraries Used by Platform Components

 		
 Modeler Client Libraries

 		
 Model Runners

 		
 Athena Release, 7 Nov 2018

 		
 Athena Release Notes

 		
 Release Highlights

 		
 Supported Browsers, Devices, and Resolutions

 		
 Known Issues and Limitations

 		
 Security Notes

 		
 Installation

 		
 Documentation

 		
 Licenses

 		
 How to Get Help

 		
 How to Report a Bug

 		
 Athena Manifest

 		
 Operating System

 		
 Platform Components

 		
 Supporting Libraries Used by Platform Components

 		
 Modeler Client Libraries

 		
 Model Runners

 		
 Release Notes

 		
 Component Releases

 		
 Core Components

 		
 Supporting Components

 		
 Example Models

 		
 Weekly Builds

 		
 START HERE

 		
 What is z2a?

 		
 What is z2a Flow-1?

 		
 What is z2a Flow-2?

 		
 Where do I start with z2a?

 		
 Platform Operations, Administration, and Management (OA&M) User Guide

 		
 Acumos Elastic Stack for Log Analytics

 		
 Target Users

 		
 Assumptions

 		
 Elastic Stack Architecture

 		
 Elastic Stack Component Goal

 		
 Elastic Stack Component Versions

 		
 Elastic Stack Setup

 		
 Prerequisites

 		
 Steps for first time, clean install

 		
 Steps to upgrade

 		
 Filebeat setup steps:

 		
 Metricbeat setup steps:

 		
 Adding a New Log

 		
 Elastic Stack UI Tour

 		
 Acumos Kibana Dashboard Creation

 		
 Acumos Kibana Dashboard Save

 		
 System Integration User Guide

 		
 Acumos API Management with Kong

 		
 Kong API component versions

 		
 Acumos Kong API setup

 		
 Prerequisites

 		
 Steps

 		
 Steps to create self signed in certificate

 		
 Acumos API configuration

 		
 Expose new service:

 		
 Deployment of Acumos platform under Azure-K8s

 		
 Future Releases

 		
 Prerequisites

 		
 Step-by-Step Guide

 		
 Set up using Helm Charts

 		
 Monitoring resource utilization in kubernetes using Prometheus and Grafana

 		
 Architecture Guide

 		
 Introduction

 		
 Scope

 		
 Requirements

 		
 Architecture

 		
 Architecture Overview

 		
 Component Interactions

 		
 Interfaces and APIs

 		
 Core Components

 		
 Supplemental Components

 		
 Platform Flow

 		
 User Journeys

 		
 Component Interaction

 		
 Inter-Component Message Flows

 		
 Component Guides

 		
 Catalog, Data Model, and Data Management

 		
 Common Services

 		
 Design Studio

 		
 Deployment

 		
 Model On-Boarding

 		
 Portal and Marketplace

 		
 Operations, Administration, and Management (OA&M)

 		
 System Integration

 		
 Example Models

_images/firefox.png

_images/gerrit-docsjoblinks.png
https://jenkins.acumos.org/job/documentation-rtd-verify-master/832/ : SUCCESS
Logs: https://logs.acumos.org/production/vex-yul-acumos-jenkins-1/documentation-rtd-verify-master/832

_images/kibana_dashboard_1.jpg

_images/gerrit-htmlfolder.png
2018-07-0321:38 113

2018-07-03 21:38 1.OK
2018-07-0321:38 33
2018-07-0321:38 42
2018-07-03 21:33 9.4K
2018-07-0321:38 -
2018-07-0321:38 -

_images/kibana_dashboard_3.jpg
®

Il visuaiize
® Dashooara O Namea
® [Acumos User Login
o
-1of1 <>
& o

_images/kibana_dashboard_2.jpg
| s R Optonsshare ¢ OLstizhous >

| [(Beorch.. (e status200 anD extension2r) Uses ucene query syntax Rl

This dashboard is empty. Let's fill it up!

Click the [EE]) button in the menu bar above to add a visualization to the dashboard.
Ifyou haven't set up any visualizations yet, visit the Visuslize 2pp to create your first visualization.

Dashboard

Timelion

_images/kibana_dashboard_4.jpg
| Dashiboard / Editing New Dashboard
i

|[Foren- oz toaon i st rT——

This dashboard is empty. Let’s fill it up!

Click the| button in the menu bar above to add a visualization to the dashboard.
1f you haven't set up any visualizations yet, vist the Visualize 2pp to create your first visualization.

_images/elk_stack.png
< \
Metrics | Wetricheat
P

AEueS
DataBase

> Filebea}‘
- y

Acumos ELK Server

[ogstesn

Acumos Platform Host

Metrics [Memcbe;c

> Filebea}\
4 v

Acumos Platform Host

_images/edit_catalog.png
Edit Catalog

Catalog Name

cate

Add Description

checking for test

Access

Restricted

_images/example_running.jpg
raw image post-processed image

Results

image/jpeg

SELECT AN IWAGE FOR ANALYSIS OR UPLOAD YOUR OWN

Custom Upload

Browse... Nofle selected.

youtube source

pexels source wikimedia source wikipedia source

NOTE: THESE SAMPLE IMAGES ARE COPYRIGHT OF THEIR ORIGINAL AUTHORS AND ARE PROVIDED ONLY FOR TESTING AND DEMONSTRATION PURPOSES, AND ARE NOT AUTHORIZED FOR SALE OR REDISTRIGUTION OUTSIDE OF THIS CONTEXT.

nttp:/flocalnost:8884/detect
NOTE: THE ENDPOINT URL MAY BE MODIFIED WHEN A NEW METHOD BELOW S UTILIZED.

Transform URL:

Protobuf Method: | detect (input: Image, output: Image) Download Protobuf Source

Protobuf Message: Downiosd Encoded input - Downlosd Encoded Response.

Protobuf Payload Input: rowse... protobuf regions.outin (triggers upload + post on selection)

PROTIP: ADD THE QUERY PARAMETER URLLIMAGE TO AUTOLOAD THS URL

Face privacy processing using detected faces and a subsequent processing operation.

Video and Multimedia Technologies Research

_images/emotionFerPlus.png
Corbeille

(&)
ImageMagick: tmpkh7b93a0.PNG —

S
ImageMagick: tmpas4tw_ne.PNG —

buel6474@yd-CND5233LR9: ~/Acumos/onnx/onboardonnxModel/emotion_ferplus_model/e... - o &

Fichier Edition Affichage Rechercher Terminal Aide
buel6474@yd-CND5233LR9:~/Acumos/onnx/onboardonnxModel/emotion_ferplus_model/emotion_f
erplus_model_OnnxClient$ python emotion_ferplus_model_onnxClient.py -f input/angryMan
.png

*** Call ONNX Runtime Prediction ***

Emotion : Anger

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardOnnxModel/emotion_ferplus_model/emotion_f
erplus_model_OnnxClient$ python emotion_ferplus_model_OnnxClient.py -f input/sadness.
png

*+% Call ONNX Runtime Prediction *+*

Emotion : Sadness

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardOnnxModel/emotion_ferplus_model/emotion_f
erplus_model_OnnxClient$ python emotion_ferplus_model_onnxClient.py -f input/happy.3p

9
*** Call ONNX Runtime Prediction **

Emotion : Happiness

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardOnnxModel/emotion_ferplus_model/emotion_f
erplus_model_onnxClient$ python emotion_ferplus_model_onnxClient.py -f input/joker.3jp
9

*** Call ONNX Runtime Prediction **

Emotion : Happiness

buel6474@yd-CND5233LR9:~/Acumos /onnx/onboardonnxModel/emotion_ferplus_nodel/emotion_f
erplus_model_onnxclients [

_images/example_running2.jpg
sad

contentment.

awe

excitement

amusement

SELECT AN WAGE FOR ANALYSIS OR UPLOAD YOUR OWN!

Upload Image

Browse... No fie selectba.

y)
exciting balloons ocean excitement

NOTE: THESE SAMPLE (AGES ARE COPYRIGHT OF THEIR ORIGINAL AUTHORS AND ARE PROVIOED ONLY FOR TESTING AND DEMONSTRATION PURPOSES, AND ARE NOT AUTHORIZED FOR SALE OR REDISTRIEUTION OUTSIDE
OF 1S CONTEXT.

nttp:/flocalhost:8888classity
'NOTE: THE ENDPOINT URL MAY BE MODIFIED WHEN A NEW METHOD BELOW S UTILIZED.

Transform URL:

Protobuf Method: | cisssy (nput: mage, outpu: ImageTagset) &) Donniosd Protoout Source

Protobuf Message: Dowunloa Encoded Input = Download Encoded Response

Protobuf Payload Input: orowse... _ protobutmageTagsetsn (triggers upload + post on selection)

PROTIP: ADD THE QUERY PARAMETER URLMAGE TO AUTO.LOAD THS URL

Image mood classification using image-classifier output tags (from 1000 classes). Training data comes from the "art photos” from this
academic work, with available dataset files.

Video and Machine Learning Research

_images/example_running1.jpg
seashore, coast, seacoast, sea-coast

SELECT AN WAGE FOR ANALYSIS OR UPLOAD YOUR OWN!

bikes (image) city-cars costal-lapse scuba

Upload Image

Browse.. N file sele

nttp/fiocalhost:a388/ciassiy

Transform URL:
NOTE: THE ENDPOINT URL MAY BE MODIFIED WHEN A NEW METHOD BELOW IS UTILIZED.

Protobuf Method: | ciasiy (iout: Image, output: mageTagset) | Downioad Protoout source
Protobuf Message: Download Encodec Input = Download Encoded Response
Protobuf Payload Input: sronse... Nofle seiected. (triggers upload + post on selection)

PROTIP: DD THE QUERY PARAMETER URLIMAGE TO AUTO-LOAD THS URL.

Image classification using deep convolutional neural nets (CNNs) and the TensorFlow machine learning framework using the ImageNet
dataset. The dataset consists of 1000 classes of objects.

Video and Machine Learning Research

_images/example_running_detect.jpg
image mimeType

0 El 0 0 2048 1363 image/jpeg
0) 203 189 143 143
0 & 1440 234 307 307
0 = 1143 318 234 234
0 = 886 409 212 212

Upload Image

Browse... N fle selected.

pexels source wikimedia source wikipedia source

'NOTE: THESE SAMPLE (WAGES ARE COPYRIGHT OF THEIR ORIGINAL AUTTHORS AND ARE PROVIDED ONLY FOR TESTING AND DEMONSTRATION PURPOSES, AND ARE NOT AUTHORIZED FOR SALE OR REDISTRIBUTION OUTSIDE OF THIS CONTEXT.

tosocainost 8884 cetect
Transform URL: "°# s
NOTE: THE ENOPOINT URL MAY 8 MODIFED WHEN AKEW WETHOD BELOW 1S UTILZED

Protobuf Method: | detect (nput: image, output: RegionDetectionSet) Dounload protobuf Source.
Protobuf Message: Downioad Encovea input - Download Encoded Response.
Protobuf Payload Input: browse.. Nofie sciectec. (triggers upload + post on selection)

PROTIP: ADD THE QUERY PARAMETER URLIMAGE TO AUTO-LOAD THES URL.

Face privacy processing using detected faces and a subsequent processing operation.

Video and Multimedia Technologies Research

_images/example_running3.jpg

_images/fed-gw-arch.png
Portal A

L,

Private
interface

Federation
Gateway A

Acumos peer “A”

Portal B

Publ
inte

lic ES
rface

L

Federation
" Gateway B
Y Private
interface
Acumos peer “B”
ONAP
Federation
» Adapter for
ONAP Private
interface

ONAP site

_images/example_running_object.jpg
e m

Hperson
Operson
Bbicycle

DObicycle

Hperson

SELECT AN WAGE FOR ANALYSIS OR UPLOAD YOUR OWN!

city-cars costal-lapse

Upload Image

Browse.. N file selects

nttp:/fiocalhost:3386frecognize

‘epnsfonn iRl NOTE: THE ENDPOINT URL MAY BE MODIFIED WHEN A NEW METHOD BELOW IS UTILIZED.

Protobuf Method: | recognize (nput: image, outout: FouncObjectst) Downioad Protoout source
Protobuf Message: Downloa Encodec Input ~ Download Encoded Response
Protobuf Payload Input: sronse... Nofle seiected. (triggers upload + post on selection)

PROTIP: DD THE QUERY PARAMETER URLIMAGE TO AUTO-LOAD THS URL.

Image classification using deep convolutional neural nets (CNNs) and the TensorFlow machine learning framework using the ImageNet
dataset. The dataset consists of 1000 classes of objects.

Video and Machine Learning Research

_images/probe-start.png
- Proto Viewer - Acumos x

&« c o @® localhost:5006 110% e @ W 4o » =

Acumos Proto Viewer

This viewer shows the content of protobuf messages within a composite solution.

Model Selection

Please Select j

_images/probe-plot.png
Open B My R ® 00-Er

&« C @ ® localhost:5006 10% | oo @ 1Y v o »

Acumos Proto Viewer

This viewer shows the content of protobuf messages within a composite solution.

Model Selection

protobuf_probe_testnested_100proto j

Message Selection Graph Selection

NestOuter j scatter j

X axis Y axis

i.x: {'type': 'number'} j iy : {'type'": 'number'} j

1+ + + £ + + + + +
1 - F *t T I F I
"I fF + I F F T OF oI %

_images/publish-request-list.png
£ Home
8 vancrpiace
& wwooms
& cammuoss

ON-BOARDING MODEL

& pesion sTuDIO =™
2, smesomn

3 pususirequest
& oaoa

L Ye—

Current Request (319 actve/Inactive requesis)

Show |10 ¥ |Requests.

MODEL NAME 4 VERSION REQUESTER
Amade! ! Sovit Sourav
9598caba-eBI4461. Revision ID: 1o3ac.
Amade! ! Sovit Sourav
9598caba-eBI4461. Revision ID: 1o3ac.

Showing 21 1030 of 319 Requests

CREATED DATE

oerzerzots

oerzazots

CATALOG

ACCESS LEVEL

Restrictad

Restrictad

REQUEST STATUS & COMMENTS ACTION

View
View
View
View

View

View

Pending NA ©0
Pending NA ©0

prevos | 1 2 B+ s wex

_images/publish-request-left-menu-item.png
3 MARKETPLACE

—
[——

[pesiGN sTUDIO =T

2, simeADMIN

8 roausrequest (@)
5y oanpA

_images/publish-to-marketplace.png
mos

e
£) s
& cataocs

ON-BOARDING MODEL

& pesion sTuDIO =™
2, smesomn

5 pususirequest
& omoa

B MLLEARNING PATH

MANAGEMENT OPTIONS

@

I

On- Boarding
Compleradon 031572015

Share with Team

Manage Publisher/Authors

Publish to Marketplace

Export / Deploy to Cloud

View Downloads

Reply to Comments

Delete Model

Publish to Marketplace

QPEQrem - @ E

‘ () e T e e S T s e T e T e R T S e e TR ‘

STEPS TO SUBMIT PUBLICATION (1/5 COMPLETED)

© 1 Model Name | Comses 132075

© Mol ategory

Model Category: Toolkit Type:

© + Modet bocumens |

© Mo Tags

Preview Model

_images/rtu-editor-agreement-companyb-companyz.png
Acumos Right to Use Editor

After an agreement is reached you can use this web form to create a right to use your model.

Select View: Supplier () Subscriber

- _ feset

Target Asset(s) or Asset Collection(s)
Refinement

Refine Target by * Operator * Target Identifier(s)
lum:in Target Identifier

b11dadf9-db03-43a8-94f4-e9f8155b8f42

lum:swPersistentid

Refine Target by * Operator * Target Identifier(s)
lum:in Target Identifier

9f603957-b720-45f4-8b8e-512d081e9a5f

lum:swTagld

Supplier

Company name *

Company B

CompanyfTeam URL *

companyb.com

Email *

sales@companyb.com

Subscriber
Company / Team Name *

Company Z

CompanyfTeam URL *

companyz.com/team

Email *

team@companyz.com

Assignee Refinement(s)

Permitted Usage
BActions Action(s) Constraints

use

O transfer

[aggregate

[acumos:deploy

[acumos:download
[modelrunner:predict
O modelrunner:train

Prohibited Usage

Save / Download Asset Usage Agreement

_images/removePeer.png
X NAT

4223707

422370

_images/rtu-editor-review.png
Acumos Right to Use Editor

After an agreement is reached you can use this web form to create a right to use your model.

Select View: () Supplier ~ Subscriber

Asset Usage Agreement Source: () LUM Import from File Reset

Company B

acumos://software-licensor/Company%20B/agreement/300a28d0-56a9-4c8a-9a0d-193fc61b6502

Jlum

Get RTU LUM Agreement

Select Action: (1) Add /Edit Restrictions Review RTU Agreement
Target Asset(s) or Asset Collection(s)
Refinement
Refine Target by Operator Target Identifier(s)
lum:in T TargetIdentiier
b11dadfo-db03-43a8-94f4-e9f8155b8f42

lum:swProductName

Refine Target by Operator Target Identifier(s)

lum:in Target Identifier

9f603957-b720-45f4-8b8e-512d081e9a5f

lum:swTagld

Supplier

Company name *

Company B

CompanyfTeam URL *

companyb.com

Email *

sales@companyb.com

Subscriber
Company / Team Name *

Company Z

CompanyfTeam URL *

companyz.com/team

Email *

team@companyz.com

Assignee Refinement(s)
Permitted Usage

[Actions Action(s) Constraints

use

O transfer

[aggregate

[acumos:deploy

[acumos:download
[modelrunner:predict
O modelrunner:train

Prohibited Usage

Save / Download Asset Usage Agreement

User ID: admin

Save

_images/rtu-editor-restrictions.png
Acumos Right to Use Editor

After an agreement is reached you can use this web form to create a right to use your model.

Select View: () Supplier ~ Subscriber

Asset Usage Agreement Source: LUM (O Import from File Reset

Company B
acumos://software-licensor/Company B/agreement/300a28d0-56a9-4c8a-9a0d-193fc61b6502

Jlum

Get RTU LUM Agreement

Select Action: . Add /Edit Restrictions (O Review RTU Agreement

Target Asset(s) or Asset Collection(s)
Refinement

Subscriber
Assignee Refinement(s)

The Items Schema
Refine Assignee by * Operator * Target Identifier(s)

lum:users T lumin Target Identifier

consumer1

Target dentifier

consumer2

Permitted Usage

EProhibited Actions

O use

transfer

aggregate

[acumos:deploy

[acumos:download
[modelrunner:predict
O modelrunner:train

Save / Download Asset Usage Agreement

User ID: admin

Save

_images/private-k8s-client-arch.png
Acumos platform

portal- k8s-client
User marketplace o)
(manual actions) common-data-sve
1) | 1oy, ToetSoliionzip |
APl
1d)
(G0 —
(2a) (4a) (4b) > docker-proxy (4g)
¥
docker repo
Acumos project
docker repo
v v -
solution.zip [—2b)> deploy.sh =5 (4dy docker AP!
@
T
@) {—>! solution.yaml 417(40 (49)
setup_k8s.sh| | dockerinfojson | | databrokerjson
{—{ blueprintjson
() Lfmodel.proto(1-n)
T
(de).._.. -
¥ kubectl —————1——(4q]

nginx

retrieve proto files i : Data source

as needed model-connector —(4k)-> data-broker ——[(40—4- (remote)
; v %

probe TIi3 data source

(local file)
Solution microservices

host machine

_images/notification_icon.png

_images/notification_list.png
Acumos QP tams - @ B

£ Houe Manage Notifications
Home .
BB warkeTpLACE
S Refresh | | @ MarkAsRead | | 1 MoveToTrasn

& wrwooms
- Show| 10 ¥ | Notifications

(@ cataLocs

secr onre s
P —

& oesianstuoio Solution Crossse 2052020 Pendin for Publishr Approval osa00 | 0P

S, sesoun R

B e cense oo Cstomeregmenaion 552120 O e sty R

Or-boarding faled: Malformed bundie, missing required file: modelzp,schama proto, metadata json, onmx fl, pfa file, docker fileURI. Check your model and try again. Please restar: the

Ty qanoa |

Or-boarding faled: Malformed bundie, missing required file: modelzp,schama proto, metadata json, onmx fl, pfa file, docker fileURI. Check your model and try again. Please restar: the

£B wieamincpa

Or-boarding faled: Malformed bundie, missing required file: modelzp,schama proto, metadata json, onmx fl, pfa file, docker fileURI. Check your model and try again. Please restar: the
process again to upload the soluton.

05272020 | 105 PM

05272020 | 103 M

Or-boarding faled: Malformed bundie, missing required file: modelzp,schama proto, metadata json, onmx fl, pfa file, docker fileURI. Check your model and try again. Please restar: the

process sgain t upload the zolution. 05272020 | 1137 AM

Or-boarding faled: Malformed bundie, missing required file: modelzp,schama proto, metadata son, onmx i, pfa file, docker fileURI. Chck your model and try again. Pledse festas e

process sgain o uplasd the ot U288 | 1131 Am

Snoing 19101401 Nostacons Bl co+s] o o nen

_images/openstack_flowchart.jpg
OpensStack Deployment

MarketPlace Ul Get Blueprintjson

Openstack Controller
{Composite solution Detail)

Data Base

Openstack
Authentication

/putbockerinfo and /putBlueprintinfo

Nexus. Openstack BluePrint
Container
Registry

Service Impl
Market Place Ul

Notification
with VM Details

Openstack
vm

With Linux
and Docker

Probe Container

_images/password-forgetPasswordLink.png
Already have an Account

Username or Email Id

°
A

Password *

=)

[] Remember Me

sign In

or

By clicking any of the button above you are
‘agree with our Terms and Conditions and
Privacy Policy.

_images/pad_example.jpg
Q Pipeline Application Demo (P/ for Acumos Configuration @ Options

model input output latency

Face Detection a i B 4395 ms

Face Blur 2127 ms family

(pexels)

Face Detection (alt) 4755 ms

e oo
2
rer

Face Recognition 3534 ms

Pipeline Activation Asset Selection

x vy wh region x y w h

276 127 67 67 "5 262 50 21 37
357 100 73 73 =4 466 72 85 106
450 71 99 99 -3 168 63 65 121

61 57 49 49] 285 120 58 80

0] Face Blur [0] Face Detection (alt) (o]

i region tag score & tag score i tag score

Ellen 0341 wig 0.403 excitement 0167
Degeneres hair spray 0328 sad 0163
Aracey,Cold] 0289 miniskirt, mini 0037 amusement 0157
4 Kristy 0254 pajama, pyjama, pi's, 0.011 anger 014
McNichol ;
jammies P
Face Recognition o] Image Classification o Image Mood o

_images/private-k8s-client-arch-no-databroker.png
Acumos platform

portal- k8s-client
User marketplace a0
(manual actions) common-data-svc
(y | (aby-J»{ 7GetSoliionZip” |
API
1d)
(G0 —
(2a) (4a) (4b) > docker-proxy (4g)
x
docker repo
Acumos project
docker repo
v y -
solution.zip [—2b)> deploy.sh (4d docker AP|
T
@) ! solution.yaml ———————————(af) (49)
setup_k8s.sh| [—>| dockerinfo.json
f—{ blueprintjson
®) > model.proto(L-n)
T (4]
de).... ()
¥ kubectl —————1——(4q]
nginx
tr to fil ¥
retreve proio fles test-
as needed model-connector < (4k) model.sh User

probe ¢ ¢ ¢ ¢

solution microservices.

1 v

host machine

_images/password-resetScreen.png
Forgot password x

Please enter your email address and we will send you
anew password reset ink.

myemailaddress@mycompany.com| (i)
@

_images/models_shareWithTeamTab.png
Acumos

HOME

MARKETPLACE

o
®

MY MODELS

&

CATALOGS
ON-BOARDING MODEL
= oesien sTupIO *A
Sy SITEADMIN

rﬂ PUBLISH REQUEST
B oanpa

{@ ML LEARNING PATH

Techm v @ |

Manage Customer_Segmentation23 | version18 v | Authorand Publisher - @ Status: On-boarded

onosizsr2015

Home / Manage My Model / Customer_Segmentation23

MANAGEMENT OPTIONS

v

on-Boarding
Completed on 07/30/2019

Share with Team
Shared with 0 co-worker

Manage Publisher/Authors

Publish to Marketplace

Export / Deploy to Cloud

View Downloads

Reply to Comments

Share With Team

Sharing a model gives co-authorship to that person. They will be able to edit. share and publish, just as a model
owner can.

This Model shared with below team member | (0 member)

Sharing "Customer_Segmentation23" | Version - 18 | (Seluson i0-&1728s2a-8705-4ed0-2b06 77651172055

Link to Model

Find a user to Share with *

_images/models_shareWithTeamScreen.png
Q B recm - @

o)
B MARKETPLACE

&

MY MODELS

CATALOGS

ON-BOARDING MODEL

= oesien sTupIO *A
Sy SITEADMIN

rﬂ PUBLISH REQUEST
B oanpa

{@ ML LEARNING PATH

Manage Customer_Segmentation12345 | version1 v | Author and Publisher - @

Status: On-board
on 010172

Home / Manage My Model / Customer_Segmentation12345

MANAGEMENT OPTIONS

on-Boarding
Completed on 09/19/2019

Share with Team
R nerea 0 comarker

8 Manage Publisher/Authors

Publish to Marketplace
& Export/ Deploy to Cloud

View Downloads

1<

/> Reply to Comments

Share With Team

Sharing a model gives co-authorship to that person. They will be able to edit. share and publish, just as a model

owner can.

This Model shared with below team member | (0 member)

Sharing "Customer_Segmentation12345" | Version - 1 | (Soluon 0 3es0rsd-37a3-4442 6ed-4775918aic0a

Link ta Madal

_images/simple-model-usage-1.gif
et]

I

)

_images/signUp_verification.png
QACUmOSAI HOME MARKETPLACE MODELER RESOURCES DOCUMENTATION Q SGNIN | siGNuPNow (D

_images/simpleModelKibana-2.png
Table JSON View surrounding documents] [View single document

. t host
kibana
t model.name 2= i
2 "_index": "acumos-model-usage-logs",
i 5 3 ": "doc",
Piscover S etoetatenl 4 "hxQ8TWSBIZhNGGCCKGVK™ ,
Visualize t model.revisionld (55 nu%{,
7~
Dashboard t model.solutionid 8 ilebeat-t6v56",
9 : 1498,
Time t model.userld 10~ "r-QSPonse"; {
1 "time": 52.886,
offset 12 “status": "200",
Dev Tools 13 "bytesSent": 2107242
t prospector.type 14 1,
Management 15 "source": "/var/log/nginx/cmp6/model-usage-3796bed2-d497-4e24-8ba9-041ce7baaded.log",
t remotelnfo.httpRe... 16 "@timestamp": "2019-06-04T06:45:16.939Z",
17~ "beat": {
t remotelnfo.http_x... 18 “name": "filebeat-t6v56",
19 "version": "6.0.1",
t remotelnfo.remot... 20 "hostname": "filebeat-t6v56"
21 1,
t remotelnfo.remot... 2 "request”: {
23 "lengtl 2107644,
t remotelnfo.reqStr 2 scheme”: "http
25 1,
t remotelnfo.timeL... 5(75. pfzjﬂzf"fmg"
28 1,
t remotelnfo.userA... 29+ "tags": [
30 "acumos-model-usage-logs",
requestlength 31 "beats_input_raw_event"
32 1,
t request.scheme 33~ "remoteInfo": {
34 "remoteUser
response.bytesSent 35 “remoteAddr": "10.1.0.22"
36 “timeLocal": "@4/]un/2019:06:45:07 +0000",
t response.status 37 "http_x_forwarded_for": "
38 "httpReferer"”: "http://localhost:8000/face-privacy.html",
response.time 39 "userAgent": "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74
.0.3729.169 Safari/537.36",
t source 40 "reqStr": "POST /model/methods/detect HTTP/1.1"
41 1,
t tags 42~ "model": {
43 "name nginx-proxy-face-privacy-filter-detect"”,
44 "userId": "modelownerl",
45 "solutionId": "3796bed2-d497-4e24-8ba9-041ce7baaded",
46 “revisionId": "1b684380-48d1-41bc-98ca-57a2661d96e4",
47 "operationName": "/model/methods/detect”
48 1,
49 "@version"
50 1,
51~ "fields": {
52~ "@timestamp": [

o Collapse 53 "2019-06-04T06:45:16.939Z"

-

_images/simpleModelKibana-1.png
1 hit New Save Open Share C'Autorefresh <€ O Last15minutes %
‘ kibana

Search... (e.g. status:200 AND extension:PHP) Options n

Discover Add a filter +
Visualize acumos-model-... June 3rd 2019, 23:31:34.127 - June 3rd 2019, 23:46:34.127 — Auto B
Dashboard Selected fields 1

? _source 0.8
Timelion -

Available o s o6
Dev Tools fields S o4

O @timesta... 02
Management 0

t @version 23:33:00 23:35:00 23:37:00 23:39:00 23:41:00 23:43:00 23:45:00

@timestamp per 30 seconds

t _id

- Time _source

_score v| June 3rd 2019, 23:45:16.939 post: filebeat-t6v56 offset: 1,498 response.time: 52.886

response.status: 200 response.bytesSent: 2,107,242
source: /var/log/nginx/cmp6/model-usage-3796bed2-d497-4e24-8
t beat.hostn... ba9-041ce7baaded.log @timestamp: June 3rd 2019, 23:45:16.939

t _type

beat.name: filebeat-t6v56 beat.version: 6.0.1
t beat.name

t beatversion Table JSON View surrounding documents || View single document
t host
© @timestamp @ @ @M % June 3rd 2019, 23:45:16.939
t model.na... t @version Qam* 1
t model.ope... t _id Qam hxQ8IWsB9ZhnGGccKGVK
¢ Rl t _index @ @ [#* acumos-model-usage-logs
-
t model.sol... -score @
o Collapse t _type QQam doc

_images/supplier-company-b-agreement-in-editor.png
Acumos Right to Use Editor

After an agreement is reached you can use this web form to create a right to use your model.

Select View: Supplier () Subscriber

- _ feset

Target Asset(s) or Asset Collection(s)

Refinement
Refine Target by * Operator * Target Identifier(s)
lum:swTagld T lumin T Targetidentfer
97603957-b720-4514-8b8e-512d081e9a5)
Supplier

Company name *

Company B

CompanyfTeam URL *

companyb.com

Email *

sales@companyb.com

Subscriber
Company / Team Name *

Company Z

CompanyfTeam URL *

companyz.com

Email *

team@companyz.com

Assignee Refinement(s)

Permitted Usage

BActions Action(s) Constraints
O use The Items Schema
o ’ Limit use by * Operator *
transfer
date Tl

[aggregate
acumos:deploy
acumos:download

Limited to *

2019-12-31

Data format

xsd:date

[modelrunner:predict
O modelrunner:train

EProhibited Actions

O use

transfer

[aggregate

[acumos:deploy

[acumos:download
[modelrunner:predict
O modelrunner:train

Save / Download Asset Usage Agreement

_images/superResoZoo.png
Corbeille

buel6474@yd-CND5233LR9: ~/Acumos/onnx/onboardOnnxModel/super_resolution_zoo/supe... — O X

Fichier Edition Affichage Rechercher Terminal Aide
buel6474@yd-CND5233LR9:~/Acumos/onnx/onboardonnxModel/super_resolution_zoo/super_reso
lution_zoo_onnxClient$ python super_resolution_zoo_onnxClient.py -f input/cat.jpg

*** Call ONNX Runtime Prediction ***
buel6474@yd-CND5233LR9: ~/Acunos /onnx/onboardonnxModel/super_resolution_zoo/super_reso

lution_zoo_OnnxClient$

_images/user-login.png
Usar Cicks on Login ana

ndtiews

GET ffndUser

f—— :
.> HTTPS. 3

s g

apasswors
s,

S :
pr——,

Angularis Ul Controlers
Pl — o I

o —e

s, ||
wT Token Generate 3 i

S0 Token s sorein

sicasionge & rearecsq &

o Targt age;Defat
Marke Psce

Angularis U1

Markethiace R

oased o th esponse

Reter i 8 for ket lsce

Acumos Portal FrontEnd

inbs2se 150N web Token LT}

WtTokenManager java

Soreregenerared
& | wrToien n mvemary
Cacn o st

e
& redis

Acumos Portal Backend microService

_ Common Data Layer

_images/unpublishing_model.png
MANAGEMENT OPTIONS.

on-Boarding
Compleced o 05162019

share with Team
= ‘Shared with 0 co-worker

£8 Manage publsher/Authors

o Publishto Marketplace
& Export./Deploy to Cloud

L ViewDownloads

Publish to Marketplace

Select Catalog Catalogs)of published model

Select Catalog v Acumos FedfromisT (Public) ~

& (€]

Moge! Request Approval
Documentation

STEPS TO SUBMIT PUBLICATION (5/6 COMPLETED)

o L —
[P —

[N

Notyet published

e

_images/view-license-in-portal.png
Q AB @ modelownert ~ @ B

A (o @ square | cvlos-rbichoats v | verson-1 Deploy To coud v

Home / My Model / square Version 1 | 2 Downloaded
5 MARKETPLACE

(@) Crested by Data scientise crstedon 102215 | 1 0 | Write Comments | © 8 | & 2
. g

& wymopeLs Publshed on 1072972013

ON-BOARDING MODEL ® LICENSE PROFILE Change | | Update
Description

Ij DESIGN STUDIO P57 {
License Profile "$schema”: "https://raw.githubusercontent.com/acumos/license-
Bl qanoa manager/master/license-manager-client-
library/src/main/resources/schema/1.0.0/license-profile. json",

< signature "keyword": "Company-B-Proprietary”,
ML LEARNING PATH "licenseName": "Company B Proprietary License",
"intr "Test Company B license for Model Square”,
Documents "copyright”: {
"year": 2019,
"company " ‘ompany B",
£ Model Artifacts "suffix": "All Rights Reserved"

Machine Learning Model”,
Author/Publisher Details "companyName": "Company B",
"contact": {
"name’: "Company B Team Member”,
o ® URL": "http://Company-B.com",
"email": "supportfCompany-B.com"

Test i
"additionalInfo": "http://Company-B.com/licenses/Company-B-Proprietary”,

"rtuRequired”: true

Other Classification Models

Show all

: square
padd 9
Py
i 50 ©10 310

0 5 star 0
—am -

_images/user-sign-up.png
User ks onsignip using
emaiand
envers dasals
Angularis U1 Jrcumosaccountoataservice.:
‘Acumos Home Page M)

Successtu Account
Crestionwil reirect
tolognsarean

Angularis Ul
Login Screen

Reter i 7for Login Flow

_images/runningCompSol.png
raw image

image/jpeg

SELECT AN IMAGE FOR ANALYSIS OR UPLOAD YOUR OWN!

family (pexels)

reuninon (flickr)

family (pexels) Schwarzenegger DeGeneres (wikipedia)

(wikipedia)

Upload Image

Choose File = No file cho

NOTE: THESE SAMPLE IMAGES ARE COPYRIGHT OF THEIR ORIGINAL AUTHORS AND ARE PROVIDED ONLY FOR TESTING AND DEMONSTRATION PURPOSES, AND ARE NOT AUTHORIZED FOR SALE OR

REDISTRIBUTION OUTSIDE OF THIS CONTEXT.

http://acumos-bionic-5:30550/model/methods/detect

NOTE: THE ENDPOINT URL MAY BE MODIFIED WHEN A NEW METHOD BELOW IS I1ZED.

detect (input: Image, output: Image) Download Protobuf Source

Protobuf Message: Download Encoded Input - Download Encoded Response

Protobuf Payload Input: Choose File No file chosen (triggers upload + post on selection)

PROTIP: ADD THE QUERY PARAMETER URL-IMAGE TO AUTO-LOAD THIS URL.

er

_images/safari.png

_images/runningSimpleSol.png
@ localhost:

0 -1 0 0 2048 1363
0 ‘o 202 189 144 144
0 bl 1439 234 308 308
0 2 1143 318 233 233
0 "3 890 410 207 207

SELECT AN IWAGE FOR ANALYSIS OR UPLOAD YOUR OWN!

family (pexels)

Schwarzenegger
(wikipedia)
NOTE: THESE SAMPLE IMAGES ARE COPYRIGHT OF THEIR ORIGINAL AUTHORS AND ARE PROVIDED ONLY FOR TESTING AND DEMONSTRATION PURPOSES, AND ARE NOT AUTHORIZED FOR SALE OR REDISTRIBUTION OUTSIDE OF THS

ConTexT.

Transform Pito:/jacumos-bionic-5:30550/model/methods/detect

Protobuf Metfbei_ detect (input: Image, output: RegionDetectionSet) #inload Protobuf Source

Protobuf Message: | Download Encoded inpur |~ Dawalesd Encoded Response

Protobuf Payload Input: | chooss Fic | No e chosen (triggers upload + post on selection)

PROTIP: ADD THE QUERY PARAMETER URLIMAGE TO AUTO-LOAD THIS URL.

_images/security-verification-arch.png
=, PortalFE

Admin l

‘admin scan points Portal-BE

Common Data Service Client

‘admin workfiow gates

S-V Service

iscan |
iScanController;

‘scan points (lcense-scan, vuinerabilty-scan)

worklow gates (icense-verty, vuinerabiliy-verity

solution artitacts
createlupdate scan result
update solutionRevision with scan result status

| —

]

CMS API

ScanTool
Wrapper

gallery/acumoscmsisolution!
assetsisolutiondocsisolution!

»{contentidocuments/acumoscms/salution/solution-description/

Nexus Client

ScanResultController

download artifacts
upload scanresuls json

(optional)
L/ Externallicense /
vulnerability scan
tooll

[This depends on the
lexternai tool having
| WebHooks functionality

_images/scantool.png
<<Java Interface>>
O ScanTool
g cumos secuyvertcaton scantoot

© retrieveScanResuH):Object

~ava e
® ScanToolFactory
g acumos secpvertcaion seanod

& scanToolFactory()

< ieraces> < ierace>>
© LicenseScanTool © VulerabiityScanTool

[— o scno.seceeyvetcason scamont

© scanForLicense(:Obict © scanForVunerabity(Obiect

Fd

~Tava e
®NexusiQWrapper

g acumos secutyverficaton.scantool

& NexusIQWrapper()

© scanForVuerabiity(:Object

© scanForLcense(:Object

' submiComponentForEvalation) okl
© retreveScanResul(:Object

_images/signIn_screen.png
signin
Already have an Account ?

Username or Email Id *

o
2

Password *

[=]

Remember Me

Forgot Password?

New to Acumos?
Sign up now to avall all our services

or

By dicking any of the button above you are
‘agree with our Terms and Conditions and
Privacy Policy.

signup

_images/security-verification-arch1.png
Portal-FE

Portal-BE

[

Ul screens

5 admin can pons
admin worktow gates

LM library

SV library

Allow workfiow

user workflows

per verifcation
site-config, and
scan status

>

Isite/confi

Isolution
Irevision

Common-Data-Svc

g

3

APIs

Icatalog

§

Invoke /scan API per

verifation worklow site-config

Save scan resulfartifacts
afid CDS atributes

Iscan
Pl

result |
API
¥

Post Scan Job resul,

Retrieve grfact and

Gocumen eferences Jarttacts
‘and documents

Scan job

with taskid

Start Scan Job,

vulnerabilty
scan

license
scan

S-V Sc

with taskid

anning Service

Jenkins

_images/signUp_Verification_expired.png
QACUmOSAI HOME MARKETPLACE MODELER RESOURCES DOCUMENTATION Q SGNIN | siGNuPNow (D

Refresh Token

_images/signUpNow_link.png
MARKETPLACE MODELER R MENTATION

R rcumosAl

Explore the Acumos Marketplace

it's easy to discover, download & deploy

Uer_Review_Prediction_Via_CLSTM-Attention Car_Price_Predictor cancer_dlassify

Discover Acumos

Team Up!

O,

Share, experiment & collaborate in an
‘open source ecosystem of people,
solutions and ideas.

Onboard with your Preferred Toolkit

With a focus on interoperabilty,
‘Acumos supports diverse Al toolkits.
Onboarding toos are available for
TensorFlow, ScikitLearn, RCloud, H20
and generic ava

AdBlock Banned

adblocker_whitelist_prediction_in_online_news...

Marketplace

Acumos is the go-to sie for data-powered
decision making. With an intuitive easy-to-
use Marketplace and Design Studio,
Acumos brings Al nto the mainstream.

Design Studio

Because Acumos converts models to
microservices, you can apply them to
different problems and data sources.

SDN & ONAP

Many Marketplace solutions originated
inthe ONAP SDN community and are
configured to be directly deployed to
SoC.

_images/signUp_screen.png
Sign up to continue

First Name * Last Name *

User Name *

Email ID*

or By signing up, you agree to our Terms and

Password *
Conditions and Privacy Policy.

(o]

Your password must contain at least eight characters,
which should have at least one upper case and one lower
case letter, numbers and symbols like, 1% @ § * &.

Confirm Password *

Already have an Acumos ID? Sign In

_images/model-onboarding-docker-uri-select-license.png
ON-BOARDING BY COMMAND LINE ON-BOARDING BY WEB ON-BOARDING DOCKERIZED MODEL URI ON-BOARDING DOCKERIZE >

1R HOME
B MARKETPLACE
® ®
& v mooeLs
- Create Add Artifacts
CATALOGS Solution

| ON-BOARDING MODEL

Ij - ON-BOARD DOCKERIZED MODEL URI
DESIGN STUDIO

Instruction for dockerized model URI

Ss SITEADMIN on-boarding
= Model Name *
r% PUBLISH REQUEST Test123 On-board a dockerized model URI
Host * Port +
@\Aj QANDA
acumos-nexuso1.eastus.cloudapp.azure.com 18001
{@ WL LEARNING PATH
Image * Tag
Tese123_40d095e0-fbb7-429%.9137-859651388526 1

Add License Profile

QO upload @ selectLicense Profile OR
Company-B-Proprietary

Vendor-A-0SS

[

_images/model-onboarding-docker-uri-save.png
Company *

Company B

Suffix

All Rights Reserved

Contact

Name *

Company B Team Member

URL*

http://Company-B.com

Email *

support@Company-B.com

Addicional Information

http://Company-B.com/licenses/Company-B-Proprietary

_images/model-onboarding-docker-uri1.png
cumos Aames ~ @ B

1R HOME
ON-BOARD DOCKERIZED MODEL URI

{8 MaRKeTPLACE Instruction for dockerized model URI on-
boarding

& v MODELS Model Name *
[}
- On-board a dockerized model URI

CATALOGS

Host * Port *

ON-BOARDING MODEL

Image * Tag
Ij DESIGN STUDIO 5™

Sy SITEADMIN

3 Browse
w PUBLISH REQUEST

B aanpa Add License Profile

{@ WL LEARNING PATH

_images/model-onboarding-docker-uri-upload.png
1 HOME

MARKETPLACE ON-BOARD DOCKERIZED MODEL URI

a § .
& wywooeis Instruction for dockerized model URI
- on-boarding

Model Name *
& catatocs Test123 On-board a dockerized model URI
5] ON-BOARDING MODEL Host * port*

acumos-nexus01.eastus.cloudapp.azure.com B 18001

lj DESIGN STUDIO T4

Image * Tag

SEEADRIRY Tese123_40d095e0-fbb7-429f-9131.889681388826 Foa

PUBLISH REQUEST
Add License Profile

@® upload O selectLicense Profile ~ OR

QAND A

¥ b

ML LEARNING PATH

®

Drag & Drop your file here!

license json Browse | [CECS

license json 1KB

On-Board Model Upload New

_images/model-onboarding-save.png
Company *

Company B

Suffix

All Rights Reserved

Contact

Name *

Company B Team Member

URL*

http://Company-B.com

Email *

support@Company-B.com

Addicional Information

http://Company-B.com/licenses/Company-B-Proprietary

_images/model-onboarding-modify.png
Acumos License Profile Editor

License Keyword/ldentifier *

Company-B-Proprietary

License Name *

Company B Proprietary License

Introduction

Software/Arifact Type

Machine Learning Model

Company Name.

Company B

Copyright

Year®

2019

Company *

Company B

_images/model-onboarding-create.png
Acum Profie Editor

e Keymorahsesier

_images/model-detail.png
T fgetharirpcacatlog/fciutonuuin)

otaraton Berer aetvarplaceCatalogDesasaltontuo)

— | - |

erjava

ot

on Market Place. Validate & Solation ks

S and desay
on e o
Angulars Ul ®

ModelDetsil age
© Determine fihe el s

IWtTokenManager java

— owned by the ser and show
ode Detai P Provides it options onthe Model et
User Option o downlszd e Mosel page vty Ton

on'ocalsystem
e Cacneand svaid

& redis

Acumos Portal Backend microService

Returm the Detsléd

Acumos Portal Front End _ Common Data Layer

_images/model-onboarding-docker-uri-license.png
ON-BOARDING BY COMMAND LINE ~ ON-BOARDING BYWEE ON-BOARDING DOCKERIZED MODEL URI ON-BOARDING DOCKERIZED MODEL

£ vowe
8 MarkeTpLACE

(o] f®
& wmyMoDELS
—~ Create Add Artfacts
CTGEsS Solution

5] ON-BOARDING MODEL

ON-BOARD DOCKERIZED MODEL URI
@ oesionsrupio
Instruction for dockerized model URI on-

- boarding
S, SITEADMIN Model Name +

< Test123 On-board a dockerized model URI
r% PUBLISH REQUEST
@ Host = Port+
QRNDA acumos-nexuso1.eastus.cloudapp.azure.com 18001
B mLLeARNING PATH [e
Tese123_40009520-fbb7-4297913 880651388826 1

B ~dd License profile

@ wioss O serieemseretic on

Drag & Drop your file here!

Upload License Browse ploa

d Mo

_images/model-onboarding-docker-uri-create.png
Acum Profie Editor

e Keymorahsesier

_images/model-onboarding-docker-uri-modify.png
Acumos License Profile Editor

License Keyword/ldentifier *

Company-B-Proprietary

License Name *

Company B Proprietary License

Introduction

Software/Arifact Type

Machine Learning Model

Company Name.

Company B

Copyright

Year®

2019

Company *

Company B

_images/marketplace_mainViewLoggedIn.png
Q PR mien - @ B
£ vowe Marketplace i casiogs

e |(7) (10) (1) (12) (1)
e ®
& we
pp— ®©

%) ON-BOARDING MODEL

testing TestIsT TestIST

Togs ®

2, seaomn

32 pususu nequest

-
o

o
-

A8CD cawa A8CD -

(6) s 10~ ©) B e

_images/microsoft.png

_images/marketplace_mainViewNotLoggedIn.png
& Acumos

Marketplace

Home.

BROWSE BY Show All

Filter By Category =

Classification
Data Sources
Data Transformer

Prediction

Tags Y

afe video anaytics locattest
testng abcd testnewtag
festpubTag trp testG16
fest345 Test adsdsd festcom

newtestiag vin testtag

ON-BOARDING MODEL

Showing - e

Customer_Segmentation.
wad | 0910472015 | New

@

videoAnalytics
new | 071302019 | New

@

Ho @178 32

X_Men_WebCrosssellAna...

vinees | 0811912019 | New

@

WebCrosssellAnalytics_0..
o |07

@

New

50 @10 31

DOCUMENTATION

VT_07292019_3_WebCro.

VT_0729_WebCrosssellA.
| o7

@

New

50 @13 31

Q SGNIN |

Most Recent v/

sianuPNOW (D)

_images/model-description.png
\cumos

°

HoME

MARKETPLACE

&

MY MODELS

=

CATALOGS

‘ON-BOARDING MODEL

& esion sTupio =
S, st ADMIN

([;'5 PUBLISH REQUEST
B qanoa

B wLeamin paT

MANAGEMENT OPTIONS

On- Boarding
Complated on 03/15/2015

Share with Team

Manage Publisher/Authors

Publish to Marketplace

Export / Deploy to Cloud

View Downloads

Reply to Comments

Delete Model

Publish to Marketplace

(@ You cannot pubish the model without enteing the author name. iease add author name inthe “Manage Publisher/Authors* page

to publish it
Select Catalog
2123 (Restricted) v

Request Apy

STEPS TO SUBMIT PUBLICATION (1/6 COMPLETED) Preview Model

@ Mol Name | compiessncsrsimis

© Mot escripion |

Model Descri

BIUS & HH X, X W Nomal 8
Nomal & A j SansSerl L *@8
[} Total Character : 0 More Than 500 Character Will Give You Five Star Rating.

Cancel

S

_images/mlwb.png
IF portal-be response

REDIRECT TO PORTAI

Per User

Imiwbinotebook-catalog-webcomponent’*

Imiwb-project-catalog-webcomponent*
[-Project-catalog-webcomponent” |

Imivfe-pipefine-cetaiog-webcomponents> {IPECE CEE08

Imiwb-notebook-webcomponent/* Notebook
WebComponent

Imiwb-project-webcomponent/*

| —imbwh-pipetine-wencomponentrs 5|

Imiwb-dashboard-webcomponent/*

wserr [supyeriun T ey
Browy User
A
(create via kBS API)
thubr Jupyertiun ¢ AP
Toa) @

Notebook Catalog
WebComponent

Project Catalog
WebComponent

Pipeline Catalog

CouchDB

Predictor Service

o[colco

Model Service

Naehook Servie gy

Project

WS
|

Pipeline
WebComponent

Proect Senvce gy

Pipeline Senvice ©

——>| Browser

User

@ Project Sevice Client
@ Pipeline Service Client
@ Notebook Service Client
© s seneecion

' Preictor Senvie Clent

| MuwB Dashboara -
Imiwi-home-webcomponent LB Home
" portal || Portal ; tp:inifregstry-senvicelnif-registy
FE BE i authuser: admin
hitpnif-servicd- SUSERInif-api
hip:iportal-be-serviceloauth/loginiusername! authuself SUSER |
Callout fo every request o NI, et 200 OK i user (creste via kes APY)
is authentcated (conver ther (1) Authorzaton header, ;
NOT 200 OK, or (2) Caoiceto athuser header,o etum 401 i neither 2 Per User
can b valdoted) Lz
ngin HTTPS
ingress > Apache > NI
——>] controter IF PORTAL RETURNS 200 0K —
htp:inif-service-SUSERn ey
authuser: SUSER wrTes
User NIFI Pod Glient Cert
CN=admin
IF PORTAL RETURNS 200 0K T
htpiinif-registry-senvcelnifregistry
authuser: admin | arres | we
—— Registyy
Glient Cert
Iy CN=admin
NIFi Registy Pod
Pos are fonted by senie proxy E
[componen] | component

client

Service
(proxy)

Deployment
(pod)

_images/loadingKibana.jpg
©

/)

Loading

e Qs

<ibana

6+ a0

_images/manage-catalogs-overview.png
Catalogs -

Home
AddNew Catalog
& wvmooes
show[10. v Comogs Fiker
@ camioss
caTALOG NAVE + PUBLISHER NAVE seirpus Access Tvee TOTAL MODELS cReATED DATE Action
ON-BOARDING MODEL
e heumosder N rusic o asroaz020 ,
& oxsnsmon — N ,
S SITEADMIN
& smeso ane Aeumosder N rusic o oermaons .
3 pusussea ssco heumos ves rusic = osrsaons .
@ oaoa aberne Aeumosder N rusic w onnrzons PRE
B wicamm s scumosder Acumos 1503232100 ves Resricied 2 osaszons . %
Aeumos 1503232100 ves rusic n osanzons ,
Acumos Fea fromist heumosisT N rusic o osnzons ,
artenerainmentyideos ves rusic 2 aazons ,
AUTOMATION Testing 15T Acumos Clio 1908201700 No Fusic o Wi ,

Snouing 110 1051 Catsogs Bl o s]le [ne]

_images/marketplace_filtering_by_catalogs.png
{2 HOME Marketplace All Catalogs v Select Favorite Catalogs
Home /
8 MARKETPLACE
BROWSE BY showall owing
.
@ MYMODELS
ON-BOARDING MODEL .
Filter By Categon = R
y Category AR
& oEsiGN sTUDIO ™ Catalog A Catalog B
O Classification x
Crossell ingest_video_dat

P — N Carsen - Cars

_images/manage-mymodel.png
Acumos TechM ~ @D B

£ HoME Il customer_Segmentation | | verson-1 v Deploy To Cloud

Version 1| 0 Downloaded

Home / My Model / Customer_Segmentation - (Sautin :

@ eyl ©

9 markereLACE

ceson 031512015 | [EE——S—— STATUS: UNPUBLISHED B0 | Write Comment

| &) eirzze

CATALOGS @ pescription INTRODUCTION

5] ON-BOARDING MODEL
B ticense

= oesion sTUDIO®™
& signature

S, siTeAoMIN
[pocuments

r[’lﬂ PUBLISH REQUEST

% qanoa

£B) M eAminG PATH

4D Model Artifacts

(@ Author/Publisher Details

Tags ®

RATE: Customer_Segmentation

ashwini12345 5star 0
B0 @14 34 4ster o

3star o
X Men WebCrosssellA... 0 ratings and reviews

2star o
B0 ©54 30

1 star o
VT 07292019 3 WebCr...
H0©2% 31

_images/models_onboardingJourney.png
onboard my model

N

ose web publishing

journey #1: on-board

MODELER user journey:
modeler wishes to

onboard
Model C

follow instructions & add
'needed information to launch
the on-boarding process

E publishedto [published to | deleted
: local/company | public

@ vt v e

@ roue

marketplace

& wvwoonis
local/company

£ onsoaroG Mook

g B marxeTpLACE

& orscnsron
select on-

board a
model B @m0

marketplace
public

_images/models_myModelsPage.png
Acumos

HOME

B 9

MARKETPLACE

MY MODELS @

CATALOGS

&

ON-BOARDING MODEL

= oesien sTupIO *A
Sy SITEADMIN

% PUBLISH REQUEST
B oanpa

{@ ML LEARNING PATH

My Models

Home.

BROWSE BY

Data Transformer

Pred

Tags

MY UNPUBLISHED MODELS

Customer_S:

MY PUBLISHED MODELS

No results found

MY DELETED MODELS

No results found

Belagam ~

@ SortBy-All v “

_images/models_onboardingWebNotice.png
o

(D Onboarding process has started and i il ake 30 seconds t rflec the chang in status

_images/models_onboardingWeb.png
1 HOME

MARKETPLACE

¢4 MY MODELS

CATALOGS

ON-BOARDING MODEL

gl

DESIGN STUDIO %™

SITE ADMIN

PUBLISH REQUEST

7] QAND A

¥ b

%] ML LEARNING PATH

ON-BOARDING BY COMMAND LINE

Create Add Artifacts
Solution

ON-BOARD YOUR MODEL

Upload Model Bundle”™

ON-BOARDING BY WEB

{1

Create TOSCA

Drag & Drop your file here!

Upload File

Select Deployment Environment

X86 v

[] Add License Profile

Create micro-service during on-boarding

ON-BOARDING DOCKERIZED MODEL URI

Dockerize

Browse

@

Add Docker
Image

Instructions for preparing a model

bundle

Create a R model bundle
Create a Python model bundle

Create a C++ model bundle

Create aJava (Generic, H20 or Spark)

model bundle

On-board an ONNX or PFA model

ON-BOARDING DOCKERIZEL >

_images/models_publishLocalJourney.png
journey #3: publish a model to LOCAL

MODELER user journey:
Model B is owned by Modeler

Itis in the private/unpublished models section of the MyModels page
He/she wished to publish it to his Local/Company Marketplace.

my models & solutions

privat publishedto | published to | deleted
unpublished local/company | public

manage my model

share my model

delete deploy

find model published to public

to local

K click on it
select myModels.” to reach Mariage page

model detait

age for B

@ roue

B manxereiace
marketplace

& wrwooas
local/company

model is published
& myModels page
g qanon s updated

& orscnsron

marketplace
public

publish/validate
back end process

choose publish to LOCAL
add needed info

Submit to kick off validation &
B publication process

publish to LOGAL form ‘

_images/models_onboardingWebSuccess.png
HOME

MARKETPLACE

MY MODELS

CATALOGS

‘ON-BOARDING MODEL

DESIGN STUDIO %™
2, sesoun
2 pususnrequest

QaNDA

B wLeamin paT

On-Boarding Model

Home / On-Bosring Mods!

For CLi on-boarding, the two API URLS are:
Push URL: httpi/cognita-devi-vmo1-core.castus.cloudapp.azure.com:8090/onboarding-app/v2/push
Auth URL: httpi/cognita-devi-vmo1-core.castus.cloudapp.azure.com:8090/onboarding-app/v2/auth

To know more about on-boarding, please have a look at : hitps://docs.acumos.org/en/latest/submodules/portal-marketplace/docs/user-guides/portal-user/portal/index hem

ON-BOARDING BY COMMAND LINE

ON-BOARDING BYWEB ON-BOARDING DOCKERIZED MODEL URI

ON-BOARDING DOCKERIZED MODEL

Create Add Artifacts Create TOSCA
Solution [rre——
S T s
ON-BOARD YOUR MODEL
Upload Model Bundle Instructions for preparing a model bundie
Create a R model bundie
IR Create a Pynon model bundie

Upload File

Drag & Drop your file here!

Upload

Create a Java or H20 model bundie.

On-board an ONNX or PFA model

_images/models_shareWithTeamJourney.png
journey #2: share

MODELER user journey:
modeler wishes to
share Model B | & with
a team member, Sam.

my models & solutions

choose SHARE my Model.
Add user name of another person with an account on your
LOCAL nstance.

private/ publishedto | published to | deleted
unpublished local/company | public

manage my model

deploy

find model [oublishedtooublic || oublish tolocal
click on it
 fo reach Manage page

select myModels

model detait

pg for B
W Select Manage Sam

@ roue

B manxereiace
marketplace
local/company

& wrwooas

& orscnsron

g qanon publishedto | published to | deleted
local/company | public

marketplace
public

model B is now available in Sam's private/unpublished section of his MyModels page

_images/models_shareWithTeamDone.png
{2 HomE Manage Customer_Segmentation12345 | Version1 v | Authorand Publisher - @

Home / Manage My Model / CUStOMmer_Segmentation12345 - (Soluion ID350dt 2713 4442 Geds-47725 1523:0

MARKETPLACE
MANAGEMENT OPTIONS Share With Team
MY MODELS
@ On-Boarding sh del ithorship to that They will
xTaLocs e e aring a model gives co-authorship to that person. They wi
owner can.
@S] ON-BOARDING MODEL & Share with Team
e it | omorker This Model shared with below team member | (1 member)
lj DESIGN STUDIO T4 @ °
28 Manage Publisher/Authors chamae..
Sy SITEADMIN
r% s Publish to Marketplace Sharing "Customer_Segmentation12345" | Version-1 | (s
PUBLISH REQUEST
Link to Model
Export / Deploy to Cloud
% QANDA @» http://cognita-devi-vm01-core.eastt dapp.azure.com,
{@ WL LEARNING PATH L View Downloads Find a user to Share with *

Find a user to share with
3 Reply to Comments

_images/models_manageMyModel.png
8 arkerpLace

& wymopeLs

D cataoss

‘ON-BOARDING MODEL.

& oesion stupio

SITE ADMIN

3 sususnccuest

ML LEARNING PATH

®

Manage super_46

MANAGEMENT OPTIONS

£ on-soarding
B Compleced on 035302010

@ sharewithTeam

Manage Publisher/Authors

Publish to Marketplace

©

& Export / Deploy to Cloud

View Downloads

1€

on-Boarding

©

©

Client Library selected and downloaded | Compieed on 05202015

Introspection | Compecedon

02019

Model and artifacts uploaded | Compleced on G5202015

Tosca model generated | Compiced o0 0513072015

Model available in private catalog | Compieied on 05302015

onbosred

_images/models_manageAuthors.png
G wowe

B markeTpLACE
& v mopeLs

D caratocs

ONS0AROING MODEL
& oesionstuoio s
9, siTeADMIN

J’j PUBLISH REQUEST
g aanoa

ML LEARNING PATH

®

Manage super_46

Manage My Model / super

MANAGEMENT OPTIONS

A

©

®

1€

n-Boarding
Complced o 05302019

Share with Team

Manage publisher/Authors

Publish to Marketplace

Export/ Deploy to Cloud

View Downloads

Reply to Comments.

Delete Model

Manage Authors

PUBLISHER

AUTHORS

onbosrded

_images/models_manageMyModelBtn.png
@ Home

8 MaRKETPLACE

& mvmooes

@ cataLocs

@8] ON-BOARDING MODEL
& oesion sTupio ==
8, SiTEADMIN

o p—

@ amwon

B i teamng paTH

[l super 46| v

Home / My Model / super_46

@© croneery

.

@ oescrption

BB ticenses

= Sgares
13 oocuments
D woselartacs

(@ Author/publisher Details

INTRODUCTION

STATUS: UNPUBLISHED

_images/model_detail_home.jpg
= pesiaNsTUDIO ™
2, smEAoMN

3 pususequest
5 oavoa

£B mamGram

QA Qream- @ B

B8 customer_Segmentation12345 | Gtaos-a- v || verson-1 v DeployToCloud ¥ | A

Home / MyModel / Customer_Segmentation’2345 S TSR Version | Downionsed

Created oy e et o0 09157015 | [EERESSCTRTIO 0 | Write Commenss | © 45| £ 0

@ pesripion

R ticense prome

Togs 5

»

Other Data Sources Models
Snowal

7] xcospuzons wencron..

INTRODUCTION | CATEGORY:Data Sources Description Rating: -

Dummy Description Dummy Description Dummy Description Dummy Description Dummy Deserption Dummy Description

RATE: Customer_Segmentation12345

_images/models_deployToAzureDetails-CSVBroker.png
Deploying to Microsoft Az

Application d * Tenantd * Secretkey *

Subscription Key * Resource Group * Acr Name *

Storage Account *

Deploy.
BROKER

Databroker Type.
v v

Username Password

Host Port

Cancel Data Broker

_images/model_detail_preview.jpg
MODEL DETAILS

B Customer_Segmentati..

@) pescription
=) Descript INTRODUCTION

Dummy Description Dummy Description Dummy Description Dummy Description Dummy Descrption Dummy Description

_images/models_deployToLocal.png
Deploying to Local

Click here to dovinlaad Deployable Solution Package for Private Kubernetes Cloud

Download Solution Package

More Info at elp

Cancel

_images/models_deployToAzureDetails.jpg
Application 1 *

Subscrption Key *

Storage Account *

BROKER
Databroker Type
zp v
URL*

Position Mappings

mime._type

image._binary

Cancel

Tenantd *

Resource Group *

Secretkey *
Acr Name *
Deploy
Field Mappings
mime._type mime._type
image._binary image._binary
Data Broker

_images/models_downloadFromMPSteps.png

_images/models_downloadFromMPJourney.png
journey #6: deploy from LOCAL instance

USER user journey:
User finds Model

& learns about it. It is available from the LOCAL instance repo.
He/She wishes to use it by downloading or deploying to cloud

in the marketplace .

@ roue

explores marketplace

B waerruace

r—

[p—

marketplace
local/company

& orscnsron

marketplace
public

model detail kg for B

comment
rate

[

to reach

“*" model detail page

follow links to download or
deploy model

_images/model-onboarding-upload.png
ON-BOARD YOUR MODEL

Upload Model Bundle™ Instructions for preparing a model

bundle
& mvmopELs B Create a R model bundle
\; il Create a Python model bundle
CATALOGS Create a C++ model bundle
Create a Java (Generic, H20 or Spark)
Drag & Drop your file here!
| 5] ON-BOARDING MODEL © Py i Bl
- ‘On-board an ONNX or PFA model
Customer_Segmentation_latest zip Browse | Upload
gt DESIGN STUDIO T4 —
Customer_Segmentation Js.. 168 x

Sy SITEADMIN
[create micro-service during on-boarding

f% PUBLISH REQUEST

QAND A

Add License Profile

@® upload O selectLicense Profile ~ OR

{@ WL LEARNING PATH

Drag & Drop your file here!

license.json Browse | [ULEE)

license json 1KB

Maximum flle size: Tmb | Supported files type: json

On-Board Model || Upload New

_images/model-onboarding-select-license.png
1R HOME

B MARKETPLACE

.
¢34 MY MODELS

CATALOGS

ON-BOARDING MODEL

Ij DESIGN STUDIO 5™
Sy SITEADMIN

r@ PUBLISH REQUEST
@\Aj QANDA

{@ WL LEARNING PATH

ON-BOARD YOUR MODEL

Upload Model Bundle™

O upload @
Select

Company-B-Proprietary

Vendor-A-05

Instructions for preparing a model
bundle

Create a R model bundle
Create a Python model bundle
Create a C++ model bundle

Create aJava (Generic, H20 or Spark)
model bundle

On-board an ONNX or PFA model
Browse

o, - |

_images/model-onboarding-wo-microservice-success.png
4 HOME View On-Boarding History £

{8 warKeTPLACE ON-BOARDINGBYCOMMANDLINE ON-BOARDINGBY WEB ON-BOARDING DOCKERIZEDMODEL URI ON-BOARDING DOCKERIZED MODEL

& wwooeis

.ee .ee .ee
caTALOGS

@] ON-BOARDING MODEL Create Add prtifacts Creste TOSCA

Solution Model s on-boarded and
sl in Prvace
Caraiee

@ oesionsrupio

S, sTEADMIN
- ON-BOARD YOUR MODEL
[% PUBLISH REQUEST

Upload Model Bundie™ Instructions for preparing a model bundle
&3 oanpa
@ Create a R model bundle
v Create a Python model bundle
B mLLeARNING PATH LR

Create a C++ model bundle

Create a Java (Generic, H20 or Spark) model
bundle

Drag & Drop your file here!
On-board an ONNX or PFA model

Upload File | Browse | plo

[] Create micro-service during on-boarding

[[] Add License Profile

d Mo

_images/model-onboarding-with-license.png
MARKETPLACE

MY MODELS

CATALOGS

5] ON-BOARDING MODEL
lj DESIGN STUDIO €74
Sy SITEADMIN

f% PUBLISH REQUEST

B oanpa

{@ WL LEARNING PATH

ON-BOARD YOUR MODEL

Upload Model Bundle™ Instructions for preparing a model
bundle

Create a R model bundle
\; il Create a Python model bundle
Create a C++ model bundle

Create aJava (Generic, H20 or Spark)

Drag & Drop your file here! el e

On-board an ONNX or PFA model

Customer_Segmentation_latest zip Browse | Upload

Customer_Segmentation la... 16KE x

[create micro-service during on-boarding

Add License Profile

QO upload @ selectLicense Profile OR
Vendor 055 -

On-Board Model | IUSEEERNEN

_images/AccessedPeers.png
Manage Peer(s) Access

Home / Catalogs

Cat6 - Granted Peers Access Grant Peers Access Search by name

PEER NAME FQDN EMAIL ACTION
DEV cognita-dev1-vmo01-core.eastus.cloudapp.azure.com MM00542237@TechMahindra.com X
IsT cognita-ist-vmo01-core.eastus.cloudapp.azure.com MM00542237@TechMahindra.com X

_images/Account_setting_profile_settings.png
Account Settings

Home.

PROFILE SETTINGS TIFICAT

PROFILE

First Name * LastName =

John normal

Change Photo

Change Password

API Token

Api Token

5efd7893dss5!

48f2ac0da771c4bd4054 Refresh

CONTACT SETTINGS

Email *

Change Email

SOCIAL NETWORK KEYS

Github

Facebook

Google

Linkedin

CodePen

Deactivate Account Update Account
@R rcumos

_images/ActorInvokesScan.png
Acumos.
Platform

Scan
Contraller

Scanservice ‘ CDSRestClient

Modelrifact
Service

NexusArtiact
Client

cus APl

Actor

scanisouonidrevisoidworkoni)

HITPResponse(InvokeScanResponse)

‘Scan(solutionld, revisionld, workfowld)

1

getSiteConfg(*verfication”)

 convertToObject(configValue)

houldArtactsBeScanned
obtainAndArchiveModelArfactsAndDocs(solutionld, revisionld)

>

Sitelap-manualisteinaresicontentiassets/soliondocsisolutonf{soluon solutonla(revsionlaorg

(supportingDocName}}

iSolutionRevisionAriacts{solutiontd, revisionld)

Uit of MLPAfact

createSolutonValidation(MLPSolutionValidation)

getaritact

e

Note: modal artifacts are downloaded ffom Nexus, Supporting
|docs are downloaded from CMS, then both are added to a singie
|archive and placed in a directory for scanning that has been |scanrestits json fle.
|configured by a Portal Admin??? of is the file scanning directory
provided in a config ile. Does the v service have access to the

store file in nexus (no ciue how to do this)

oot

[This Is for the Athena release, which Would archive.
model artitacts and supporting docs, place in a shared
ldirectory so operator can scan. Operator would
manually start scan and manually update the

[The SV component would have to monitor the shared
ldirectory to determine i the scanresuls file has been
|server file system? updated; i 5o, read in file, tore results I database and|

_images/Account_setting_favorite_selected_catalog.png
PROFILE SETTINGS

Show| 100 ¥ Catalogs

FAVORITE

[m]
[m]
[m]
[m]
[m]

NOTIFICATION PREFERENCES SELECT FAVORITE CATALOGS
Filter
4 CATALOG NAME 4+ CREATED DATE 4 TOTAL MODELS
Tyt 2020-03-02709:07:022 6
[2020-03-02709:06:41Z 0
5 2020-03-02709:06:282 0
@ 2020-03-02709:06:16Z 0

2020-03-02T09:

:032 0

© 2020-03-02709:05:502 0

2] 2020-03-02T09:

1382

°

_images/Account_setting_notification.png
Home.

* How do you want to be no

Enter Email ID * Set Notification Priority

Select v

Cancel

_images/AcumosKongAPI.jpg
Kong API

Fostgres

Acumos Platiorm

_images/Acumos_logo_white.png
/g]g‘g.;
A A
@48 Acumos

_images/Acumos_logo_white1.png
/g]g‘g.;
A A
@48 Acumos

_images/ArchitectureDiagram2.png
i Socke mage e
oo SR ot
coermce pusn e st image retarance o 03 a0
£

docker push command
s refused

=
=
=8

_images/Architecture_Diagram.png
[Architecture diagram for R, Java, Python, ONNX and PFA models.]

Push model

APIONIX or
o New Onboarding Service (ow. sramssarn

+ Licones e + Licence file artifact if any
P Maria DB

(ONNX, PFA models)

—
“arttact ype
‘ A o okt ape
clent Toolldt ype
Push mode!
R, python, Jawa) -etc..

bundie API +
Licence file if Legecy

e Onboarding Service
\Web onboarding i ny. " + Licence file artifact if any
screate + create Microservice = yes(by default)
yestby defaut)

Hew Boress on-bosrding
— Flows
m— L2520y onbosraing o s

- Lisence fe ifany.

On Boarding Server

_images/Acumos_logo_white2.png
/g]g‘g.;
A A
@48 Acumos

_images/Architecture.png
Architecture

Generate
stubs

gRPC service
(classify)

run-microservice.cpp

Retrieve interface method

name and parameters.
stored in model.proto

cpp-client.py

gRPC server

Model loader

cpp-client.py integratesall
these materialsin model.zip

%eneratfs

Ny

model.zip

- 7

bundle.zip (metada.ison,
model.zip)

7

_images/Architecture_Diagram_docker_demeter.png
"W cnboaring.
e mod

Avchitecture diagram for dockerized model and dockerized model URI

‘Onboarding Service for Dockerized —
model UR Liknes f arfactif

sauson 10

evona

bty

Mara 08,

souon 54
vt
e

creats th dooker URI 37 sengit 10 COS 3nd paral

" s sl the srbtatcs to Nexts

IR new functionldties fo Demeter

Prony
Check if the image
feference existin CDS, if
docker push command
is refused

_images/ArrayBasedCollatorWithModels.jpg

_images/Architecture_Diagram_C_demeter.png
Architecture diagram for C++ models

Maria 0B

solution!D

“Artfacttype

~odel type

“Toolkttype
et

_images/Architecture_Diagram_demeter.png
TONNX, PFA models)

Vatid Token forsuecess
Vaidshon Faed forrure

ResponseBody -Userd for-
Cuerers oy

AriOmDcar | | o New Onbosrding
o, licence e srfact
+ Loan fle f e it

Legacy

+ Gcanc fle aritact

Solution D
ttacttype

ol type
Toolt type
Tee

_images/license-profile-editor-new.png
Create New License Profile

License Keyword/Identifier *

License Name *

Introduction

Software/Artifact Type

Company Name

Copyright

Year *

2019

_images/license-profile-editor-modify.png
Modify License Profile v.07

License Keyword/identifier *

Company-B-Proprietary
License Name *

Company B Proprietary License

Introduction

Software/Artifact Type

Machine Learning Model

Company Name

Company B

Copyright

Year *

2019

Company *

_images/license-profile-rtu-required.png
Right to Use Required
@ Yes aright to use is required
(O No right to use is required to use this software

_images/license-profile-rtu-required-full.png
Q AB Q) modelownert ~ @ B

1 HOME ° square ‘ Catalog- Company M... v Version-1 v Deploy To Cloud v

Home / My Model / square Version 1| 2 Downloaded

5 MARKETPLACE

(@) Crested by Dota scientist crstedon 102215 | 1 0 | Write Comments | © 11| & 2
. g

& v mopeLs Published on 1012372013
ON-BOARDING MODEL) e LICENSE PROFILE Change | | Update
Ij DESIGN STUDIO P57 {
License Profile "Sschema”: "https://raw.githubusercontent.com/acumos/license-manager /master/license-manager—

client-library/src/main/resources/schema/1.0.0/1icense-profile. json”,
"keyword": "Company-B-Proprietary”,
= signature "licenseName": "Company B Proprietary License”,
ML LEARNING PATH "intro": "Test Company B license for Model Square”,
“copyright": {
Documents "year”: 2019,
"company" :
"Suffix’

@\Aj QANDA

ompany B",
All Rights Reserved”

£ Model Artifacts .
"softwareType" :
"companyName"
Author/Publisher Details "contact”: {
"Company B Team Member",
http://Company-B.com",

Machine Learning Model”,
‘ompany B

"name”:
URL

"email": "support@Company-B.com"
Tags
5 .
Test "additionalInfo' "http://Company-B.com/licenses/Company-B-Proprietary"”,
"rtuRequired": true
)
Other Classification Models
RATE: square
Shaw all
padd
-,
Ph
fa 50 @10 210 0 5 star 0
Outof 5 stars
facecompleter 4 star 0
-,
ol 3 star o
S 50 @4 31 0 ratings and reviews
2 star o
iris
P 1 star o

S 50 @9 31

_images/kibana_visualization_2.jpg
Visualize / New

Select visualization type

Q search visualization types.

Basic Charts.

Area Heat Map Horizontal Bar Line

Data

BB

Data Table

Maps

Q

Coordinate Map.

(8

Gauge Goal

Region Map

42

Metric

Pie

Vertical Bar

_images/kibana_visualization_1.jpg
Looks like you don't have any visualizations. Let's create some!

+ Createav

nt 0-00f0 & >

0 cosp

_images/kibana_visualization_4.jpg
Visualize / New Visualization (unsaved)

Save

Share

Refresh € @lLastizhours >

200 AND extension:PHP)

[pearen

prrE——

Add a fiker 4

metrics
0 stcesze Cout

buckets
Select buckets type

8<5plit Sices

1Sl Chart

@ Count

_images/kibana_visualization_3.jpg
T . From a New Search, Select Index Or, From a Saved Search

® m' n | QFier.. | tof1 [Qaved searches Fier..] 000f0 Manage saved searches
© Timeio Name Namea

peTo logstash-* No matching saved searches found.

£ Mansgement

_images/kibana_visualization_6.jpg
Vistalize / Acumos User Login Pie (unsaved) Save Share Refresh < OlLasti2hours >
Save Visualization

P——

Save

‘metrics fa
B sicesie count
buckets

splcsiies ©
-] B

Aggregation

Terms ¢

Field

userAgent keyword -

Order By

metric: Count v

Order Size

Descendii

Custom Label

_images/kibana_visualization_5.jpg
Visualize / New Visualization (unsaved) Save Share Refresh € ®LlLast12hours 2

Search... (e.g. status:200 AND extension:PHP) Uses lucene query syntax “

Discover Add a filter 4+

Visualize | ' Y ® Count
Dashboard u =
Timelion
| Count
Dev Tools
Management ‘ ©
v
source.keyword v
Order By
metric: Count
Order Size
Descendin; v| s =
Custom Label
41 Advanced

Add sub-buckets

o Collapse

_images/license-controller-cds.png
license-controller License Controller

‘ ﬂ /lic/templ Gets apage of license profile templates, optionally sorted on fields. Returns empty if none are found.

‘ m /lic/templ Createsa new license profile template. Returns bad request on constraint violation etc.

‘ﬂ /lic/templ/{licenseId} Gets thelicense profile template for the specified ID. Returns nullif not found.

‘ /lic/templ/{licenseId} Updates an existing license profile template with the supplied data. Returns bad request on constraint violation etc.

‘m /lic/templ/{licenseId} Deletesthe license profile template with the specified ID. Returns bad request f the ID is not found.

_images/COandSPL.jpg
Data Transform Tools

< collator (1)
< Datamodel Ms (1)
< splitter (1)

_images/CSVDBScriptPort.jpg
Choose File | No

cancel

_images/AzureDetails.jpg
Deploying to Microsoft Azure

Application Id * TenantId * Secretkey *

‘Subscription Key * Resource Group * Acr Name *

Storage Account *

BROKER
URL*
Position Mappings Field Mappings
mime_type 1 mime_type mime_type

image_binary 2 image_binary image_binary

_images/Catalog_Flow.jpg
st .]
eapcign
e

= S S

S iy
e

sty

o

& redis

]

@

i g

@ [oo s

Fer e

@ redis

_images/Cimage0.png
Mkv.‘
2.026411]

2026411
2.026411
2.026411
2.026411
2.02E411

relationAge age gender

¥BgBYR

(AT

annualPayment faceamt finalexpense morigage life

50272
957.16

291
615.84
256.57
642.21

84340
137286
aas5
72006
74487
26839

ororor

0

coooo

wlolmlolmle

_images/Capture2.png
ModelName__OnnxModelOnboarding.py

- Python script create by onnxOnboading.py and used to push
the model bundle in Acumos

the model bundle
ready to be used by
the python

acumos_model_runner

ModelName Directory |

-Zipped model bundle
ready to be on-boarded
by Web in Acumos

~Folder that contains ll the necessary
materisls to create a client able to
interact with the modl runner and/or
with the Acumos micro-service

_images/Capture4.png
(ModelName_OnnxClientSkeleton.py I

— I
4

Needed Imports || Needed Methods

Preprocessing Postprocessing
Method Method

_images/Cimage3.png
importmodel_pb2aspb
port requests

portnumpyas np

from numpy import genfromtxt

restURL = "http://10.20.44.24:3330/classify"

deftest(ra,agap,f,ml):
df = pb.DataFrame()
df relationAge.append(ra)
df.age.append(z)
df.gender.append(g)
df.annualPayment.append(ap)
df faceamt.append(f)
df.mortgage.append(m)
df life.append()

#r = requests. post{restURL, df.)
r =requests.post{restURL, df SerializeToString())
of = pb.Predictions()

of ParseFromstringr.content)

return of.value[0]

#of.value(r)

return of.value[0]

#for Xinx:
print(fun(22,61,1,502,84340,0,0))
pen("Cross_Sellanalytics.csv")
np.genfromtxt(Cross_Sellanalytics.csv', delimiter="
forlineinreader:

Relage =float(line["relationAge"])

age = float(line["age"])

gender="float(line["gender'])

‘annualPayment=float(line["annualPayment'])
loat(line["faceamt”])
loatiine["mortgage"])
life =float(line["life"])

print(Relage," ",age," ",gender,” ", annualPayment," " faceamt, " *, mortgage,
test(Relage, age, gender, annualPayment,faceamt, mortgage, life))

" life,

_images/Cimage1.png
Predic

26839

502.72|
957.16|_137286)
615.34]
25657 74487
1221
642.21] aa11s|

relationAge |age |gender |anmualPayment |faceamt |finalexpense |mortgage |life | final

_images/Cimage2.png
Test/Invoke

Download Deploy Run Model Model to see

Login to Search for Model Model docker

Acumos Model docker image the model

artifacts image output

_images/kibana_dashboard_6.jpg
Dashboard / Editing New Dashboard (unsaved) Save Cancel Add Options Share < OLlast12hours >

Add Panels C

Visualization Saved Search

Q Visualizations Filter... 1-0f1 Add new Visualization

Namea

‘Acumos User Login Pie

Management

Search... (e Status:200 AND extension:PHP) Uses lucene query syntax n

Addafiker 4

{ Acumos User Login Pie

_images/kibana_dashboard_8.jpg
OName Description

. [Acumos User Login

®
-]
P2 Tools 1-1oft & >
&

_images/kibana_dashboard_7.jpg
Dashboard / Editing Acumos User Login (unsaved) Save Cancel Add Options Share € Olasti2hours >

Save dashboard 2

Title
AR08
Description

Dashboard description
[J'store time with dashboard @
Save

Search.. (e status:200 AND extension:PHP) Uses lucene query syntax “
Adda iker +

Acumos User Login Pie PP
© @techmdey

_images/SQLDBwithFile.jpg
ter script

Database Name *

Soncel m

_images/Signup_Flow.jpg

_images/Rating_descripton_ok.jpg
= pesieNsTUDIO ™

S, STEADMN
3 pusuisnequest
% qanoa

{5 weamGpam

@

v

On-Boarding Select Gatalog
Completadon 031192015
123 (Restricted)

&

Model Documentation

STEPS TO SUBMIT PUBLICATION (5/6 COMPLETED)

Export / Deploy to Coud
© 4 Mot Name | compees 5232013
View Downioads o
e
©) 4 Mo Descrption | compees 5232013
Delee Mode! Dummy Descrpion bummy O

Description Rating:

“The provided description less than 500 characters

improve your mode o

the Description you have in

Request Approval

Preview Model

_images/SQLDBScriptPort.jpg
Database Nam:

cancel

_images/SourceTableSelection.jpg
p— omnme war o moe s
| soumono -y v . v e e ‘u“" e
0 [i e
0 ouon ; :

0 [me :

0 s v

D | woamio v

O | oo .

[SRITN 0

_images/SplitterAfterDrag.jpg
Properties | Matching Models
Node Name:
Spittert

Note: Please select the Spiitter Scheme t0 34
alink between Spitter and other models

_images/PropertiesPanel.jpg
Source table and Target table are generated
and extract the feldsfrom uploaded data il

Mapping Table

_images/Rating_descripton_final.jpg
QA Qram- @ B

2
z
g
A

MARKETPLACE

MYMODELS

¢ B

@

CATALOGS

‘ON-BOARDING MODEL

= pesieNsTUDIO ™

S, STEADMN
3 pusuisnequest
5 qavoa

B MLLEARNING PATH

On-Boarding.
Completadon 031192015

‘Share with Team
Ak

&8 Manage Publshertauthors
PR —
) Export Deployto Coua

View Downioads

&

> Replyto Comments

) Delete Model

Select Catalog

123 (Restricted)

&

Model Documentation

STEPS TO SUBMIT PUBLICATION (5/6 COMPLETED)

R —

©) 4 Mo Descrption | compees 5232013

Dummy Descrip

umimy Des

fon Dummy

Description Rating:

e Deseription you have in Other Rev

R T —

Model Category: Dats Sources Toolkit Type: 120

Request Approval

mimy Des:

Preview Model

_images/ParameterBasedCOWithModels.jpg
Mascning Models

_images/ParameterBasedSPLWithModel.jpg
@ oesi®

_images/CollatorAfterDrag.jpg
Properties |
Node Name:

Collatort

Note: Please select the Collator Scheme to add
3 link between Collator and other models

olator Scheme Selecror |RCHNSRENS

_images/CollatorMappingDetailsError.jpg

_images/Class_diagram_cpp_client.png
Class Diagram for cpp-client.py

object

PathCompleter

complete_path()

ModelPacker

proto_file:string
data_dir:string
lib_dir: string
executable: string

model_name: string

read_paths()
create_model_zip()
create_meta()
create_bundle_zip()

_images/Class_diagramm_run_microservice.png
Class Diagram for run-microservice.cpp

gRPC library

generated by protoc

written by modeler

_images/Commandes.png
buel6474@yd-CND5233LRS: ~/Acumos/onnx/onboardonnxModel - o ox

Fichier Edition Affichage Rechercher Terminal Aide
buel6474@yd-CND5233LR9: ~/Acunos /onnx/onboardonnxModel$. /onnxOnboarding.py OnnxModels/bvlcGoogleNet_Model.onnx -f InputData/cat.jpg
Trying to dump model in dumpedModel directory
Trying to dump OnnxModels/bvicGoogleNet Model model in dumpedvodel directory
Creation of model onnx directory : bvlcGoogleNet_Model
Running " python bvlcGoogleNet_Model/bvlcGoogleNet_Model OnnxModelonBoarding.py
Dumping onnx model in dumpedModel directory
Creation of onnx client directory (only with Dump session): bvlcGoogleNet_Model/bvlcGoogleNet_Model_OnnxClient
Creation of onnx client directory (only with Dump session): bvlcGoogleNet_Model/bvlcGoogleNet Model OnnxClient/input :
Creation of onnx client directory (only with Dump session): bvlcGoogleNet_Model/bvlcGoogleNet_Model OnnxClient/output
Copy protbuf model from bvlcGoogleNet_Model/dumpedModel/bvicGoogleNet_Model/ to bvlcGoogleNet_Model/bvlcGoogleNet_Model OnnxClient
Running protoc ./bvlcGoogleNet_Model/bvlcGoogleNet_Model OnnxClient/bvicGoogleNet Model.proto --python_out=
Copy Onnx Model file " OnnxModels/bvlcGoogleNet_Model.onnx " in " bvlcGoogleNet_Model/bvlcGoogleNet_Model OnnxClient " Onnx Client directory
Copy data input file InputData/cat.jpg to Client directory : bvlcGoogleNet_Model/bvlcGoogleNet_Model _OnnxClient/input
Creation of the onnx client skeleton file with appropriate features in bvlcGoogleNet_Model/bvicGoogleNet_Model OnnxClient directory
buel6474@yd-CND5233LR9: ~/Acunos /onnx/onboardonnxModel$. /onnxOnboarding.py OnnxModels/emotion_ferplus_model.onnx -f InputData/joker.jpg

~—% . o \/ = i v O N\ /

buel6474@yd-CND5233LRS: ~/Acumos/onnx/onboardonnxModel - o ox

Fichier Edition Affichage Rechercher Terminal Aide
buel6474@yd-CND5233LR9:: ~/Acunos /onnx/onboardonnxModel$ acumos_model_runner bvlcGoogleNet_Model/dumpedModel/bvicGoogleNet_Model/
[2020-16-19 1. 34 +0200] [32351] [INFO] Starting gunicorn 20.0.4

[2020-10-19 1. 34 +0200] [32351] [INFO] Listening at: http://0.6.0.0:3330 (32351)

[2020-10-19 1. 34 +0200] [32351] [INFO] Using worker: sync

[2020-16-19 1. 34 +0200] [32362] [INFO] Booting worker with pid: 32362
*** Compute ONNX Runtime output prediction ***

*** Compute ONNX Runtime output prediction ***

*** Compute ONNX Runtime output prediction ***

*** Compute ONNX Runtime output prediction ***

*** Compute ONNX Runtime output prediction ***

buel6474@yd-CND5233LRS: ~/Acumos/onnx/onboardonnxModel/bvicGoogleNet_Model/bvicGoogleNet_Model_OnnxClient - o ®

Fichier Edition Affichage Rechercher Terminal Aide

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardonnxModel/bvlcGoogleNet_Model/bvicGoogleNet_Model_OnnxClient$ Ls

bvlcGoogleNet_Model.onnx bvlcGoogleNet_Model_OnnxClientskeleton.py bvlcGoogleNet_Model.proto input __pycache__

bvlcGoogleNet_Model_OnnxClient.py bvlcGoogleNet_Model pb2.py imagenet1006_clsidx_to_labels.py output

buel6474@yd-CND5233LR9: ~/Acunos /onnx/onboardonnxiodel/bvlcGoogleNet_Model/bvlcGoogleNet_Model OnnxClient$ python bvlcGoogleNet_Model onnxClient.py -f input/cara.jpgll

_images/CopyBasedSPLwithModels.jpg

_images/CollatorMappingDetailsValid.jpg

_images/CollatorSelectionSchema.jpg
Collator Selection

Select the Collator Scheme: *
@ Array-Based Collation
O Parameter-Based Collation

Soredl m

_images/DBMappingTable.jpg

_images/DataBrokerScriptPort.jpg

_images/DesignStudioUserInterface.png
HOME

D ®

MARKETPLACE

MY MODELS

ON-BOARDING MODEL

o B

A DEsiGN sTUDIO

Sy SITE ADMIN

B qanpa

Acu-Compose =7

Home 1 Design Studio | A

Marketplace

IshSol
Solutions | Models
W Classification @
W Prediction
8 Regression
& Other

Data Transform Tools @

< face_privacy_filter_detect(1)

Q

Data Sources @

< AC_R_Model_13032018(1)
< Classifier_1303(1)

< threatanalytics16-03(1)

< VmPredictor(1)

©New

@

>6—@
a Classifier_13031

0

Probe:

© ® ®

O\ clear

* Download

Properties MalchingMndel@

>

My Solutions. ZT ;

Akashsol1 (1)

s

Ishsol (2)

b

samplesol1 (1)

_images/Dimage0.png
[Subscriber_|Region TENURE_Days 14_ul_throughput 14_dI_throughput

10003277
10057763
12799850
13681672
13884442
14034345
15101936
15236133
15338568

2

ek ene e

4896
4896
4595
4501
aa84
4812
4807
4807
4807

43041
2273753
31541012
19879520
13029479
2929802
865
1565795
11281789

186002
150072609
310484910
144279919
21743080
20477115
21305
21666403
29367934

_images/DesignArchitecture.png
odel Artifa
Store (Hexus)

A Y

i
H

Client tibrary
Model Upload Workflow

odel Artifact]
Store (Hexus)

Docker Image|
Store (Hexus)

Microservice
Generator
Server

Build
request

Microservice Generation Workflow

_images/DesignArchitecture1.png
odel Artifa
Store (Hexus)

A Y

i
H

Client tibrary
Model Upload Workflow

odel Artifact]
Store (Hexus)

Docker Image|
Store (Hexus)

Microservice
Generator
Server

Build
request

Microservice Generation Workflow

_images/DockerFileStructure.png
v [&§ > microservice-generation [boot] [microservice-generation master 11]
> @ settings.
> [docs
> & logs
& model
v Gy
v Gy main
v Gy
v Gyog
v G acumos
v G microsenice
» 3 common
> 3 component
S Gy senvices
[MicroseniceApplicationjava
v G resources
v Gy templtes
+ 3 dese_python
s Gy h2o
S Gy javasrgus
> Gy javaGeneric
G python
. Dockerfle
requirements xt
2 rumnerpy
s e

_images/DockerFileStructure1.png
¢ %5 > onboarding-app [boot] [on-boarding master 12]
v F sic/mainjava
> 3 org.acumos.onboarding
> 83 org.acumos.onboarding common.config
> 83 org.acumos.onboarding.common.exception
> 8 org.acumos.onboarding,common.models
> 83 org.acumos.onboarding.common.utils
> 3 org.acumos.onboarding,component. docker
> 3 org.acumos.onboarding.component. docker.cmd
> 83 org.acumos.onboardingcomponent docker.preparation
> 83 org.acumos.onboarding senvices
[org.acumos.onboardingservices.impl
>[I} CustomErrorControllerjava
>[I} HealthcheckControllerjava
>[I} OnboardingControllerjava
> [1) PortalRestClientimpljova
v (> src/main/resources
v > templates
> & h2o
>y jove_argus
> 3 javaGeneric
v G5 python
Dockerfie
requirements.txt
2 runnerpy
> Eor

_images/Dimage1.png
Test/Invoke

Download Deploy Run Model Model to see

Login to Search for Model Model docker

Acumos Model docker image the model

artifacts image output

_images/Dimage2.png
import model_pb2 as pb
import requests

import numpy as np

from sklearn datasets import load_iris
restURL = "http://10.20.44.24:3330/ classify"

def invoke_Cust_segment(re;
f= phDataFrame()
print(c)
f Region appencreg)
f TENURE_Days. append(zendays)
14 _ul_throughputappend(ul_throput)
f14_dl_throughputappend(dl_throput)
equests postirestURL df Serialize TosString)
of = phb Predictions()
of Parse FromString(r.content)
return of valuelo]

#_obj = open("Customers_Outpuz_V2.csv')
reader = csv DictReader(f_obj, delimi
forline in reader:
Region = flo;
TENURE_Days = float(linel
14_ul_throughp

prirc(Reion,” ", TENURE Day:

¥ hroughput
*jnvoke_Cust_segment{Region, TENURE_Days, 14_

14_dl_throughput))

_images/Eclipse_TOSCAModelGeneratorClient.jpg
12 Prject xplorer £ 5 Navigator

4 3 * TOSCAModelGeneratorClient [mster]
b {® src/main/java
> B8 stc/main/resources
b B srchtestfjava
> BB stcfesttesources
» i JRE System Library 1avsSE-1.8]
i Maven Dependencies
Sy
& taget
1) aggregator-proto.proto
5 alsrm-generstor-proto.proto
5 clssitie-proto.proto
] metadstajson
8] pomami
| predictor-proto.proto
B3 README.md
2] test-demosproto
TOSCAApplication_prod properties

a@

_images/DataBrokeronCanvas.jpg

_images/HighLevelFlow.png
High Level Flow

e . Model binary
Mode! Acumos Client
Libra
ry Metadata || Model Protobit
Definition

Acumos
Onboarding
Server

Microservice
Generation

_images/HighLevelFlow1.png
High level Flow (R, python and Java models)

Modeler Data
Scientist

Acumos client
Library

Modeler Data
Scientist

Acumos client
Library

Acumos
Onboarding
Server

Microservice
Generation

Acumos
Onboarding
Server

Microservice

Model bundle Generation

_images/ExistingPeerDialog.png
Grant Peers Access

Search by Name

PEER NAME FQDN

cmip mymail.somecollege.edu

_images/GenericDataBroker.jpg
Data Sources

< GenericDatabroker (1)

_images/HighLevelFlow2.png
High level FIow (g, python and Java models)

Todel fodel bundie

r Data

on.
board
ing

Acumos.
Dnboarding

rzed model URl or board
ing

_images/Login_Flow.jpg
sovenae gy

=5 l%wm o

e | e

- =

_images/HighLevelFlow1bis.png
High level FIoW (model interchange format)

Web
Modeler Data On-
Scientist IONNX or PFA Model board

ing

Acumos
Onboarding
Server

_images/HighLevelFlow1ter.png
High level Flow (pockerized model URI and Pre-Dockerized model)

Web
Modeler Data On-
Scientist ized model URI or board

ing

Acumos
Onboarding
Server

Pre-dockerized model

_images/Eclipse_ds-compositionengine.jpg
12 Prject Explorer 77

s < Local Filesystem
4 8 ds-compositionengine [master]

b B src/main/jova

b (® sre/main/resources

b B scftestljova

b (B sreftest/resources

» B Maven Dependencies

b B JRE System Library [JovaSE-13]

=y

b g st

b & target

) application properties

£ * pomaml
READMEmd

_images/Eclipse_gdmservice.jpg
12 Prject xplorer £ 5 Navigator

s < Local Filesystem
4 5 gdmsenvice [master]
b B src/main/jova
b (B sre/main/resources
b B scftestljova
o B JRE System Library JovaSE-13]
» B Maven Dependencies
b g st
b B target
5 pomaml
README.md

_images/Model_Detail.png
< C A Notsecure

= & Acumos
1R HOME

B MARKETPLACE

.
€8 My MODELS

CATALOGS

ON-BOARDING MODEL

Ij DESIGN STUDIO 5™

Sy SITEADMIN
rﬂ PUBLISH REQUEST

@\Aj QANDA

{@ WL LEARNING PATH

e new_test1234 | Cotslog-NDISTTest..v | Version-1.00 v

Home / My Model / ne:

H Created by test| C
& et

‘cognita-ist-ym01-core.eastus.cloudapp.azure.com/indexhtml#/marketSolutions?solutionld=6f458a1a-6351-41c6-96f8-33f337bag90cRrevisionld=88b1...

Description

BB License Profile
< signature

[P pocuments
£ Model Artifacts

Author/Publisher Details

Tags Y

.

INTRODUCTION | CATEGORY:Classification

test publish r

uest description

Description Rating:

_images/Model_Detail_Page_Flow.jpg
sl
iy

)

ey
e

_images/ModelArtifact.png

_images/ModelArtifact1.png

_images/PORTAL_Architecture_V_1.jpg
Acumos Portal
Verify Account Link V::i::.::;: Y

User Verify Status (Failed/Success)

Register T Verification
Email

Registration Create

(with Preferred tags) | Solution Revisia/'\{StEp I Upload User Documents
tatus

; s Common Publish Private Publish — company Publish Public Description/
User — Login — Onboarding ——> —_)] Y >
¢ g Microservice Marketplace MarketPlace Marketplace = Vexus o

Approver e Submit/ Submit/ Upload User
Withdraw Deny Withdra oeny, Documents

Aeerere _>—

> Notification <+——

User

Model
User < Sharing/Provenance/Rating _’@ : Deploy To Local and Kubernetes — Kubernetes Service

Browse Catalog — Search Model Deploy To Open Stack and Azure Cloud

 erMegmes TR ey cu User

Generate/Refresh ~ ApiToken

—_—
Admin _— = — AP| Token —
e Federation

_images/PORTAL_Architecture_V13_Portal_2.jpg
Sonatype
Nexus

‘ PrivatelLocallPublic Catalog ‘ ‘ Site Admin ‘
Home
— (Publ Model] [Solution Revision Service |
MoretPece DownloadiDelete Model Carousel Configuration
My Model (Auth Service) [Notification]
(Kubernetes Deployment) (View/Download Artifacts]

On Boarding Model Web Onboarding Validation and Security
API/JWT Token Service

Design Studio

(Deployment to Azure) (]

Site Admin [Deployment to Openstack] (Comments and Thread]
Publish Request User Registration Profile Service (Model Share]
(WorkFlow Managment] [Filter SearchiTag Services]

asa (Federation Service] (Build DCAE]

(Manage Authors) Publish Request]
Target Deployment Environments /\

B¥ Microsoft Azure n White box Kubernetes Service
kubernetes

openstack

_images/LowLevelDesign1.png
Low Level Design
[r—
Wodel Protobur
Detintion

Woder-
SolutionID.

arding

_images/MSArchDiagram.png
Public Software
Repositories

Model
@ - microservice
A - microservice log file
Model image 0

& generated
artifacts

ONAP Model (planned
for next release)

_images/LowLevelDesign.png
Low Level Design
[r—
Wodel Protobur
Detintion

Woder-
SolutionID.

arding

_images/bvlc.png
ImageMagick: tmpvjopOhxs.PNG — O X ImageMagick: tmpmw17lax_PNG - 0O x buel6474@yd-CND5233LR9: ~/Acumos/onnx/onboardonnxModel/bvicGoogleNet_Model/bvlc... — 0 &
Fichier Edition Affichage Rechercher Terminal Aide

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardonnxModel/bvlcGoogleNet_Model/bvlcGoogleN
et_Model_OnnxClient$ python bvlcGoogleNet_Model OnnxClient.py -f input/car4.jpg
*+% Call ONNX Runtime Prediction *+*

Results :

: sports car, sport car with 78.238 %

: racer, race car, racing car with 18.284 %
: car wheel with 1.763 %

: convertible with 1.295%

FTENET

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardonnxModel/bvlcGoogleNet_Model/bvicGoogleN
et_Model_OnnxClient$ python bvlcGoogleNet_Model OnnxClient.py -f input/BMa.jpeg
*+% Call ONNX Runtime Prediction *+*

ImageMagick: tmp3nn2u7wr.PNG — O X
\ } Results :
X' 1 : off-road motorbike, mountain bike, all-terrain bike, off-roader with 23.4

55 %
2 : sport motorbike, moped with 23.155 %
3 : alp with 22.89 %
4 : crash helmet with 16.813%

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardonnxModel/bvlcGoogleNet_Model/bvlcGoogleN
et_Model_OnnxClient$ python bvlcGoogleNet_Model OnnxClient.py -f input/espresso.jpeg
*+% Call ONNX Runtime Prediction *+*

Results :

: espresso with 73.956 %
: eggnog with 18.481 %

: cup with 2.152 %

: consomme with 1.759%

FTENET

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardonnxModel/bvlcGoogleNet_Model/bvlcGoogleN
et_Model_OnnxClient$ python bvlcGoogleNet_Model OnnxClient.py -f input/cat.jpg
*+% Call ONNX Runtime Prediction *+*

Results :

: tiger cat with 38.683 %

: tabby, tabby cat with 32.825 %
: Egyptian cat with 17.412 %

: lynx, catamount with 3.59%

FTENET

buel6474@yd-CND5233LR9 : ~/Acunos /onnx/onboardonnxModel/bvlcGoogleNet_Model/bvlcGoogleN
et_Model_OnnxClient$ python bvlcGoogleNet_Model OnnxClient.py -f input/persan3.jpg
*+% Call ONNX Runtime Prediction *+*

Results
: Persian cat with 98.206 %

: lynx, catamount with 0.316 %

: Angora, Angora rabbit with 0.15 %

: Pekinese, Pekingese, Peke with 0.141%

NN

buel6474@yd-CND5233LR9 : ~/Acumos/onnx/onboardonnxModel/bvlcGoogleNet_Model/bvicGoogleN
et_Model_onnxclients [l

_images/catalog_example.png

_images/catalog-flow.png
B —

uthorizatn. Beirer setarkepiaceCataiog)

— | - |

ssynchronss

AnguariS Ul arketplaceCatsogan: rkepiaceCatsogDataservid
Home page] erinva eja

fiot
@

st |

user Clecson
MarketPisce

Retumthe ot

valdate & Marteisce| getMareplacacassogl) Solutons fo Catalog
@ | i
Froces the reieveast Token

oect
ofSouionssnd dsplay

Anguiaris Ul @ onvrecaiog

iarket lace Catalog RS WS,
wilolow steps 410 12

WtTokenManager java CommonDataDBadapter ava

o e rand ‘

Refr Side for Model et age Revieve the Caalog Inforation

Ll ©) | from o serncc renem o

Codremnd i Cota el 2 vt b [—
& redis & redis w

Acumos Portal Front End Acumos Portal Backend microService _ Common Data Layer

_images/catalog_image_blur.png

_images/catalog_image.jpg
seashore, coast, J - cab, hack, taxi,
seacoast, sea-coast : N il - P taxicab

_images/cmn-data-svc-arch.png
Acumos
component

CDS client lib

Acumos
component

CDS client lib

CDS Server

Spring-Boot
Hibernate
Java

JDBC

_images/chrome.png

_images/company-z-new-license-profile-template.png
Q AB @ modelownert ~ @ B

A (o @ square | cvlos-rbichoats v | verson-1 Deploy To coud v

Home / My Model / square Version 1 | 2 Downloaded
5 MARKETPLACE

Created by Data Scientist | Created on 101222019 | B 0 | Write Comments | © 9| & 2
s

& wymopeLs Publshed on 1072972013

anage

@
ON-BOARDING MODEL LICENSE PROFILE Update

Description
g DESIGN STUDIO BETA O upload @ selectLicense Profile OR Close.

BB License Profile
Ty qanpa Company Z License v Modify

= signature

ML LEARNING PATH

Documents

£ Model Artifacts

Author/Publisher Details

Tags ® RATE: square
Test
0 5 star 0
Qutofs stars 4star 0
3 star 0
Other Classification Models 0 ratings and reviews
Show all 25star 0
padd
o 1 star o

i 50 ©10 310

. -

_images/comp-model-usage-1.gif
RO o s o ULl Ws he s thod et)|

4
°

L]

[

[——
oot s
et Pt s

e —

kibana

0

0

_images/azure_client_flowchart.jpg
Azure Deployment

MarketPlace Ul Get Blueprintjson

Azure Controller
(Composite solution Detail)

Data Base

Azure Authentication

/putDockerinfo /putBlueprint

Create Azure Registry

BluePrint
Container

Azure
Registry

Aaure Service Impl

Solution wm Notification [RAGRSEEAY]

Notification

Azure VM with VM Details

With Linux

and Docker Probe Container

_images/approve_request.png
Q BQ ramen - @ B

£ Houe Home
8 maRKeTPLACE

& wywmooeis

(3 cataLocs

ON-BOARDING MO

& oesicn sTupio =
S, e ADMIN

&'5 PUBLISH REQUEST
59 qanoa

B wLeamin paTh

Current Request (303 2

MODEL NAME

mos2689

4 VERSION

3
Revision ID: 63bdlc.

REQUESTER

CREATED DATE

Plese sc note (Requiraa)

=

CATALOG

ACCESS LEVEL

Public

REQUEST STATUS

Previous

Pending

ol : IE

COMMENTS

AcTION

_images/admin-user-add.png
Add New User

First Name *

User Name *

Password *

Send this password to the new user by
email

Cancel

Last Name *

Email <

Confirm Password *

Password must contain at least eight characters,
‘which should have at least one upper case and
one lower case letter, numbers and symbols like,
1#@s*a.

Role *

Select v

Add

_images/admin-subscriptions-view.png
View/Add Subscriptions for IST

Subscription List @ New Subscription Filter Q

SUBSCRIPTIONS ID CATALOG NAME CREATED ON FREQUENCY OF UPDATE ACTION

No Result Found

_images/admin-workflow-edit.png
Site Admin
Home / Site Admin

Dashboard Options

Configuring Workflows

Nonttoring

48 User Haragement

& sve contiation
<5 Federation

2 subscription Requests.

@ Workflow Confiouration

On-boarding Work flow of

Create Micro service
Onboarding | asdedon 112272018

Package

Dockerize

Create TOSCA

Add to Repository

Deactivate Workflow Assign Workflow.

_images/admin-workflow-assign.png
|

Search anythiog youneed Q.

Site Admin
Home / Sitesdmin

o T o tams v O

@ sy s st 0 g ot st ek n i vt 2y i e et oo e

Creote Microservice
obowrong | s 2218

Package
Cxbourong | scsedon 1272018
Cxtourong | soseacn 1 22/1e

Tosca
Cxbanrong | scseson 12N

da
xbourng | asedon 1S

g
e

Import Federated Model Work flow
@ EL e
(O J - p———
(O -+~ p—
O+ ——
(O~ p—

Desctivate Workow

Bl publishing to Local Work flow ST publishing To Public Work flow o
L et et | Mo tcomtion
proovssivercsil [t yan Y
Socurty Sam SocutySom
EEIER s © (B EER s ©
Ucence Chock cence Chck
froseireoyyop— } (@) Uoeneledk s ©
oo IO ISR)
Dexthate wordow e (5) MM .. ©

Sexctian ko]

_images/admin-workflow-step-delete.png
On-Boarding Work flow

o ar iewing dfal O Boaring workow which s manadator o onboaring the mode s the Acumo, Yo cn add and emve th Vallaton” seps n beow
rkton 5t you rgaaion et A you o retdo 103 und 6oy e K o ok e et 5 those ar Gl 1

]

reate Solution ' Package Other Add &

_images/admin-workflow-step-add.png
On-Boarding Work flow

o ar iewing dfal O Boaring workow which s manadator o onboaring the mode s the Acumo, Yo cn add and emve th Vallaton” seps n beow
rkton 5t you rgaaion et A you o retdo 103 und 6oy e K o ok e et 5 those ar Gl 1

]

reate Solution ' Package Other Add &

_images/aio-k8s-deployment.png
@)
(provides/prepares host) createlrecreate cluster, install Helm

s i o k) 3 o abernteschister
1) (optional — Prometheus
®) (optonal > setup kBs_stacksh —
Aamin)
(@ optona)—{ Sep_prregen (cretes)

‘specific named PV (optional),
and a set of varously-sized PVs

“Acumos
Gerit
Repos

~sopy clprsleny-

o usenecTou
system-integration clone (user)
alo_kes_deployersh

; v

| cptonar—»[oo caoyan

v

nginx, portal-be,
federation

o | T o o
i [acumos enven setup_ingress_contrallersh
| [ameenvs) _ngress
—ar | e Sep_newussh & logs PV
T s
I S Setup_nexus_repos.sh (@ll components)
normal (non-sudo) | | Selup_mariadb.sh
o L[cens X i
L= | Soup_acumosdb

Seup_cowehbsh > couchah &
Sop eSS

Jenkins_ (=)

selup_elksh

Federated
Platforms

cds
portalbe

e ook snge s |+ ->{_doserana &) o

selup_ingress.sh___|—(naing) onboarding

Setup_acumos. 4~——L msg
asce

sv-scanning
ks client

Selup_beats sh -

azureclient
ocker-proxy

setup_lum.sh | — lum [license-prof-edif
(e[ngnxorkong J«

™ ru-editor

Ahome
dasnboard
project

[sewp_mwbsh }———++————— >4 [notebook
pipeline
model
predicior
b sewpniish |4t 5[nitregsuyl
Setup_jupterhub.sh Jupyternub

platform users

v

_images/admin-workflows.png
'WORKFLOW CONFIGURATION

On-boarding Work flow

@

(OB EOSROSROSEO);

Create Micro service
Onboarding | added on 01/22/2015

Package
Onbosraing | aaded on 01/22/2018

Dockerize
Onboarding | added on 01/22/2015

Create TOSCA
Onboarding | added on 01/22/2015

Add to Repositry
Onosarding | sdded on 01/22/2016

Security Scan
Onboarcing | added on 01/22/2018

Deactivate Workflow

Import Federated Model Work Flow

©

© 6 0 0

Steo 01
Federation | added on 01/2212015

Step 02
Federation | added on 01/22/2018

Step 03
Federation | added on 01/22/2018

Step 04
Federation | added on 01/22/2018

Step 05
Federation | added on 01/22/2018

/s

Publishing to Local Work Flow

@ Model Documentation
Mandatory for Publishing Model

Security Scan
Onboarding | added on 0172212018

Onboarding | added on 0172212018

Text Check
Onboarding | added on 017222018

@
@ License Check
®

Deactivate Workflow

7 Publishing to Public Work Flow

@ Model Documentation
Mandatory for Publishing Model

° ® Security Scan

Onboarding | added on 01/22/2015

° @ License Check

Onboarding | added on 01/22/2015

Deactivate Workflow

_images/admin-subscription-add.png
View/Add Subscri ns for IST

Select Catalog

Select Catalog v Select Frequency of update Add To Subscription List

CATALOG NAME ACCESS TYPE DESCRIPTION

_images/admin-rturef-success.png
1 HOME

MARKETPLACE

¢34 MY MODELS
CATALOGS

ON-BOARDING MODEL

DESIGN STUDIO BE™4

Sy sITE ADMIN

r[ig PUBLISH REQUEST

B aanpa

{@ WL LEARNING PATH

Site Admin

Home / |

@ solutions and Users details are fetched successfully for the given RTU Referenceld: 1

DASHBOARD UPTION!
[@if) Monitoring

22 User Management
[E=) site content

&R site configuration

of® RTU configuration
@ Federation

&) Requests

g Configure Workflows

RTU CONFIGURATION

RTUID*

USER NAME &

Ken Kristiansen

Sovit Sourav

Acumos Admin

Vineet Tripathi

Associated Model Search by Model name
7 selectviodel v search Model
Filter
EMAIL
kk4281@att.com

test@test.com

mmantan@hotmail.com

vineet@techm.com

_images/admin-subscription-list.png
View/Add Subscriptions for IST

Subscription List @ New Subscription Filter Q
SUBSCRIPTIONS ID CATALOG NAME CREATED ON FREQUENCY OF UPDATE ACTION
D58 TestisT 05/22/2019 Hourly v @
D95 testing 0513072019 Daily v T

_images/description-counter.png
Team ~ @

@ Home MANAGEMENT OPTIONS Publish to Marketplace
MARKETPLACE e
e (© You cannot pubish he mode without entring the author name. iease add author name nth "Manage Pulisher/Authrs” page
. o publih it
& wywmooeis
SeiectCanaing
(5 caratos
2123 (Restictea) v
o
% onsosDNGMopeL | &5, Manage Publisher/Authors
& pesion stupio s < Publish to Marketplace
S, e aomin Mede Dacumen: Reaquest A
) Export/ Deploy to Cloud Mode! Doc a
1B pususn request —
L ViewDownloads 5
L STEPS TO SUBMIT PUBLICATION (2/6 COMPLETED) preven odel
B qanoa
e come @ 7 Model Name | Campess 1192519

B wLeamin paT

O Delete Model

© Mot Descipion |

BIUS »a HH X, % o Nomal ¢
Nomal & A j SansSert ¢ %
[} Total Character : 16 More Than 500 Character Will Give You Five Star Rating

B

_images/design-studio_swaggerUI.jpg
/dsce/artifact/fetchjsonTOSCA
Idsce/artifactfetchProtoBuf}SON
/dsce/solution/addLink
Idsce/solution/addNode
/dsce/solution/clearCompositeSolution
Idsce/solution/closeCompositeSolution
/dsce/solution/createNewCompositeSolution
/dsce/solution/deleteCompositeSolution
Idsce/solution/deletelink
Idsce/solution/deleteNode
Idsce/solution/getCompositeSolutions
/dsce/solution/getMatchingModels
Idsce/solution/getSolutions
Idsce/solution/modifylink
Idsce/solution/modifyNode
Idsce/solution/readCompositeSolutionGraph
Idsce/solution/saveCompositeSolution

/dsce/solution/validateCompositeSolution

(Gets TOSCA detais for specied slutonld and version
Getthe profobuf il detais for speciied solutionlD and version

add link Operation

2dd Node Operation

Clear Composite Slution Operation

Close Composite Solution Operation

reate new Composition Soluton

Delee the Compasitesaution

delete Ik Operation

delte Node Operation

Fetch thelst of active public Composte Slution fo thespecifed User Id
Fetch the ll the maching models for any speified model

Get Solutionsfor specified useld

‘Modily Link Operation

Moy Node Operation

Gets existing compose soluton detalsfor specified soutionld and version
savethe Composte Souton

Validate Composite Solution

_images/design-studio_gerritRepo.jpg
)i design-studio.
>
Ul covdstabroker
U docs
i ds-compositionengine
0 gdmsenvice
! sqldstsbroker
Ul testemodes
Ji TOSCAGeneratorClient

_images/doc-places.png
Wiki and Generated Docs

« wiki.acumos.org « Create and maintain
« Space for contributors to plan the documentation targeted to users
O [T PR and developers of Acumos
e « Establish and maintain a tool chain

that supports the integration of
* events -
documentation.

« presentations
 Discussion forums

* Builds documentation artifacts for
each release.

_images/downloadCompSol-1.png
Q Qm@ modelowner v (@

{2 HOME @ detect-pixelate2 | Version-1.0 v Deploy To Cloud

Home / My Model / detect-pixelate2 - (Solution ID:685¢163d-8d8b-487d-839a-dfd265¢9a27 '. Microsoft Azure d
MARKETPLACE
b
R @ Created by| Created on 05/15/2019 | Create Microservice Bo]\ (Jmckipace L3
ﬁ MY MODELS Published on 05/15/2019 " —
CATALOGS P
L INTRODUCTION | CATEGORY:Prediction &
Description Lx—] Deploy to local
6% ON-BOARDING MODEL
Licenses g
Ej DESIGN STUDIO BETA

=~ Signatures

NeoN DATE: Aotort nivalatad

_images/docs-structure.png
(] images

design.png

api-docs.rst
|| developer-guide.rst
|| indexrst

release-notes.rst

_images/downloadSimpleSol-1.png
™ face-privacy-filter-detect | Version-4 v Deploy To Cloud v

Home / My Model / face-privacy-filter-detect - (Solution ID:3796bed2-d497-4e24-8ba9-041ce7baaded

@ Created by| Created on 05/13/2019 | Manage My Model

Published on 05/13/2019

ER Microsoft Azure

@ o INTRODUCTION | CATEGORY:Classification
Description

Licenses

_images/downloadCompSol-2.png
Deploying to Local X

Click here to download Deployable Solution Package for Private Kubernetes Cloud

Download Solution Package

More Info at help

_images/downloadSimpleSol-2.png
Deploying to Local X

Click here to download Deployable Solution Package for Private Kubernetes Cloud

Download Solution Package

More Info at help

_images/createKibanaDashboard-2.png
Discover

Visualize

Dashboard

Timelion

Dev Tools

Management

Dashboard / Model Usage Dashboard

Full screen

Search... (e.g. status:200 AND extension:PHP)

Add a fiiter +

Metrics - /detect

/detect - Count

Metrics (detect & pixelate)

Share Clone

Metrics - /pixelate

Idetect-pixelate - Count

Jpixelate - Count

Edit

C Auto-refresh

< OlastiSminutes >

. |

_images/createKibanaDashboard-1.png
Add Panels *

Visualization Saved Search

Q search. Add new Visualization

Title
Metrics - /detect
Metrics - /pixelate

Metrics (detect & pixelate)

Rows per page: 10 v/

_images/decline_request.png
= @R Acumos Q BQ ramen - @ B

@ HomE Home / Pu

MARKETPLACE Current Request (308 actve/inactive requests)

& wywmooeis
= Show 10 v entries

& caratoss WoDEL NAWE *version REQUESTER & CREATED DATE & CATALOG ACCESSLEVEL + REQUESTSTATUS * COMMENTS + ACTION

‘ON-BOARDING MODEL B

e L

2, sesomn

2 pususnrequest

59 qanoa

B wLearnin paTH o :
Acumeszess s S
e5tcsbed-cane-474 Revision 0:63bde. 1" R P i ©0
Showing 11102001308 envies revess |[7 | B2][][5] - [3][em

_images/createKibanaIndex.png
‘ kibana

®

Discover

Visualize

Dashboard

Timelion

Dev Tools

Management

Management / Kibana

Index Patterns Saved Objects Advanced Settings

ol Create index pattern

No default index
pattern. You must Kibana uses index patterns to retrieve data from Elasticsearch indices for things

selectorcreateoneto [ike visualizations.
continue,

Step 1 of 2: Define index pattern
Index pattern
acumos-model-usage-logs

You can use a * as a wildcard in your index pattern.
You can't use spaces or the characters\, /,2, ", <,>, |

+ Success! Your index pattern matches 1 index.

acumos-model-usage-logs

Rows per page: 10 v/

%
indices

Include system

_images/delete-error-catalog.png
Error X

_images/delete-catalog.png
1 HOME

MARKETPLACE

¢4 MY MODELS

CATALOGS

ON-BOARDING MODEL

DESIGN STUDIO %™

@
=)

SITE ADMIN

PUBLISH REQUEST

¥ b

7] QAND A

%] ML LEARNING PATH

Catalogs

Home / Catalogs

CATALOG NAME %
cate

acumos-
dev_longtext_uytrewwv...

catlogs

acumos-test

cata

cat3

cat2

Upgrade default catalog

my catalog

Showing 10

v | catalogs

PUBLISHER NAME %

Acumos_1903232100

Acumos_1903232100

Acumos_1903232100

Acumos_1903232100

Acumos_1903232100

My company

My company

SELF-PUB %

Yes

Yes

No

Yes

Yes

Yes

No

No

No

No

Add New Catalog Search Catalog by name Q

TOTAL MODELS - CREATED DATE 4 ACTION

ACCESS TYPE %

Restricted

Restricted

Restricted

Public

Restricted

Public

Public

Public

Public

Public

08

24

00

1

25

1

04

07

04

04

04/30/2019
04/23/2019

0412212019
0412012019
0411972019
041712019
041712019
041712019
041052019

03/25/2019

’

el

el

Next

=

_images/denial-message-no-swid-tag.png
Right to Use Status X

Usage Denied

Your request could not be completed, for the reason below:

Additional Details:

_images/denial-message-no-agreement.png
Right to Use Status X

Usage Denied

Your request could not be completed, for the reason below:

Additional Details:

_images/deployment-flow.png
Portal BE

Jenkins

User selects
“deploy

Deployment
Client S
to K8s”
PUST 7deploy
{solutionld, revisionId,
envid, userld}
N
POST /task {solld, revId, "taskCode": "DP",
"statusCode”: "ST", ...}
>

201 Created { ..., "taskId": <id>, ...}

Select job
solution ty
(future fea

name per

pe
ture)

POST /job/solution-deploy/buildWithParamefe

Jenkins jobs are preconfigured
(simple, composite, pipeline)

rs?taskId=<id>

201 Created

202 Accepted
{taskId}

S —————————

Monitor task/stepresult
and update UI as needed

|+

GET /getSolutionZip/<taskIg>

Execute deployment job

templates etc

package solution deployment
for the
type of solution

202 0K (solution.zip)

>

Unpack solution.zip,
prepare for

deployment

k8s_Master

Create solution deployment
| —reate sotution dep oyment,)

When deployment is complete provide
notification text ("reason") ala
'<SOLUTION_NAME> deployment is complete.

The solution can be
ingress URL <ingress>

accessed at the

POST /status/<taskId>

Portal BE

Deploys
Client

{"status": "SU", "reason": "<reason>", infiress": "<url>"}
le
POST /task/stepresult {taskId, "name": "DEP",
"statusCode": "SU", ...}
»|
PUT /task/<taskId> {"statusCode": "SU",
POST /notif
{"message": "<reason>", "url": <url>, ...}
>
ment CDs Jenkins

k8s_Master

_images/deployment-clio.png
Kes/Openshift (Platform Core)

Portal-BE
OO
MLWB ‘Openstack Client

POST [deploy
{solutionid, revisionid,
envid, piserld}

CD,DEING

Kubernetes Client
CDING

(downioads |
Solution.zp) |

3

Deployment Client

Execute deploy.
Job

Jenkins

e Generic/Openshift
KES motel user

Openstack

K8S Solution

Depioyer

(deploy.sh)

N Fiink

0]

Data
Source

imodel

Model
[Connector| [>model
imodel

K8S/Openshift (solution runtime)

(to mesusn)

Filebeat

_images/compositeDesignStudioJourney.png
design studio

onboard my model

journey #5: composite
model

MODELER user journey:
modeler wishes to create
new composite model
may begin with path 1 or 1A

| @ favorites

local/company | public

composite model appéars, ,
in “unpublished” section
of My Models page

@ o

B manxereiace
marketplace
local/company

r—
& find models of

interest in
marketplace and
mark them as

[p—

& orscnsron

select DESIGN
subio

g qmioa marketplace
public

_images/acumos-overview.png
o Create & On-Board Models o Execute In Target Environment

g Ryptime Sﬁ(eﬁ
= Continuous /™™ G|)tocal tearing
Al Development Service Learn in g e
and tools

Onboard @

Al Platform &
Marketplace

) Ve=

Data Sources Training Training / Testing
Dataset Lifecycle

e Enhancing Model With Application Data Sets °Sharing Models In Marketplace

_images/acumos_homePage.png
Acumos MARKETPLACE ~ MODELERRESOURCES DOCUMENTATION Q seNm 16N UP NOW

Explore the IST_Acumos_Clio_1909101130 Marketplace

it's easy to discover, download & deploy

MACHINE ‘.2 #.2
LEARNING Gra.® N

iriskk-1 Testsol22

PUB_0527d_IST

Discover IST_Acumos_Clio_1909101130

Marketplace
Acumos is the go-to site for data-powered
decision making. With an intuitive easy-to-
use Marketplace and Design Studio,
Acumos brings Al into the mainstream.

Design Studio

Because Acumos converts models to
microservices, you can apply them to
different problems and data sources.

Team Up!
Share, experiment and collaborate in

an open source ecosystem of people,
solutions and ideas.

On-Board with your Preferred Toolkit
With a focus on interoperability, SDN & ONAP
Acumos supports diverse Al toolkits. Many Marketplace solutions originated
Onboarding tools are available for in the ONAP SDN community and are
TensorFlow, SciKitLearn, RCloud, H20 configured to be directly deployed to
SDC.

and generic java

_images/acumos-platform-user-flow.png
Acumos Platform — User Flow

| TooLKiTs: Y

% Select solution from
marketplace

“ Connect to data set

+ Deploy to runtime
environment

% (Improve model accuracy
through experience)

Reloud st % Import toolkit artifacts

@G % Store in repository
% Train to form predictor
FTensorFlow “ publish microservice

Torch

_images/add-new-catalog.png
Add New Catalog

Catalog Name *

Add Description *

O sett publish?

cancel

Access Level*

Select Access Level

_images/acumos_site_admin.jpg
e ¥ &0

uy
Compery R

{ar HOME Site Admin
Home

3 MARKETPLACE
DASHBOARD OPTIONS MONITORING

s
¢34 MY MODELS

Monitoring

SITE MONITOR HEALTH CHECK
A on-soaroiNG MoDEL
22 User Management
USERS
 oesieN sTUDIO
site Content Total Logins Login to 10ay
o,
SITE ADMIN Dashboard
= 46 inweek :
site Configuration
9 aanoa & i . i
& Federation
& Requests (SRS W N , R) . . . B

g“% Validation

Modelers

_images/User_access.png

_images/UseCase1.png
Data scientist

Wirapper

Example model wrapper

Mﬂdel Inner
Wrapper

Generated microservice using wrapper

_images/acumos-architecture-detail.png
Core Component

Supplemental
‘Component

Platform
Dependency

External
Dependency

All core component

logs (shared volume) | €

lonboarding-appr*

Host
Analytcs Kibana
Metricbeat | —————»{ ElastcSearch
Fiebeat > Logstash

Operations

Portal-BE
Onboarding
icroservice Generation
Design Studio

Kong

MariaDB

Common Data
Senvice

Microservice
Generation

Federation
Azure Client
OpenStack Client
Kubernetes Client

Federated
Peer

Kong

User
Publisher
Admin

—>% Identiy Service

Private KBS

>
> Nexus-Docker

i«

Rackspace

>

.

Nexus-Acumos

i pocker Proxy

Private KBS mode
deployment user

_images/acp-single-tracking.png
MR nginx

MR Persistent Volume 1

MR File Beat

ACP LogStash

FCP Elastic Search

ACP Kibana

ACP Front End

Deployed Model running with
nginx ingress in K8
MR = Model runner
ACP = Acumos Platform

In sidecar car

read only?

this volume may be

I

Saves Log

Reads Log

D m—

Push Logs to Acumos Platform

:| Process Logs
Output logs

Get Model reports for model id

‘[—xaﬁsp\ay my model report in html format

MR nginx

MR Persistent Volume

MR File Beat

ACP LogStash ‘ ' ACP Elastic Search

ACP Kibana

ACP Front End

_images/acumos-architecture.png
Client
ML Tool
Library

(e
+

Tensor

H,0

A, python
&

Java

Pre-training/Testing
Data

E1 - Toolkit Onboard

Internal API Services

iModeler

External APl Gateway

CLI Onboarding

g User

E2 - Web APIs

g

ML workbench

Web Onboarding

Authentication

Convertor/Dockerizer

Notification

~__Model

Catalogs

Model and Data Collection

Data Transformation

Validate Solution

Model
Artifacts

{Design Canvas (drag & drop)

Jupyter
Notebooks

Jenkins Engine

Security Verification
License Checks

‘6 3
SE

Notification/Alert £ gt
3

Simulator/Tester* &0

Validation Dashboard
N 7 y
E7 - License E6A - Training APIs*

Management APIs*

E6 — Deployment APIs

Private/Local/Public
Catalogs

Publishing Model
Importing/Exporting Model

Model Search/Review/Rating

Portal

./

Data Pipelines

g Operator

E4 - Admin APIs

Security

OA&M
Database

User Profile
Performance
Configuration
System Logs

E5 - Federation APIs

. —

E3 - OA&M APIs

Target Deployment Environments (including external data sources for training and execution)

Data e.g. Data Lake Data
Source Broker

e.g. Streaming
Data Data Data
Source Broker

Training

Cache

e SOAIS

*

©ONAP

o

_
. 1 Microsoft Azure

ML Model
Deployed kubernetes

*under development

Acumos Platform

Federation

Acumos
MarketPlace

Acumos
Company X

Acumos
Company Y

Acumos
Co. Y-1

License Usage
Manager (LUM)

R Q

_images/acumos-architecture-detail1.png
Web Ul
Core Component

Acums ntertace

Extemal Intrface

Core Component

Supplemental
‘Component

Al core component
logs (shared volume)

Platform
Dependency

o)
_ ommon Data
I Service Provier] Service
External

Dependency
Servce Client_ (D

Host Q.
Analytics Kibana fe——
snapstors
T Operations
Wetiear || Eustosearn [« LK ent
Fieheat Logsash i

s
g
%

"Acumos platform
Nexus-Maven

Microservice

lonboarding-appr*

Identity Service 3

Ioauthfloginiusername

g auberiicaton
callout for NiFi users/aimin)

lecdsi
User Kong -
Publisher o NGIRX

Admin

Nicense-rtu-editor License RTU
Editor

Ipackager*

W DAnzANz_

‘Openstack Client

OO

Kubernetes Client

User Workstation

Ideployment

o

Jenkins

Generglion

eofocie

Jenkins
(sv-scanning job)

Federated
Peer

Soluon user
(oot Saluon 75)

X

(@ll NGINX.
instancs {logs PV)

Docker Registry .

(e.g. Nexus)

Docker Engine

‘Acumos Project

(to Lafs‘!asn)

}->{ Fiebeat

es)

}—>{model

Model

NGINX]

kubernetes API

Deployment Client
o

solution-epioy job)
¢

K8S(Openshit

e
[Jode | G —s|moset
NG —>{mocel

G}

- 88
res g8

User Workstation

solution.zip with
K8S Solution
Deployer
(deploy.sh)

(oecuts!

0

deploymeny

A

Sokaionuser

 sonts daa 0 soson)

dan

_images/SplitterMappingDetailsValid.jpg

_images/SplitterMappingDetailsError.jpg

_images/UseCase.png
Data scientist

Wirapper

Example model wrapper

Mﬂdel Inner
Wrapper

Generated microservice using wrapper

_images/SplitterSelection.jpg
splitter Selection

Select the Splitter Scheme:
O Copy-Based Splitting
@ Parameter-Based Splitting

i m

_images/admin-peer-add.png
Add Peer Details

Peer Name * Peer Admin Email *

Gateway Information

Server FQDN * @

APIURL*

Verify

Description

Cancel Done

_images/admin-peer-verify.png
Add Peer Det:

Peer Name * Peer Admin Email *

DEV MMO00542237@TechMahindra.com

Gateway Information

Server FQDN * @

cognita-dev1-vmo1-core.eastus.cloudapp.azure.com

APIURL*

https://cognita-dev1-ym01-core.eastus.cloudapp.azure.com:9001 Verify
Connection successful
Description

self

_images/admin-peer-list.png
NAME 4 GATEWAY INFO 4 CONTACT 4 SUBSCRIPTIONS STATUS 4 DATE 4 ACTION SELF

& ¢ @ Removeasself

2
IsT hetpsi/cogrita-stymot.. MMO0S422370TechMah.. Active 09172019 @ , g Markasself

_images/admin-rtu-model-save.png
1 HOME Site Admin

Home / |
MARKETPLACE © saved successfully
DASHBOARD UPTION: KTU CONFIGURATION
N
¢34 MY MODELS
= @ Monitoring, RTUID * Associated Model Search by Model name
CATALOGS E Select Model v search Model
22 User Management
5] ON-BOARDING MODEL Filter
Site Content
lj DESIGN STUDIO 5™ USER NAME & EMAIL 4
site Configuration @ "
Ep— & o oo
S O Acumos Admin mmantan@hotmail.com
f% PUBLISH REQUEST o RTU Configuration
O VineetTripat vineet@techm.com
B aanpa @ Federation
[Kenkristiansen kka281@att.com
{@ WL LEARNING PATH &) Requests

% Configure Workflows ave

_images/admin-restore.png
Restore Confirmation X

Do you want to this rest

_images/admin-rturef-error.png
1 HOME Site Admin

MARKETPLACE tome 19 A There are no Solutions associated with the rtuReferencel
DASHBOARD UPTIUN: KTU CONFIGURATION
& mvmopELs
= @ Monitoring, RTUID * Associated Model Search by Model name
CATALOGS 2 Select Model v search Model
22 User Management
ON-BOARDING MODEL Filter
Site Content
DESIGN STUDIO BT USER NAME & EMAIL &
B, G &R site configuration a Sovit Sourav cestotestcom
r[% PUBLISH REQUEST of® RTU configuration Acumos Admin mmantan@hotmail.com
O VineetTripathi vineet@techm.com
B aanpa @ Federation
[Kenkristiansen kka281@att.com
{@ WL LEARNING PATH & Requests

% Configure Workflows

_images/admin-rtu-searchmodel.png
1R HOME

MARKETPLACE

¢4 MY MODELS

CATALOGS

ON-BOARDING MODEL

= oesien sTublo 5™
Sa SITEADMIN

g’j PUBLISH REQUEST
B aanpa

{@ WL LEARNING PATH

Site Admin

Home / RTU Co
DASHBOARD OPTIONS RTU CONFIGURATION
(@ Monitoring RTUID*

22 User Management
Site Content
&R site configuration @

o RTU Configuration

@ Federation
&) Requests
g Configure Workflows m

USER NAME &

Sovit Sourav

Acumos Admin

Vineet Tripathi

Ken Kristiansen

Associated Model

Select Model

~

Search by Model name

test (44230620-96f0-4bbd-bb

Filter

EMAIL

test@test.com

mmantan@hotmail.com

vineet@techm.com

kka281@att.com

_images/admin-federate-user-journey.png
Admin of Acumos A wishes to federate with Acumos B

For case 1, meta data for modls from Acymos, B aro visible in
the PUBLIC marketplace of Agmos A

assuming all models pass.
validation, models from
5B included in the
requost aro all viowablo and
‘doployablo in the PUBLIC
markotplace

For case 2, default

validation, all models in | g,
‘he subscription are

< & Admin A otors Fodaration Page
b odaration nfo updates o show
£ ADD peer i out subscripion row subscrpon. [—>
2 page repaints with fom-2,3,4
Admin A Ky nlo
contacts Admin gl
B and they
e sendouta
P noticaton when
ot his s done?
o
+ NOW FEDERATION IS CONFIGURED™*
(GASE 1 UX: A USER ON ACUMOS A REQUESTS A SOLUTION
4
o “Aeumes A PUBLIC ks on request sotup roquost to adimin
3 ranilace -7 import” buton o approve import
4

Admin A

sendouta
notiication to

‘admin A?

viow of requestod solutionis updated.
‘Solution s doployable, etc. -8 -9

sendouta
notiication to

Admin Al notfied

logs into acumas
to approve
roquest

_images/admin-expand-repository.png
MAINTAINED BACKUP LOGS.

BACKUP LOGS

[SL T Archive

ARCHIVED LOGS

Iter

Search

[m]
[m]

O

REPOSITORY 4

ACTIONS

B 0osep
BACKUP NAME CREATED DATE
testwt 20190906 10:34:38
testv2 20190906 11:41:34
+ testion

_images/admin-maintained-backup-logs.png
DASHBOARD OPTIONS MAINTAINED BACKUP LOGS

[@if) Monitoring BACKUP LOGS ARCHIVED LOGS

22 User Management Create Backup Archive Filter | Search
[E= site content O

REPOSITORY + ACTIONS

&R site configuration O
+ testasas
of® RTU configuration
O + ogsep
G Maintained Backup Logs
O + testior

@ Federation

O + test21Aug

_images/admin-indices.png
Create Backup x

(@ Repository Created Successfully

Select Repository

INDICES ACTION

cbeat6.2.4-2019,06.14

Metricbeat-6.2.4-2019,02.00

Create Backup

_images/admin-delete-bar.png

_images/admin-deactivate.png

_images/admin-delete-repository.png
Delete Confirmation X

Do you want to this delete repository?

_images/admin-delete-indices.png
Do you want to delete this inc

_images/admin-edit.png

_images/admin-delete.png

_images/admin-archive.png
Archive Confirmation X

Do you want to this archive repository?

_images/admin-activate.png

_images/admin-create-backup.png
There is no repository available in the elasticsearch, please create repository firs

Cancel

_images/admin-archived.png
Site Admin

Home / Maintained Backup Logs

DASHBOARD OPTIONS MAINTAINED BACKUP LOGS.

[@if) Monitoring BACKUP LOGS ARCHIVED LOGS

B et [A movssecm oty tomss sttty ionimies |

[E= site content
beee e seoen a

&R site configuration

D REPOSITORY & ACTIONS
of® RTU configuration
- O +osser o ®
&, Maintained Backup Logs
O + testasas) @

@ Federation

_images/admin-create-repository.png
ry Name

Cancel

_static/down.png

_static/file.png

_images/z2a-flow-2.jpg
Flow-2 — End user provides a kubernetes cluster to install Acumos on
0-kind

end-user environment

setup / initialization

Flow 2 assumes you have
your own Kubernetes cluster

Acumos noncore installation

Noncore component configuration

Acumos core installation
core component configuration

_images/z2a-flow-1.jpg
Flow-1 — End user provides a Virtual Machine to install a kubernetes cluster and Acumos

y 0-kind Ob-depends and Oc-cluster

builds a

Self Hosted Cloud
onavm

; OS configuration Syens .
end-user environment — fll . — kind" cluster build
oo ools installation
setup / initialization _ A (kubernetes)
docker installation

Acumos noncore installation
Noncore component configuration

Acumos core installation
core component configuration

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_images/visualize-Kibana-2.png
kibana

Discover

Visualize

Dashboard

Timelion

Dev Tools

Management

Visualize / New Visualization (unsaved)

Search... (e.g. status:200 AND extension:PHP)

Add afilter +

acumos-model-usage-logs

Data Options > B3

Buckets

n Split Group © j
Aggregation Filters help
‘ Filters ~ ’

Filter1 § lz]

Add Filter

«Advanced

Save

Share

Inspect

Refresh

C'Auto-refresh

Count

< O Last15minutes

Options n

_images/visualize-Kibana-1.png
Discover

Visualize

Dashboard

Timelion

Dev Tools

Management

Visualize / New

Select visualization type

Q Search visualization types...

Basic Charts
Area

Data

Data Table

Maps

Coordinate Map

Time Series

Timelion

Heat Map

(N

Gauge

Region Map

Visual Builder

Horizontal Bar

(8)

Goal

Line

42

Metric

Display a calculation as a single
number

sl

Vertical Bar

_static/images/logo_acumos.png
(G Acumos

_static/images/DesignStudio.png
DESIGN STUDIO: ASSEMBLE AND DEPLOY
o ‘Onboarding.

+ Modeler ingests Composable Microservice
- components with TOSCA Models of their

dependencies (e.g. input and output formats)

Creation Of Complex Predlclors

Decision Trees

Dala Collectars

Data Valldz(ors

Data Formatters

) store microservices for later
composition

o Analyst retrieves and assembles the Building Blocks
— e e o into a customized “Al Application”
. @ () Resolve data | TOSCA Topology Model of | (==t
ey h transformation acustomized ML | 1| Gomponend
components to satisfy Application LLI Models I
() store Composition and all dependencies e Cloudify Blueprint = —

Configuration

0 ... deploys a dockerized “Al
Application” according to TOSCA
Topology Model.

Model-Driven Package Mgr

Openstack Plugin| Azure Plugin AWS Plugin

@ Deploy the ML application
into Docker containers onto
target hosts

Container b

VM 1

A Customized ML Application
_ created for a specific use case or customer
Container requirement is deployed.

VM 2

Data Sources
Note: A VM can host multiple Docker MSs..

Cloudify will deploy onto available VMs.

Install VF Confi
Start VEs
Setup Inter

_static/minus.png

_static/logo_acumos.png
(G Acumos

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/images/AcumosArchitecture.png
-

Q ®) Q .
Acumos Architecture Detail odeler nays perator e
Web Portal

Admin I Cat.Mﬁmt |—
/ Onboarding\ /Compo